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Abstract
Quantum interference causes a wavefunction to have sensitive spatial dependence, and this has
a significant effect on quantum transport. For example, in a quantum-dot system, the
conductance can depend on the lead positions. We investigate, for graphene quantum dots, the
conductance variations with the lead positions. Since for graphene the types of boundaries,
e.g., zigzag and armchair, can fundamentally affect the quantum transport characteristics, we
focus on rectangular graphene quantum dots, for which the effects of boundaries can be
systematically studied. For both zigzag and armchair horizontal boundaries, we find that
changing the positions of the leads can induce significant conductance variations. Depending
on the Fermi energy, the variations can be either regular oscillations or random conductance
fluctuations. We develop a physical theory to elucidate the origin of the conductance
oscillation/fluctuation patterns. In particular, quantum interference leads to
standing-wave-like-patterns in the quantum dot which, in the absence of leads, are regulated
by the energy-band structure of the corresponding vertical graphene ribbon. The observed
‘coexistence’ of regular oscillations and random fluctuations in the conductance can be
exploited for the development of graphene-based nanodevices.

(Some figures may appear in colour only in the online journal)

1. Introduction

Graphene, a single layer of carbon atoms arranged in a
honeycomb lattice, has attracted much recent interest [1].
Potential applications of graphene range from electronics
to nano- biosensors. For example, due to the distinctly
high mobility of the charge carriers in graphene [2],
nanoscale electronic devices made of graphene, such
as p–n junctions and transistors, can be superior to
their Si-based counterparts [3]. Other applications include
spintronics [4], flexible and transparent photonic devices [5,
6], vapor molecular sensors [7], DNA sequencing [8],
single-bacterium resolution biodevice and DNA transistor [9],

and cellular interfaces for electrical recording of cell
membrane activities [10], etc. For any application, there is
a need to connect the graphene device to external voltage
or current source via metal leads. Ideally, there should be
zero resistance between the metal lead and the graphene.
However, experiments have shown that the contact resistance
can approach or even exceed the quantum resistance [11, 12].
This indicates that some form of injection barrier must exist
at the metal–graphene interface, restricting the transmitting
modes to be a few [11–15].

A useful setting to study the effect of contact on transport
is graphene quantum dots where the leads are assumed to
be ideal but they are narrow and can only support a few
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transverse modes [16]. This setup can also be used to explore
the transport properties of quantum point contacts (QPCs),
which in general depend on the geometry of the structure [15,
17]. A basic geometric parameter is the relative position of
the lead (or QPC) to the graphene device, which can affect the
conductance significantly. To develop graphene-based device
for applications, it is of paramount interest to understand
how the conductance changes as a function of the lead
position. This effect has been noted previously in the contexts
of semiconductor–superconductor microjunctions [18] and
transport through evanescent waves in graphene quantum
dots [19]. Because of intervalley scattering the conductance
fluctuation could be sample- and geometry-dependent [20].

In a recent Letter [21], we studied a simple rectangle
graphene quantum dot with narrow leads and zigzag
horizontal boundaries, and found that, depending on the
Fermi energy, there are periodic conductance oscillations and
random conductance fluctuations when the lead position is
varied systematically. These oscillations are related to the
change in the band structure that is induced by the edge of the
graphene dot, where the bands are restructured into bonding
and antibonding surface bands. We have briefly discussed
that the periodic conductance oscillations are caused by the
bonding bands, where the phases of the two atoms in a unit
cell are identical. Antibonding bands, where the phases of
the two atoms have a π difference, do not contribute to
the conductance. Similar interference pattern has also been
observed by Gonzalez et al in [22].

