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Summary: The authors reexamine the correlation integral and the related correlation
dimension in the context of EEG analysis with application to seizure prediction. They
identify dependencies of the correlation integral and the correlation dimension on fre-
quency and amplitude of the signal, which may result in a reinterpretation of the dynamic
importance of these measures and may cast doubts on their predictive abilities for certain
classes of seizures. The relevance, for clinical and research purposes, of the distinction
between retrospective and prospective inference (prediction) is addressed briefly. The
authors point to the need for further research, consisting of long time series, containing
multiple seizures, and for the development of objective prediction criteria.Key Words:
Seizure—Dependencies—Correlation dimension—Amplitude—Frequency.

The popularization and, with it, the inevitable over-
simplification of chaos theory (Ruelle, 1991), a branch of
nonlinear dynamics, has resulted in the indiscriminate
application of its tools of analysis to the study of any
system with behavior that appears aperiodic and unsta-
ble. Its immense appeal to those devoted to the study of
complex systems, and especially to those interested in
biologic phenomena, lies in its predictive application.
Specifically, chaos holds great allure to epileptologists,
because the aperiodic and unstable behavior of the epi-
leptic human brain seems ideally suited to investigation
by tools that would allow precise tracking of its temporal
evolution. For the first time in the history of epilepsy, a
systematic and readily accessible way to do away with
seizure unpredictability apparently became available. It
is therefore not only understandable, but also highly
desirable, that nonlinear dynamics techniques have been
sanctioned by epileptologists and applied to the human
electrocorticogram (ECoG). Materialization of the pre-

dictive potential of these techniques would open the
possibility for both understanding and controlling the
dynamics of this disease (Schiff et al., 1994b). Analyses
of short time series (such as ECoG) suggest that estima-
tion of the correlation integral (Lerner, 1996; Martinerie
et al., 1998) and the correlation dimension (Elger and
Lehnertz, 1998; Lehnertz and Elger, 1998) allow predic-
tion of the electrographic onset of seizures. The intent of
this communication is (1) to enhance our understanding
of the type of information extracted by these methods
and to help put into perspective its dynamic importance,
(2) to review briefly the criteria that any method must
fulfill to qualify as predictive, and (3) to stimulate much
needed discussion in this important subfield of epilepsy
and to assess the contribution of these methods of anal-
ysis to attaining the grand objective of enabling seizure
prediction at the clinical level.

COMMENTS ON CORRELATION DIMENSION
ESTIMATION

Correlation dimension (D2) is the most widely applied
technique to the analysis of ECoG because of the avail-
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ability and ease with which algorithms for its estimation
can be implemented on the computer. It is also the most
common basis on which the claim of chaotic dynamics
has been made in biological systems (Guevara, 1997).
The procedure (for a more mathematical treatment ofD2,
see the appendix) requires several steps that we describe
briefly here: First, the ECoG signal is broken into time
windows. In each window, anm-dimensional trajectory
is built from a discretely sampled ECoG signal by cre-
atingm-tuplets of points with members that are separated
by a delay timet. Once them-dimensional trajectory is
constructed, the probability that a randomly selected pair
of points is separated by a distance less than or equal to
a radiuse is computed. This probability can be estimated
by the correlation integral (C(e,m)), which counts the
fraction of point pairs within a distancee. The quantity
D2 is usually estimated by looking at the linear scaling
region on a logarithmic plot of the correlation integral
versuse (Fig. 1). The slope of this line generally in-
creases with the embedding dimensionm until the slope
reaches a maximum value, which is then taken as an
estimate ofD2.

