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ABSTRACT  
 
Precise positioning utilizing GPS signals relies on a 
precise tracking of the carrier phase of these signals.  The 
phase generally consists of two parts: an integer part and a 
fractional part.  With the current receiver technology, it is 
possible to track the fractional part of the phase of the 
carrier wave at accuracy of 0.001 m using phase locked 
loops (PLLs).   The tracking of the integer part is, 
however, a more difficult problem because of the 
inevitable ambiguities associated with the determination 
of the integer multiple of the carrier wavelength.  In an 
environment where noise is Gaussian with relatively 
small variance, a standard integer least-squares algorithm 
can be used, yielding millimeter range accuracy. 
However, in the presence of interference - intentional or 
non-intentional, this noise can be large and not 
necessarily Gaussian. In this paper we evaluate the 
performance of Integer Least-Squares based algorithm for 
two different situations (i) Phase measurement noise has 
larger variance and (ii) noise is not Gaussian.  
 
To study the effect of larger noise variance on the 
performance of integer least-squares algorithm, we 
performed the following simulation. For a synthetic GPS 
setup, Pc is calculated using Monte-Carlo simulations.  
Values of Pc for various noise variances are plotted 
versus time. We observed that as noise level increases, the 
time it takes to achieve a certain value of Pc also 
increases. This time was observed to vary linearly with 
the noise amplitude. The significance of this result is that 
the performance of the integer least-squares algorithm can 
be predicted for a given noise level. For a desirable 
performance requirement, our procedure enables the 
maximum allowable noise power (noise tolerance limit) 
to be calculated. 
 
We also investigated the performance of the integer least-
squares algorithm when the distribution of the 
measurement noise is not Gaussian.  As a particular 
example uniform noise was considered. To ensure fair 
comparison between uniform and Gaussian noise, their 
variances are set to be equal. Simulation results show that 
the nature of noise has little effect on the performance of 
the algorithm. 
 
 
INTRODUCTION  
 
GPS satellites use Direct Sequence Spread Spectrum (DS-
SS) signals to transmit information in C/A code and Y-
code.  These spread spectrum signals have some degree of 
jamming protection (due to processing gain) built into the 
signal structure itself. However, since GPS signal is very 
weak, it is easy for an intentional jammer to overcome the 
inherent jamming protection of the DS-SS signal. 
Jamming signals are spread in the frequency domain by 
the GPS signal de-spreading process. These spectrally 
spread jammers increase the effective noise floor in a 
GPS receiver, making difficult precise carrier-phase 
tracking.  Various techniques, both in terms of signal 
processing (e.g. time-frequency domain processing, 
subspace processing) and receiver antenna design (e.g. 
beam forming, null steering) were proposed in literature 
for jamming protection. However, even with the 
application of these techniques, typically there are still 
residual errors in the phase measurement. 
 
The linearized observation equation for double-difference 
carrier phase measurement can be written as 
 
y = A x + B z + v  



Where, Ny R∈  is the observation, px R∈  (real) and 
qz Z∈  (integer) are unknown vectors, known matrices 

A and B have dimensions N x p and N x q, respectively, 
Nv R∈ is Gaussian N (0, Σ), p is the dimension of 

position of the receiver, which is usually 3, q is the 
number of satellites (number of satellites -1 for double 
differences), N =  q x number of epochs, and z is the 
integer number of wave cycles which needs to be 
determined. The problem of estimating z is known as 
integer parameter estimation or integer ambiguity 
resolution. Once an estimate for z is made, the ambiguity 
is said to be fixed or resolved, after which the carrier 
phase observations can be turned into millimeter level 
range measurements, making it possible to attain high 
precision positioning solutions. 
 
 
BACKGROUND  
 
A brief review of the previous work on ambiguity 
resolution and validation is presented in this section. 
There are a few publications which deal with literature 
survey and compare various ambiguity resolution 
techniques. Some of the review publications include [1] 
and [2]. Books by Hofmann-Wellenhof [3] and Teunissen 
[4] have a section devoted to ambiguity resolution and 
validation techniques. The International Association of 
Geodesy (IAG) has formed a Special Study Group - SSG 
1.157 [5] for GPS ambiguity resolution and validation. 
SSG 1.157 contains a bibliography list of more than 200 
publications. Most of the review papers were published 
by year 2000. Some new methods have come up since 
then and some of them are reviewed here.  
 