The purpose of this paper is to investigate the effect of
distinct graphene boundaries, i.e., zigzag and armchair, on the
lead-position dependent conductance variations. Intuitively,
if the lead is located in a region where the local density
of states (LDOS) is low, electrons can hardly hop out
of the localized pattern to get into the lead, resulting in
a small conductance value [23]. Opposite situations can
occur when the lead is in a different region, leading to a
large conductance. Our systematic computations with varying
lead positions reveal significant conductance fluctuations. A
physical analysis indicates that the fluctuations are caused
by various standing-wave patterns in the quantum dot. In
particular, the wavevector of the wavefunction follows the
underlying dispersion relation. For tall and narrow quantum
dots, the relation can be approximated by the dispersion
relation of the corresponding graphene ribbon when viewed
vertically in the absence of the leads, as shown in figure 1.
There are two atoms in a unit cell (denoted by A and B),
representing a pseudo-spin of the system. The wavefunction
thus typically has a phase difference for the two atoms. If
the horizontal boundary is zigzag, the ribbon has armchair
boundary in the vertical direction, and there are two sets
of bands. At the bottom of these bands, for one set, the
wavefunctions for A atom have the same phase as that for B
atom in the same unit cell (bonding), e.g., the value of the
wavefunction for A and B atoms are the same. For the other
set, the wavefunctions for A atoms have the opposite value
as that for B atoms (antibonding), which do not contribute
to the transmission. While for armchair graphene quantum
dots, the vertical graphene ribbon is zigzag, whose bands

Figure 1. A schematic illustration of rectangular graphene quantum
dots with zigzag horizontal boundaries (a) and armchair horizontal
boundaries (b), where the left and right leads are semi-infinite.
Because of the lattice structure, the position of the lead can only be
changed vertically in a multiple of the lattice distance, which is

√
3a

for (a) and a for (b), where a = 0.246 nm is the lattice constant. We
have iL/R = 1 if the left/right lead resides at the bottom of the dot.
The rectangles indicate a layer of N atoms, and L is the number of
layers. The number of atoms in the device is about N × L. In (a), the
geometric parameters are iL = 5, iR = 3, L = 10, and N = 12× 4.
In (b), the parameters are iL = 7, iR = 4, L = 6, and
N = 20× 4+ 2 = 82.

do not have the bonding or antibonding properties. We note
that in the nanotransport literature, conductance fluctuations
are usually referred to those with respect to varying electron
energy or changing magnetic field [24], the origin of which
can generally be attributed to scarred or pointer states in the
underlying dot structure. The fluctuations reported here are
induced purely by geometrical variance in the whole device
(quantum dot plus leads), caused by a different mechanism.

The organization of the rest of the paper is as follows. In
section 2, we describe the model setup. In sections 3 and 4, we
present systematic numerical results and physical analysis for
graphene quantum dots with zigzag and armchair boundaries,
respectively. Conclusions and a brief discussion are presented
in section 5.

2. Graphene quantum-dot model

Figure 1 shows the setup of a rectangular graphene quantum
dot where the vertical positions of the leads can be varied. We
assume the leads are semi-infinite, narrow graphene ribbons
supporting only a few transmission modes (8 in our simulation
for both zigzag and armchair cases). The rectangular device
can be divided into L slices, where each slice has N atoms
so that the number of atoms in the device is about N × L.
The size of the device is much larger than the width of the
leads. In realistic situations the positions of the leads can
hardly be tuned precisely on the atomic scale. A goal of this
paper is to investigate how this position inaccuracy affects
the overall conductance of the device. To be specific, the
position of the leads can vary only in an integer multiple of
the basic lattice unit in the vertical direction. To capture the
essential physics, we fix the left lead, systematically change
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Figure 2. For a zigzag dot with L = 20 and N = 96× 4,
(a) conductance versus Fermi energy, (b)–(l) conductance versus
right lead position iR for Fermi energy E/t = 0, 0.1, 0.2, . . . , 1,
respectively. The left lead is fixed at the middle of the dot: iL = 47.

the Fermi energy and the position of the right lead (denoted
by iR), and examine how the conductance changes with
these parameters. We employ the tight-binding Hamiltonian
and the standard Green’s function formalism to calculate the
coherent transmission. The Landauer formula can then be
used to calculate the conductance [25, 26]. In the Hamiltonian,
the nearest-neighbor hopping energy is t ≈ 2.8 eV [1].
At low temperature the conductance is proportional to the
transmission [25]. For a small quantum dot with well-defined
shape and terminations, many-body effects such as Coulomb
blockade can also be relevant to the conductance, which is
neglected in this paper.