When the correlation integral is applied to a finite
segment of signal resulting from a low-dimensional,
stationary dynamical system, it shows a dependence on
embedding dimensionm, delay timet, and the number of
sampled points. When this measure is applied to a
moving window of nonstationary data, however, it varies

from window to window as a result of both linear and
nonlinear changes in the signal properties, although pa-
rameters of the correlation integral computation are held
fixed. Here we caution that even simple changes in the
signal amplitude or differences in the signal autocorre-
lation can cause large changes in the correlation integral
and correlation dimension. For instance, consider two
windows of ECoG data recorded from the same patient,
one during the interictal state with amplitudeA1, and the
other during ictus with amplitudeA2, whereA2 . A1.
Fig. 2 shows the signal trajectory (the presumed attrac-
tor) for two windows of interictal and ictal ECoG, where
an embedding dimension ofm 5 3 was chosen to
facilitate visualization. The correlation integral depends
on the number of point pairs separated by at most a
distancee. Selecting one arbitrary point xi, we draw a
sphere of radiuse around the point and count the number
of point pairs enclosed by the sphere, as shown in Fig. 2.
We see that in the interictal window (Fig. 2A), the points
are clustered into a far tighter group than in the ictal
window (Fig. 2B), and that the number of points within
the fixed sphere of radiuse is lower than that generated
by the ictal data. This leads to a decrease in the correla-
tion integral during the ictal state relative to the interictal
state. Because the probability of a point pair being inside
a ball of radiuse is proportional to (e/A1)

m interictally,
and to (e/A2)

m ictally, the relative decrease in the corre-
lation integral is thus on the order of (A1/A2)

m. We note

FIG. 1. For t 5 68 seconds during the
preictal phase and six values of the em-
bedding dimension, the figure shows
log

2
C(m, e) versus log2 e on a logarith-

mic scale. The circles,x’s, pluses, stars,
squares, and diamonds correspond tom
5 10, 13, 16, 19, 22, and 25 respec-
tively. The region between the dashed
lines is the region of approximately lin-
ear scaling (the region of “anomalous
slope”) resulting from the autocorrela-
tion of the data.
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that this is on the same order of magnitude as the
decrease reported by Lerner (1996) for the same seizure
recording. These observations suggest that the correla-
tion integral andD2 are highly sensitive to amplitude
changes—a characteristic that could result in nonspeci-
ficity, given the nonstationarity of the signal (that is,
amplitude increases are not seenonly with seizures).
Therefore, it seems relevant to test the performance of
these methods on an ECoG signal normalized for ampli-
tudes. For the seizure in Fig. 2, we compute the corre-
lation integral with embedding dimensionm 5 7, delay
time t 5 1/20 second, ande 5 0.020 mV, which is
approximately 75% of the median of the amplitudes in
interictal windows. Here, the amplitudeA is approxi-
mated for a noisy signal by dividing the original signal
into windows, sorting in increasing order, and computing
this amplitude as the 95th percentile minus the fifth
percentile and dividing by two. The correlation integral

for the signal is shown in Fig. 3A). To normalize for
amplitude changes, we divide each window by its re-
spective amplitude (computed as mentioned) and recom-
pute the correlation integral. Fig. 3B shows the ampli-
tude of the signal in each window, and Fig. 3 C shows the
correlation integral of the signalnormalized in each
window, xnorm(t) 5 x(t)/A. We see that for this seizure,
this normalization scheme destroys most of the discrim-
inating ability of the correlation integral. The previously
reported decreases in the correlation integral (Lerner,
1996) and the correlation dimension (Martinerie et al.,
1998), in the absence of normalization schemes, may
reflect (at least in part) simple amplitude variations that
can be detected more efficiently through other means. In
short, changes in correlation integral andD2 of a non-

FIG. 2. (A, B) With embedding dimensionm 5 3 and delay timet 5
1/12 second, the trajectory of the system interictally (A), and ictally
(B). To compute the correlation integral, the number of points inside an
m-dimensional sphere of radiuse is counted. A high-amplitude signal
fills out a larger region ofm-space, thus fewer points are contained
within a sphere of radiuse than for a lower amplitude signal. These
density differences account in part for the sensitivity ofD2 to signal
normalization.