Comparison of the ambiguity resolution techniques is not 
easy and not always feasible. The terms of reference of 
SSG 1.157 clarifies this point: 
 
“Despite the large effort spent by many groups from all 
over the world in devising various schemes, knowledge 
about their theoretical foundation, and how the schemes 
are related to each other, is still lacking. Different 
terminology is used and comparisons between methods 
are rare. Due to a lack of knowledge about the various 
methods, the implementations used in the comparisons (if 
made at all) are not always complete, thereby making the 
test results unreliable. Moreover, results reported of one 
particular method, are often difficult to relate to the 
results of another method, due to lacking of knowledge of 
the characteristics of the data and the type of computer 
that was used.” 
 
As a result, comparison of the ambiguity resolution 
techniques in terms of computational efficiency and 
performance is not always reliable. The ambiguity 
resolution techniques can be divided into three categories 
according to [1]. 
 

The first category includes the simplest ambiguity 
resolution techniques which use C/A-code or P-code 
pseudoranges directly to determine the ambiguities of the 
corresponding carrier phase observations. The precision 
of the code range is not good enough to determine the 
integer ambiguities and inter frequency linear 
combinations are used for estimating ambiguities [3]. 
 
The second category of algorithms includes the primary 
ambiguity resolution techniques named Ambiguity 
Function Method (AFM) [6]. This technique uses only the 
fractional value of the instantaneous carrier phase 
measurement and hence the ambiguity function values are 
not affected by the whole cycle change of the carrier 
phase or by cycle slips. A brief overview of this method is 
given in [3]. 
 
The third category comprises the most abundant group of 
techniques which are based on the theory of integer least 
squares [7]. Parameter estimation under the theory is 
carried out in three steps - the float solution, the integer 
ambiguity estimation, and the fixed solution. Each 
technique makes use of the variance-covariance matrix 
obtained at the float solution step and employs different 
ambiguity search processes at the integer ambiguity 
estimation step. Some of the representative techniques in 
the category include the Least Squares Ambiguity Search 
Techniques (LSAST) [8], the Fast Ambiguity Resolution 
Approach (FARA) [9], the Fast Ambiguity Search Filter 
(FASF) [10], the Least-squares Ambiguity Decorrelation 
Adjustment (LAMBDA) [11] and the method by Hassibi 
and Boyd [12]. 
 
At present, LAMBDA is arguably a theoretically sound 
and practically suitable method among the ambiguity 
resolution methods. A fairly detailed description of this 
method is given in [3]. More details on this method can be 
found in [13]. In summary, the LAMBDA method can be 
separated into the following steps. 
 
• A conventional least squares is carried out to 

yield the baseline components (position coordinates) 
and float ambiguities; 

• Using the decorrelating transformation, the 
ambiguity search space is reparameterized to 
decorrelate the float ambiguities; 

• Using the sequential conditional least-squares 
adjustment together with a discrete search strategy, 
the integer ambiguities are estimated. The 
ambiguities are retransformed to the original 
ambiguity space;  

• The integer ambiguities are fixed as known 
quantities and another least squares estimate is made 
for the unknown position coordinates. 

 
The method described in [12] is also based on the integer 
least squares. The performance of this method is 
guaranteed with sharp upper and lower bounds. In 
additions, the complexity of the algorithm is only 



polynomial. We have implemented this algorithm for our 
simulations. The results obtained for the performance in 
presence of noise are based on the integer least squares 
principle and they are not dependent on the specific 
search method used. 
 
A recent paper by Azimi-Sadjadi and Krishnaprasad [14] 
used Particle Filters (PF) for integer ambiguity resolution. 
The particle filters are also known as sequential Monte 
Carlo filters. Usually in particle-filter based approach, the 
posterior density of unknowns given the observations is 
approximated by Monte Carlo samples (particles). The 
basic particle-filter algorithm creates particles from the 
initial state distribution. As the system evolves according 
to the state dynamic equations, particles also evolve 
accordingly. These particles are then weighted according 
to their proximity to the observations. The particles which 
agree closely with the observations get higher weights and 
the others get lower weights. The particle-filter based 
approach does not require the observation model to be 
linear. No prior assumptions are made about the PDF of 
the noise. For details on particle filters, see [15]. The 
integer ambiguity is treated as a random integer vector to 
be determined. A method for approximating the 
conditional probability mass function (pmf) of this integer 
vector, given the observations, is presented in [14]. The 
estimate for the integer value is the point that maximizes 
the pmf. 
 