3. Graphene systems with zigzag horizontal
boundary

Figure 2 shows, for a graphene dot with zigzag horizontal
boundary, the conductance versus iR for a set of fixed Fermi
energies, where the device size is L = 20 and N = 96 × 4,
and the position of the left lead is fixed at iL = 47 (the
middle of the device). For this dot structure, iR can be varied
from 1 (bottom) to 93 (top). Panel (a) shows the conductance
for an infinite graphene ribbon made of the leads. Thus
for E/t = 0, 0.1, . . . , 0.4 (corresponding to panels (b)–(f),
respectively), there is at most one transmission mode in the
lead, limiting the conductance to 1 in the unit of quanta
2e2/h. For E/t = 0.5, 0.6, 0.7 (panels (g)–(i), respectively),
the maximum number of modes is 3, and for E/t = 0.8, 0.9
(panels (j) and (k), respectively), the maximum number of
modes is 5, and when E/t equals 1, the number of modes
supported by each lead is 8. From this set of results, we see
that, for a given dot with the left lead fixed, the conductance

Figure 3. The same plots as figure 2 except iL = 17.

depends sensitively on the position of the right lead. For
a given energy, for some positions, the conductance can
have large values (∼1), while for some other positions, the
conductance could be almost zero (in the order of 10−4).
This substantiates our conjecture that the conductance and
therefore the performance of the device could be significantly
influenced by placing the lead at different locations. Another
observation is that for some energy values, the variation of
the conductance versus the lead position seems to be periodic
(figures 2(c)–(f)), while for other cases, it is more randomized
(figures 2(i)–(k)). To see if the observed periodicity and
randomness is persistent, we shift the left lead to iL = 17,
and show the results in figure 3. For some energy levels,
the two cases, where the only difference is the position of
the left lead, have some common patterns, e.g., they both
are roughly periodic with the same period (panels (c)–(f) of
figures 2 and 3) or both appear random (panels (i)–(k)). While
for some other cases the behaviors are quite different (panels
(g), (h)). These behaviors are quite robust, as we have verified
by, for example, changing the width and thus the number of
transverse modes of the leads, and the height and width of the
dot.

To understand the periodic and random behaviors in the
dependence of conductance on the lead position, we vary
the energy continuously and generate a contour plot of the
conductance versus the energy and lead position, as shown in
figure 4, for both iL = 47 (a), (b) and iL = 17 (c), (d). For
better visualization effect, the energy is separated into two
intervals: 0 < E/t < 0.4905 (figures 4(a) and (c)) where the
conductance is supported by only one transmission mode in
the leads, and 0.4905 < E/t < 1 (figures 4(b) and (d)). We
observe complicated conductance patterns. First, the number
of transmission modes in the leads regulates the overall scale
of the conductance variations, and the behavior appears quite
different for iL = 47 and iL = 17 in spite of some common
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Figure 4. Contour plot of the conductance (in units of 2e2/h) on
the iR-E/t plane for iL = 47 (a), (b) and iL = 17 (c), (d). (a), (c)
0 < E/t < 0.4905 where the maximum mode number is 1 and (b),
(d) 0.4905 < E/t < 1.

features. For example, for E/t < 0.4905, there is only one
transmission mode, so the maximum conductance is one
(2e2/h). As E/t varies from 0.4905 to about 0.75, there are
three transmission modes, and there are five transmission
modes for 0.75 < E/t < 0.95. This can also be seen from
figures 4(b) and (d) as the abrupt changes in these transition
values. Second, for each energy range where the number of
the transmission modes is fixed, there are sub-energy intervals
possessing similar conductance patterns, as marked in figure 4
by the arrows between figures 4(a) and (c). This sub-energy
interval is independent of the position of the left lead. As
we shall explain later, the presence of the sub-energy interval
depends on the width L of the rectangular quantum dot. When
the width varies, the range of this sub-energy interval also
changes.

To gain further insight into the conductance pattern, at
each given energy E, for the conductance curve G(iR,E)
versus the right lead position iR, we subtract the mean value
〈G(·,E)〉iR with respect to iR to get the conductance variation
G̃(iR,E) = G(iR,E) − 〈G(·,E)〉iR . Then Fourier transform
is applied to G̃(iR,E) with respect to iR to get the power
spectrum, |G̃(ky,E)|2, in terms of the spatial frequency in
y direction. The results of power spectrum |G̃(ky,E)|2 are
shown in figure 5 as contour plots for iL = 47 (a) and iL =
17 (b) for a given energy interval. The figure reveals, instead
of random patterns, some well-pronounced line segments in
the wavevector-energy plane. The line patterns in the power
spectrum plot, despite some minor discrepancies, exhibit
similar features for the two cases, such as the trend, the
starting and ending energy point for each line segment.
Furthermore, the line patterns are not continuous, but rather
consist of discrete bright spots. That is, when the energy
is varied, only for a small set of energy values, there is
a dominant frequency (the bright spot), corresponding to
pronounced periodic oscillations in the conductance-lead
position curve (panels (d)–(f) for figures 2 and 3). While for
most other energies, there is no such dominant frequency,