FIG. 3. For a segment of electrocorticogram containing a seizure, the
following are seen: (A) The correlation integral with parametersm 5
7, t 5 1/20 second, ande 5 0.02 mV. (B) The amplitude of the signal
in each window. (C) The correlation integral of the signal normalized
in each window (xnorm5 x/A) with parametersm5 7, t 5 1/20 second,
ande 5 0.75. The drop inD2 parallels the increase in signal amplitude.
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normalized signal may not be the result of changes in the
nonlinear dynamic properties of the signal.

We now examine the application ofD2, the slope of
the correlation integral versuse on a logarithmic scale to
a signal normalized for amplitude. For a stochastic sys-
tem, this plot generates a line with a slope dependent on
the embedding dimensionm that never reaches a maxi-
mum value asm is increased because of the infinite
dimensionality of the system. However, Theiler (1986)
points out that for finite, autocorrelated, stochastic data-
sets, the plot (see Fig. 1) of the correlation integral on a
logarithmic scale can exhibit approximately linear re-
gions with slopes distinctly smaller than in other regions
(we term this theanomalousscaling region) that are not
good indicators of the dimensionality of the system. By
analyzing ECoG data in a moving window of finite
width, we find that the autocorrelation of the data typi-
cally varies widely among windows, and can undergo
particularly abrupt changes on entering the ictal state.
Changes such as these in the time–frequency distribu-
tions are used typically to score seizures visually. It is
well-known that the energy spectral density of a signal is
the Fourier transform of its autocorrelation sequence by
the Wiener–Khintchine Theorem (Proakis and Mano-
lakis, 1996). When aD2 computation is made on the
basis of the slopes in this linear region, changes in

the autocorrelation are linked to changes inD2 through
the value of the slopes, as shown in Fig. 4. Thus changes
in D2 valueswhen computed in this region of anomalous
slope may be largely be the result of changes in the
frequency spectra of the “windowed” signal.

This interplay between autocorrelation andD2 is best
illustrated through an example: Let us computeD2 in a
20-second window “slid” by 2 seconds at each step,
using a delay timet 5 1/12 second, embedding dimen-
sions from 10 through 25, and an amplitude normaliza-
tion scheme to make the signal be between 0 and 1 in
each window. Fig. 1 shows a plot of the correlation
integral versuse on a logarithmic scale for an interictal
window. The segment between the dashed lines indicates
the region of approximately linear scaling, where the
slope is influenced by the autocorrelation. Above and
below these regions, we see that the lines exhibit slopes
that increase with embedding dimensionm, consistent
with a stochastic (or very high-dimensionally chaotic)
dynamic origin. During ictus, slopes in the linear scaling
region can vary widely, indicating variation in the auto-
correlation and, consequently, the frequency spectrum.
As shown in Fig. 4, there is correspondence between
decreases in the autocorrelation and increases in theD2

computation. This indicates thatD2 may be dependent on
frequency changes—a dependency that does not bode

FIG. 4. (A, B) For a segment of electro-
corticographic data containing a seizure,
the time evolution of the autocorrelation
a (A) and the correlation dimensionD2

(B). Notice that the decrease in autocor-
relation occurs simultaneously with the
increase inD2.
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well for the specificity of this method with regard to
ECoG data. The extent of the interplay betweenD2 and
frequency spectral changes needs to be further explored.

Other measures in seizure prediction, such as the
Lyapunov exponent (Iasemidis and Sackellares, 1991;
Iasemidis et al., 1990, 1998), a measure of sensitive
dependence on initial conditions, may also be sensitive to
changes in signal amplitude and power spectrum. Al-
though we have not applied this method to ECoG series,
its limitations are similar to those ofD2: It requires large
amounts of stationary data, and is sensitive to noise,m,
and t, and perhaps to fluctuations in amplitude and
autocorrelation because the exponents are estimated us-
ing an attractor reconstructed in an identical manner to
that used for the computation ofD2.

RETROSPECTIVE INFERENCE?