 
ESTIMATION PROBLEM  
 
In the linearized observation equation for double-
difference carrier phase measurement, y = A x + B z + v, 
if B = 0, we could have used least-squares method to 
compute the estimate of x. In order to obtain estimates of 
both x and z, we consider maximum likelihood (ML) 
estimation. The ML estimates for x and z are found by 
maximizing the probability (likelihood) of observing y, 
i.e., 
 

/ ,( , ) max ( / , ); ( , ) .p q
ML ML Y X Zx z P y x z x z R Z= ∈ ×  

 
Since v is Gaussian with zero mean and covariance Σ, the 
probability density of y given x and z is also Gaussian 
with mean Ax + Bz and covariance Σ.  The maxima of this 
quantity can be found by minimizing the following term: 
 

1( , ) min( ) ( ).T
ML MLx z y Ax Bz y Ax Bz−= − − Σ − −  

 
The minimization of this equation gives estimates of x 
and z, which are called the float solutions as xML and zML 
are real numbers.  
 
If we consider a block matrix [A B] and the unknown 
vector as [x z]T, the float solution is obtained by solving 
the following equation 
,],[]ˆ,ˆ][,[],[ 11 yBAzxBABA TTT Σ=Σ  
or, 
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Eliminating x leads to an equation for z, 
 

1ˆ' ,T TB C Bz B y−= Σ
1ˆ' ,T TB C Bz B y−= Σ

 where 

.)((' 1111 ΣΣ−Σ= TT AAAAIC  
 
However, our problem is to find the integer z to minimize 
the errors and not the real number vector. This problem of 
integer minimization can be stated in the following form: 

1ˆ ˆmin( ) ( ); ,T q
MLz z z z z z Z−= − Γ − ∈  

where 1( ' )TB C B −Γ =  
 
Clearly, the minimum over real vector set is zero, when z 
is equal to ẑ . We are looking for an integer vector z, 
which is closes to ẑ . A simple approach is to round each 
component of ẑ  to its nearest integer. This simple 
approach works when Γ  is diagonal. However, in 
practice, Γ is not diagonal and ambiguities are coupled. 
As a result, simple rounding off does not yield optimal 
results. 
Once the minima over qz Z∈  is found, maximum 
likelihood estimate of x is found by substituting the value 
for z into the least-squares equation. We obtain 

 
1 1 1( ) ( )T T

MLx A A A y Bz− − −= Σ Σ −  
 
It is clear that 

Γ

 is the covariance matrix for ẑ  and z is its 
mean. Since, ẑ  is a linear function of Gaussian variable 
y, it is Gaussian too. We write ẑ z u= + where u is 
Gaussian with zero mean and covariance matrix Γ . 
Multiplying both sides by 1/ 2G −= Γ and by defining

ˆ ˆy Gz=

, we 

get ˆ ˆy Gz u= +  where û  is a Gaussian random variable 
with zero mean and unit variance. This equation can be 
written in an equivalent form 
  2ˆmin || || ; q

MLz y Gz z Z= − ∈ .  

The set  { | }qGz z Z∈  is a lattice in Rq.  This equation 
suggests that the maximum likelihood value of z is found 
by computing the nearest lattice point to the vector ŷ . 
 
 
LATTICES AND BASIS REDUCTION 
 
In this section, we explain the basics of lattice theory 
required to understand its applications to integer 
ambiguity resolution problem in GPS. In lattice theory, a 



generator matrix G is any matrix with real entries whose 
rows are linearly independent. The lattice generated by G 
is  

( ) { | }qL G Gz z Z= ∈  
 
The rows of G are called basis vectors for L, and the 
number of basis vectors q is said to be the dimension of 
the lattice L. 
 
The closest point problem is the problem of finding, for a 
lattice L and a given input point qx R∈ , a vector ĉ L∈  
such that 

ˆ|| || || ||,x c x c c L− ≤ − ∀ ∈ , 
where || || represents a Euclidean norm. This problem is 
known to be NP-hard [16] (i.e. no polynomial time 
algorithm is known to exist to solve this problem). 
 