Figure 5. Contour plot of the power spectrum of the conductance
variation G̃ in the wavevector k (from iR) and E/t plane for
iL = 47 (a) and iL = 17 (b). The units are arbitrary for the power
spectrum.

indicating random conductance fluctuations versus the right
lead position.

Intuitively, since the graphene dot is rectangular, in the
vertical direction, the device can be viewed as a ribbon with a
finite length. Thus for not-so-small energies, the wavefunction
of the quantum dot in the y-direction has a regular waveform.
As the right lead moves from bottom to top, when it resides
at the local maximum of the probability density function, the
transmission would assume a large value. In contrast, when
the right lead resides at the local minimum of the probability
density function, the modes in the dot and the modes in the
right lead cannot couple effectively, leading to a small value
of transmission. As a result, the oscillation of the large and
small values of transmission follows the regular waveform
of the wavefunction. Moreover, since the probability density
function is the square of the module of the wavefunction, the
frequency of the transmission oscillation should be twice as
that of the wavefunction in y direction.

The intuitive understanding can be verified by consid-
ering the effect of removing the leads for the quantum
dot in figure 1(a), which results in an armchair ribbon of
finite length in the vertical direction. We can then calculate
the band structure of the corresponding armchair ribbon,
assuming that it can be approximated by an infinite ribbon.
The width is L = 20a. The results are shown in figure 6(a).
We then replot figures 5(a) in 6(b) and overlay with the
calculated band structure as the crosses (the region indicated
by the dashed rectangle in figure 6(a)), with the value of the
wavevector being doubled. One can see that the dispersion
relation of the armchair ribbon with the doubled wavevector
coincides with the line patterns in the wavevector space of
conductance variation. This provides direct evidence for the
standing-wave-like origin of the oscillation patterns in the
conductance curve.
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Figure 6. (a) Band structure of armchair graphene ribbon with width W = 20a, the same size as the rectangular quantum dot in the x
direction. The dashed rectangle indicates the region of band structure shown in (b). (b) Contour plot of the power spectrum in the
wavevector k (from iR) and E/t plane for iL = 47 (the same as in figure 5(a)). The units are arbitrary for the power spectrum. The crosses
represent the band structure for the ribbon where the value of the wavevector is doubled.

Figure 7. (a) Contour plot of the conductance (in units of 2e2/h) as
a function of the right lead position iR and the Fermi energy. (b)
Power spectrum of the conductance variation G̃ in the wavevector k
(from iR) and E/t plane. L = 10, iL = 47. The units are arbitrary for
the power spectrum.

To further substantiate our numerical observation, we
vary the width L of the dot and carry out the same calculations.
The results are shown in figure 7 for L = 10 and figure 8 for
L = 5, with the left panel showing the contour plot of the
conductance and the right panel showing the corresponding
power spectrum in the wavevector space, together with the
calculated band structures where the value of the wavevector
is doubled. Comparing to figure 4(a), G̃(iR,E) in figures
7(a) and 8(a) exhibit a more regular pattern, and accordingly,
the structure in the contour plot of G̃(k,E) is also more
pronounced. We see again that the power spectrum pattern of
the conductance coincides with the calculated band structure
for doubled wavevector values.