For any method to qualify as predictive (Osorio et al.,
1998; Stone, 1992), the system’s output at a given time
t must be solely a function of the information available to
that system at or before timet. In other words, the
prediction that a seizure will occur at timet 1 n, should
have been made earlier (att), without using any new data
betweent andt 1 n. This allows for objective assessment
of the predictive sensitivity and specificity (accuracy) of
the method, through calculation of the prediction error.
Methods in which the time series of a predictive measure
is tracked backward from the electrographic onset to the
first point where it crosses a “threshold” (or where
“thresholds” are set retrospectively for each seizure) are
examples of retrospective inference, not of true
prediction.

CONCLUDING COMMENTS

Our findings indicate that correlation integral andD2

estimates of ECoG are sensitive to changes in amplitude
and, through the autocorrelation, to variation in the
frequency spectrum of the signal. In particular, we con-
trast our approach with that proposed by Lerner (1998)
and adopted by Martinerie et al. (1998). The decrease of
the correlation density measure observed by Lerner
(1996) has a very simple dynamic explanation and it
reveals no more information about seizures than expert
visual inspection of the ECoG. The existing results
that the correlation dimension (Martinerie et al., 1998)
or the correlation density (Lerner, 1996) decrease to a
lower value during the seizure may not reflect cor-
rectly the underlying dynamics of the seizure. Taken
one step further, our observations may be used in
support of the claim that the information these meth-

ods provide about nonstationary systems’ dynamics, in
this case the brain’s, can be at least in part a reflection
of changes in the amplitude or autocorrelation of the
signal. This observation, although possibly trivial or
even obvious to many, has not been emphasized in the
epilepsy literature. The quantity computed by applica-
tion of the correlation dimension to the ECoG has been
believed in the past to provide information about the
dimension of the system, giving an estimate of the
number of degrees of freedom necessary to specify its
trajectory. Recently, as computational problems with
estimating dimension on finite, nonstationary data
have been recognized, most researchers have chosen
to useD2 as a discriminating measure of the changes
in the measure between windows.

The nature or properties of the signal that result in
increases or decreases in this relativeD2 remain obscure.
For certain classes of seizures, we suggest that the
information provided by digital signal processing meth-
ods, which are well-suited for time–frequency analysis
(D’Attellis et al., 1997; Gotman and Gloor, 1976; Osorio
et al., 1998; Principe et al., 1991; Schiff et al., 1994a, c),
will be highly similar qualitatively to that obtained by
applying D2, but much faster. This statement does not
imply that amplitude and frequency are the only or even
the main signal features detectable by the correlation
integral and the correlation dimension.

In our view, the top research priorities for the near
future are (1) large-scale studies consisting of long time
series containing multiple seizures; (2) the selection and
implementation of criteria to determine, in a reproducible
and objective manner, the time of seizure onset predic-
tion; and (3) the development of algorithms that operate
in real time. The diligence and scientific rigor with which
these objectives are pursued, will determine the proba-
bility of success.
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APPENDIX

To compute the correlation integral (C(m, e)) and the
correlation dimension (D2), we first delay–coordinate
embed the signal:

x(t) 5 { x(t),x(t 1 t),. . .,x(t 1 (m2 1)t)}, (1)

where t is the delay time, andm is the embedding
dimension. Grassberger and Procaccia (1983) show that
D2 can be evaluated usingC(m, e), which is defined to be
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the probability that a randomly selected pair of delay–
coordinate points is separated by a distance less thane.
We let N be the number of points in the reconstructed
vector time series x(t). The correlation integral can be
approximated by the following sum for largeN:

C(m,e) <
2

N(N 2 1)(j51

N

(
i5j11

N

u (e 2 uxi 2 xju), (2)

whereu(·) is the Heaviside function given byu(x) 5 1
for x $ 0 and 0 otherwise, and |xi 2 xj| is the distance
between pointsxi and xj. The correlation dimension is
then given by the following (Grassberger and Procaccia,
1983):

D2 < lim
e30

lim
N3`

log C(m,e)

log e
. (3)

The autocorrelation is computed through the following
average of each window of the signal:

a 5
1

M(
j51

M

(aj)
1/j, (4)

where we useM 5 6 and

ak 5
Kxixi1jL

Kxi
2L (5)
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