The Voronoi region or a Voronoi cell of a lattice point is 
the set of all points closer to lattice point c than any other 
point in the lattice. Mathematically, the region can be 
expressed as 

ˆ( , ) {|| || || ||, ' | },qL c x c x c c L x RΩ = − ≤ − ∀ ∈ ∈  
where c L∈ . The Voronoi diagram of a lattice is the set 
of all its Voronoi regions. It is known that Voronoi 
regions are symmetrical with respect to reflection in c, 
and that they are translations of (L,0), where 0 is the 
origin of Rq. 
The shortest lattice vector or the minimum distance of the 
lattice dmin is defined as 

min min || ||; .qd Gz z Z= ∈  
To understand these definitions, consider the following 
lattice generator matrix as an example: 
 

1

1 0
0 1

G
 

=  
 

 

 
The rows of 1G , [1 0] and [0 1] are the basis vectors as 
shown in Fig. 1. The Voronoi cells for the same lattice are 
shown as the thick square blocks in Fig. 2. All Voronoi 
cells are translations of the cell at origin, which is shown 
by the shaded region. Note that the basis vectors for this 
lattice are orthogonal to each other and for a given 
floating point; the nearest lattice point can be found by 
simply rounding it to the nearest integer. Two lattices are 
said to be identical if all lattice points are the same.  
Two generator matrices 1G  and 2G  generate identical 

lattices )( 1GL and )( 2GL  if and only if 
 
Figure 1. Basis vectors for a square lattice. 
 

 
 
Figure 2. Voronoi cell for a square lattice. 
 
 

2 1,G FG=  
where F is a square matrix with integer entries such that  

| detF | = 1. 
Now consider another generator matrix 

2

2 1
1 1

G
 

=  
 

 

This matrix can be written in the form of  

2 1

2 1 2 1 1 0
1 1 1 1 0 1

G FG
     

= = =     
     

 

 
Since F contains integer entries and | det F | = 1, lattices 
generated by 1G  and 2G  are identical. The lattice 

generated by 2G  with its basis vectors and Voronoi 
regions is shown in Fig. 3. Note that basis vectors for 
generator matrix 2G  are not orthogonal to each other. 
Hence finding the nearest lattice point problem is no 
longer a simple task. Consider a floating point in space as 
shown in Fig. 4. The nearest lattice point is point 1, but 
rounding to the nearest integer will give point 2, which is 
not the correct solution.  



 
Figure 3. Lattice generated by generator matrix 2G  

 
Figure 4. Round-off may not yield correct solution when 
lattice is not orthogonal. 

 
It is evident from this example that the nearest lattice 
point can be obtained easily only if the basis vectors are 
orthogonal. 
The process of selecting a good basis for a given lattice, 
given some criterion, is called reduction. In our 
application, it is advantageous if the basis vectors are as 
short as possible and "reasonably" orthogonal to each 
other. Two methods for reduction that are widely used in 
practice are the Korkine-Zolotare (KZ) and the Lenstra-
Lenstra-Lovasz (LLL) method [17]. One reason for their 
popularity is that with both the mentioned criteria, the n-
dimensional reduction problem can be recursively 
reduced to (n-1)-dimensional reduction problem. Any KZ 
reduced generator matrix is also LLL reduced. LLL 
reduction is often used in situations where KZ reduction 
would be too time-consuming. A comparison of average 
search times among different reduction methods is made 
in [17]. It is shown that, up to about 10-15 dimensions, 
the polynomial-time LLL reduction gives good results. In 
GPS related problems, the dimension of generator matrix 
is smaller than this. Hence, LLL algorithm is preferred. 
 
 
VERIFICATION PROBLEM  
 
Once the estimates of the unknown vectors are made, it is 
equally important to verify them. Since z is an integer 
valued vector, we can estimate it exactly. Hence we can 
define the probability to estimate z correctly as 

Probability( ).c MLP z z= =  
Now, x is a real valued vector. We can compute the 
probability of our estimate lying in a Euclidean ball of 
small radius  of its actual value, i.e., 
Probability(|| || ).MLx x ε− <   
Recall equation 

ˆ ˆy Gz u= +  

where û  is Gaussian random variable with zero mean 
and unit variance and the set { | }qGz z Z∈  is a lattice in 

Rq. It is evident from this equation that ŷ  is off from G z 

by û . So if û  is small enough that ŷ  remains in the 
Voronoi cell of lattice point G z, the estimate of z is 
correct. Because of the periodic structure of lattice, the 
Voronoi cell of lattice point G z is the translation of the 
Voronoi cell at the origin of the lattice by vector G z. If 
we call the Voronoi cell at the origin of the lattice V0, 
then we can write 

0ˆProbability( )cP u V= ∈  

Hence cP  is equal to the probability of a q-dimensional 
normal random variable falling inside the Voronoi cell V0.  
 