We now focus on figure 7(b). We see that although the
bright spots in the power spectrum G̃(k,E) follows the band
structure, not all the bands are occupied. For example, as
we sweep the energy, the first band (E/t ∼ 0.1) bears the
bright spots of the spectrum of G̃, indicating its contribution
to the conductance. When the second band emerges (E/t ∼
0.2), it is not connected with any bright spot, thus this band
has no contribution to the conductance oscillation. However,
when the third band (E/t ∼ 0.3) appears, the bright spots
jump to this band and the corresponding wavevector restarts
from 0 following this band. The fourth band again has no
contribution. The fifth band contributes to the conductance
oscillation, and so on. Similar selection phenomena of the

Figure 8. (a) Contour plot of the conductance (in units of 2e2/h) as
a function of the right lead position iR and the Fermi energy. (b)
Power spectrum of G̃ in the wavevector k (from iR) and E/t plane.
L = 5, iL = 47. The units are arbitrary for the power spectrum.

bands on which the power spectrum scars also holds for
other cases, as demonstrated in figures 6(b) and 8(b). While
for transmission (conductance) of the corresponding armchair
nanoribbon viewed in y direction, it is known that all the bands
contribute indistinguishably one mode when energy is above
the bottom of the band. Another observation is that, when
two bands cross each other, the bright spots can jump from
one band to the other (see the two bands around E/t = 0.4 in
figures 7(b) and 8(b)).

As we shall demonstrate below, this feature can be
explained by the dispersion relation and the phase difference
of the two sublattices of the wavefunctions. Figure 9(a) shows
a contour plot of the energy dispersion relation for graphene,
where K and K′ are the two Dirac points. For a closed
device from which both leads are removed (figure 1), in
the horizontal (x) direction, the boundary is zigzag but it
is armchair in the vertical (y) direction. Figure 9(b) shows
the relation between energy and ky, the y component of the
wavevector. Take the K point for example, there are two sets
of bands for the armchair ribbon. For E > 0 the first set is for
kx > K, shown in figure 9(b) as the gray (lighter) curves. The
other set is for kx < K, shown in figure 9(b) as the red (darker)
ones. Regarding the isolated quantum dot as a nanoribbon in
the vertical direction, the wavefunction of the armchair ribbon
for wavevectors close to the Dirac point K has the form [27]
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Figure 9. (a) Contour plot of the dispersion relation of graphene
with x direction being zigzag. The dashed line indicates the first
Brillouin zone. The K point is (4π/(3a), 0) = (K, 0), and K′ point
is (−K, 0). (b) Calculated band structure for the armchair
nanoribbon with L = 10 (corresponding to vertical direction in (a)).
For E > 0, the gray (lighter) curves are for kx > K = 4π/(3a), the
red (darker) ones are for kx < K. For E < 0, the gray (lighter)
curves are for kx < K = 4π/(3a), the blue (darker) ones are for
kx > K. Therefore, for the gray curves, sign(kn/E) = 1, while for
red or blue curves, we have sign(kn/E) = −1.

ψ(x, y) = eikyy
[φA(x), φB(x)]T . The Hamiltonian is given by

HK = vF(p ·σ) = vF

(
0 px − ipy

px + ipy 0

)
,

where σ denotes the Pauli matrices. The eigen-equation Hψ =
Eψ yields

vF

(
0 −ih̄∂x − ih̄ky

−ih̄∂x + ih̄ky 0

)
·

(
φA

φB

)
= E

(
φA

φB

)
.

The first row yields vF(−ih̄)(∂x + ky)φB(x) = EφA(x), or

φA(x) =
−ih̄vF

E
(∂x + ky)φB(x). (1)

Equivalently, for the second row we have

φB(x) =
−ih̄vF

E
(∂x − ky)φA(x). (2)

Combining equations (1) and (2), we have φB(x) =
(h̄2v2

F/E
2)(k2

y − ∂
2
x )φB(x). Applying the boundary condition

of the armchair ribbon, the solution is φB(x) = Aeiknx, where
kn = nπ/L − 4π/(3a) and L is the width of the ribbon [27].
Substituting this solution back to equation (1), we have

φA(x) =
−ih̄vF

E
(ikn + ky)φB(x). (3)

We now reexamine figure 7(b). The bands can be
characterized by their cross points with the energy axis, which
are located at the bottom of the bands. In this region, ky ≈ 0
and E ≈ vFh̄|kn|, thus equation (3) becomes

φA(x) ≈
h̄vFkn

E
φB(x) = sign(kn/E)φB(x). (4)

The same holds for the other Dirac point. We see that, in the
region of ky ∼ 0, depending on the value of kn, or the location
of kx (on the right side or the left side of the Dirac point K),
the wavefunction of A atoms may have the same value or the

opposite value as that of B atoms. This has been verified by
numerical calculations of the wavefunctions of the armchair
ribbons.

It can now be argued that only the bands for which the
wavefunctions for A atoms and B atoms possess the same
value contribute to the conduction of the quantum dot, while
the bands with opposite phases have no contributions. Our
idea is to use the mode matching technique in the calculation
of the transmission [28]. In particular, the transmission of
the quantum dot is nonzero if the modes in the dot match
the modes in both left and right leads. The leads are narrow
zigzag ribbons. The wavefunctions of A atoms and B atoms
are symmetric under reflection with respect to the vertical
direction when E > 0. Since the leads are narrow and their
widths are much smaller than the vertical scale of the quantum
dot, the wavefunctions of the dot in the lead region can
be regarded as constants. Mode matching is the sum of the
cross integral between the wavefunctions of both A and B
atoms. If the wavefunctions of A atoms and B atoms have
the same value, their contributions add up, resulting in a large
transmission. However, if the wavefunctions have the opposite
value, the two cross integrals annihilate, leading to nearly zero
contribution to the transmission. This explains why the bands
with negative kn, where kx < K around the K point or kx >−K
around the K′ point, as shown by the red bands in figure 9(b),
do not contribute to conductance and are missing in the power
spectrum pattern of G̃, as shown in figure 7(b).

Note that we have focused on the E > 0 case so far. For
E < 0, we expect the same kind of behavior, i.e., the spectrum
of the conductance fluctuation coincides with the dispersion
relation. From figure 9(b), for E > 0 and E < 0 the bands
with opposite values are interchanged, thus in the spectrum
of the conductance fluctuation, a naive thought would be
that the occupied bands will be also interchanged. However,
a direct numerical calculation yields the same plots for the
conductance and also the spectrum except a reflection from
E to −E. This can be understood by noting that the bands of
the quantum dot with opposite values are interchanged when
change from E to −E, and a particular state [ψA, ψB] will
change to [ψA,−ψB] for the dot region. However, the same
also happens to the leads. Thus, for E > 0, in the leads ψA ≈

ψB, only the states with ψA ≈ ψB in the dot region contribute
to the conductance. While for −E, the wavefunction changes
to [ψA,−ψB] for both leads and the dot. It can be concluded
that now the bands with opposite values contribute to the
conductance.

Another interesting observation is that in figure 7(a),
there is a pronounced triangle-like conductance peak for
E/t < 0.1. This occurs when the vertical ribbon has a band
gap. To be specific, the vertical ribbon without the leads is
an armchair ribbon. Depending on the width of the ribbon,
e.g., when number of atoms in a repeating slice is N =
4n + 2, n = 3m − 1 (m = 1, 2, . . . is an integer), the valence
band and the conductance band could cross each other where
the ribbon behaves metallic. For other n values, the ribbon
has a gap, which is inversely proportional to the width of
the ribbon. The profile of this conductance peak reveals a
transition from the localized state at the zigzag edge for low
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Figure 10. (a) Contour plot of the conductance variation G̃ (in units
of 2e2/h) as a function of the right lead position iR and the Fermi
energy. (b) The power spectrum of G̃ in the wavevector k (from iR)
and E/t plane. The crosses indicate the band structure of the
corresponding zigzag ribbon. N = 4× 170+ 2 = 682. L = 12,
iL = 82. The units are arbitrary for the power spectrum.

energy (E ∼ 0.01t) to the first extended state of the first band
(E ∼ 0.09t). The former does not contribute to transmission,
while the latter does. Since the ribbon is narrow, there are
no other intermediate states between these two states. As the
energy is increased, the extended state at (E ∼ 0.09t) plays
a more dominant role, leading to a larger iR interval for high
transmission.