The calculation of Pc requires integration of a normal 
probability density function over the Voronoi cell. The 
problem of finding the Voronoi cell of the lattice and 
performing the integration is a very computationally 
challenging task. Therefore, even if it is possible to 
calculate cP  exactly, it may not be feasible in many 
applications. However, sharp upper and lower bounds on 

cP  can be found with very low complexity. An upper 

bound on cP  can be found using the modulus value of the 
determinant of G (|det G|) [12]. The volume of the 
Voronoi cell is given by |det G|. The larger the value of 
|det G|, the larger the probability of correct integer 
estimation. The shape of the Voronoi cell is also a factor 
determining cP . Among all shapes with a given volume, 
the one that maximizes the probability (under normal 
distribution) is a Euclidean ball. Therefore, the probability 
of a Euclidean ball of volume equal to |det G| gives an 
upper bound on Pc. The radius of a q-dimensional 
Euclidean ball of volume |det G| is equal to (|det G|/q)1/q, 
and the upper bound on Pc becomes 

q 1/
, Probability(|| || (|det G|/ ) ),q

c upP w α= <  

Where (0, )w N I  and / 2 / ( / 2 1)q
q qα π= Γ + . The 

sum of squares of q independent  zero-mean, unit variance 
normally distributed random variables is a 2χ  
distribution with q degrees of freedom [7]. Hence, we get, 
 

2
q 2/

, ((|det G|/ ) ; ).q
c upP F qχ α=  

 
A lower bound on Pc can be found using the shortest 
lattice vector or the minimum distance dmin of the lattice, 
where dmin is actually the distance between the origin and 
its closest neighbor in the lattice. A ball of radius dmin/2 is 



the largest bass centered at the origin that lies in 0V . The 
probability of noise falling in a ball centered at the origin 
of lattice with radius dmin/2, gives us a lower bound on Pc. 
Computing dmin is an NP-hard problem. A lower bound on 
dmin can be found by using the Gram-Schmidt 
orthogonalization method [12]. Hence the lower bound on 
Pc is given by 

, Probability(|| || / 2),c lowP w d= <  

where w is N(0; I) and d<dmin. In terms of 2χ cumulative 
distribution function, we have 

2
2

, ( / 4; )c lowP F d qχ= . 
 
 
SIMULATOIN RESULTS 
 
The simulations in this section are based on a synthetic 2-
D GPS setup (Fig. 5). This setup is very similar to the one 
used in [12]. We assume that the position of the (GPS) 
receiver x to be determined can be modeled as a zero-
mean Gaussian random variable with variance 2

xσ  in 
each dimension. The coordinate axes are chosen such that 
the origin is a point on the surface of the earth (a point on 
the periphery of a circle of radius equal to that of the earth 
Re = 6357 km). We suppose that there are three visible 
satellites orbiting the earth with an altitude of 20 200 km 
and with a period of 12 h (angular velocity of 1/120 s-1). 
The satellites transmit a carrier signal of wavelength  = 19 
cm each, and their coordinates are known to the receiver. 
The receiver, which is assumed to be completely 
synchronized with the satellites (meaning that it can 
generate the transmitted carrier signals), measures the 
phase of the received carrier signals every T = 2 s and 
unwraps them as times goes by. By multiplying these 
(unwrapped) phase measurements by the wavelength 
divided by 2π , the receiver can measure its distance (or 
range) to each satellite up to some additive noise, which is 
assumed to be N(0, 2σ ) and, of course, up to an integer 
multiple of the wavelength. (This integer multiple can be 
thought as the number of carrier signal cycles between the 
receiver and the satellite when the carrier signal is 
initially phase locked.) By linearizing the range equations, 
the problem becomes one of estimating a real parameter x 
(the coordinates of the receiver) and an integer parameter 
z (the integer multiples of the wavelengths) in a linear 
model. In the simulation that follows, the actual location 
of the receiver is x = [50; 100]T, which will be estimated 
using the carrier phase measurements. We assume that the 
standard deviation of x is xσ  = 100 m along each 
coordinate axis.  
 
 
Figure 5. Synthetic 2-D GPS setup 
 

 
Figure 6. cP  versus time with upper and lower bound for 
σ =0.01m.  
 