4. Systems with armchair horizontal boundaries

The numerical results and analysis presented so far are
with respect to graphene quantum dots with horizontal
zigzag boundaries. For graphene quantum dots with
armchair horizontal boundaries, as shown in figure 1(b),
the conductance properties appear distinctly from those
associated with the zigzag horizontal boundary systems. For
comparison, we calculate the conductance for an armchair
quantum dot with a similar size as the one used for figures 2–6.
The leads also support a maximum of 8 transmission modes.
Since the conductance increases with the energy, to grasp the
conductance variation as the right lead moves, for each energy
E we calculate conductance variation G̃(iR,E) = G(iR,E) −
〈G(·,E)〉iR , and plot this G̃ in figure 10(a). Comparing with
the patterns shown in figure 4, we see that the conductance
fluctuation patterns are different. For the zigzag quantum dot,
at small energies, the spatial wavelength of the conductance
fluctuation over the right lead position is long. But for the
armchair dot, even at small energies, the spatial wavelength of
the conductance fluctuation is still short. A common feature,

Figure 11. (a) Contour plot of the conductance variation G̃ in the
right lead position iR and the Fermi energy E/t plane. (b) The power
spectrum of the transmission shown in (a) in the wavevector k (from
iR) and E/t plane. The crosses indicate the band structure of the
corresponding zigzag ribbon. N = 4× 170+ 2 = 682. L = 6,
iL = 82. The units are arbitrary for the power spectrum.

however, is that the conductance pattern is also divided into
several different sub-energy levels. As in the zigzag case,
this is originated from the standing-wave-like wavefunctions
and, consequently, the power spectrum of the conductance
variation would follow the band structure of the corresponding
ribbon looking in the vertical direction. We have carried out
Fourier transform of G̃ in the iR dimension, and plotted the
power spectrum in figure 10(b). Comparing the two subplots,
we see that, as the energy increases, whenever it crosses a
band as shown in figure 10(b), the conductance fluctuation
pattern in figure 10(a) will exhibit a drastic change, such as
for E/t ∼ 0.2, 0.3, 0.4 etc, as indicated by the arrows. We
have overlaid the bands of the corresponding vertical ribbon,
where the value of the wavevector is doubled. The bright
spots of the power spectrum follow the band structure well. In
this case, when energy approaches zero, from the dispersion
relation the wavevector is not approaching zero as in the
zigzag dot case, but has a limit value of K/2 = 2π/(3a).
The wavelength (∼1/k) of the wavefunction in the vertical
direction of the quantum dot is consequently short, leading to
rapid conductance oscillations.

To verify the generality of the above observation of the
conductance oscillation/fluctuation pattern in the armchair
quantum dots, we have carried out parallel computations for
shorter quantum dots as in the zigzag cases. The results are
shown in figure 11 for L = 6 and figure 12 for L = 3. As in the
zigzag cases, narrow dots support fewer transverse modes and
exhibit more coherent transmissions, and regular conductance
oscillation patterns are thus more frequent.
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Figure 12. (a) Contour plot of the conductance variation G̃ in the
iR − E/t plane. (b) The power spectrum of G̃ shown in (a) in the
wavevector k (from iR) and E/t plane. The crosses indicate the band
structure of the corresponding zigzag ribbon.
N = 4× 170+ 2 = 682. L = 3, iL = 82. The units are arbitrary for
the power spectrum.

The coincidence of the power spectrum pattern and
the band structure for all the three armchair quantum dots
validates the standing-wave conjecture as in the zigzag dot
cases.

5. Conclusion

In conclusion, we have investigated the effect of lead
positions on conductance oscillation/fluctuations in rectan-
gular graphene quantum dots. We have provided systematic
computational results and a physical theory for both zigzag
and armchair horizontal boundaries. Our main finding is
that the conductance oscillation/fluctuations are originated
from the standing-wave patterns of the wavefunctions in
the quantum dot, an effect of quantum interference. This
is established by the consistency of the power spectrum
analysis of the conductance variation and the energy-band
structure of the underlying quantum dot when viewed as a
ribbon in the vertical direction. For the armchair horizontal
boundaries, all the bands are occupied by the power spectrum
of the conductance variation. While for the case of zigzag
horizontal boundaries, some bands are missing. The selection
of the bands on which the conductance fluctuation scars is
determined by the relative phase of the wavefunction for the
two atoms in a unit cell, where only those with the same
phase in the case of E > 0 have contributions. Note that our
observation is general that it happens whenever the lead is
small compared to the scale of the dot, and the value of the
wavefunction at the edge of the dot has sensitive dependence
on the location. We anticipate these results to be useful in the
design and development of future graphene-based nanoscale

electronic circuits, where dot structure and point contacts are
fundamental elements.
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