The satellites make angles of 100, 130, and 50 degrees 
with the axis initially, and the direction of rotation for all 
of them is clockwise. The variance of phase measurement 
noise in units of length is taken as 0.01 m. Using the 
carrier phase measurements taken over  
a period of 400 s, the receiver tries to find its position x 
(as well as the ambiguous integer multiples of the 
wavelengths) as a function of time by solving for the ML 
estimates. Figure 6 shows the performance of the integer 
least-squares algorithm for σ  = 0.01 m. The exact value 

of the cP  (represented by solid curve) is computed by 
Monte Carlo simulations using 1500 random variables.  

The upper bound on cP  is computed using |det G|, as 
represented by the dashed line. It is evident that the upper 
bound is very sharp. The lower bound on Pc is computed 
using the lower bound on dmin, as shown by a dash-dot 
curve in Fig. 6. We see that the lower bound is not sharp 
to begin with, but as Pc approaches unity, it gets sharper. 
Hence, the lower bound is sharper where it matters the 
most. 

 



 
Figure 7. Position estimation error (meters) versus time 
(sec). 
 
Figure 7 shows the results of the algorithm in terms of 
receiver positioning. The estimation error is plotted as a 
function of time. It can be seen from Figs. 6 and 7 that the 
position estimation error reduces as the probability cP  of 
correct integer estimation approaches unity. When the 
integer ambiguity is resolved correctly, the position 
estimation error is of the order of millimeters.  
 
Having established the accuracy of the integer least 
squares algorithm for static GPS positioning, we with to 
evaluate its performance in the presence of noise. For this 
purpose, the algorithm was provided with various values 
of phase measurement noise variance as input. 
 
The range of σ  is varied from 0.002 m to 0.02 m with 

increment of 0.002 m. The values of cP  for all cases were 
calculated using 1500 Monte Carlo simulations. Figure 8 

shows the curves of cP  plotted against time for various 
σ  values. It is observed that as σ  increases, the time it 
takes to achieve a certain Pc also increases. The family of 
curves in Fig. 8 can be used to calculate the maximum 
allowable noise variance for a given amount of 
observation time and required value of cP . For example in 
Fig. 8, if the observation time is 150 s and the integer 
ambiguity estimate is to be reliable with 90 per cent 

accuracy ( cP =0.9), the maximum allowable noise 
variance is about 0.012 m. 
 
A different approach can be used to analyze the data. Let 

PcT  be the observation time required to achieve the 

probability of correct ambiguity resolution cP . Figure 9 

shows PcT  versus σ  for various cP  values ( cP =0.5, 
0.75,0.90,0.95,0.99).  

 

 
Figure 8. cP  versus time for σ  values ranging from 
0.002 m to 0.02 m. Maximum allowable noise variance 

for given values of time and cP  can be determined by the 
dashed lines. 
 
The 'dots' in the plot represent the actual data points, 
which can be represented by linear fits. That is we have 

PcT σ∝  
This linear relation characterizes the sensitivity of 
performance to measurement noise variance. The 
significance of this results is that the performance of 
integer least-squares algorithm can be predicted of a given 
noise level. The plots for |det G| versus σ  at three 
different time instances t = 50 s, t = 100 s and t = 150 s 
are shown in Fig. 10. It is observed from these plots that 
as σ  increases, |det G| decreases. Theoretically, the 

effect of noise on cP  can be assessed, as follows. The 

upper bound on cP  can be calculated using the 2χ  
cumulative distribution function (cdf), whose argument is 
a linear function of the determinant of G. Since 2χ cdf is 
a non-decreasing function, a smaller value of |det G| will 
result in lower cP . Therefore, as the noise variance 

increases, |det G| decreases, so does cP . Since |det G| is 
the volume of the Voronoi cell, increasing the noise 
variance is equivalent to shrinking the Voronoi cells. As a 
result, under noise the lattice points are closer to each 
other, thereby increasing the probability of error.  
 
We wish to evaluate the effect of number of satellites on 
the performance of integer least squares algorithm. Since 
the upper bound on cP  is very sharp, it is used instead of 

evaluating the exact values of cP  using Monte Carlo 
simulations. Figure 11 shows the simulation result for 

upper bound on cP  versus time for 3, 4, and 5 satellites.  



 
 
 

 
Figure 9. Sensitivity of performance to measurement 
noise variance. 
 

 
Figure 10. |det G| versus σ  at different times  
 
It is seen from the plots that increase in the number of 
satellites improves the performance of algorithm. 
 
So far in all our discussions, we have assumed the 
probability density function of the noise to be Gaussian. It 
may happen in reality that the measurement noise does 
not follow Gaussian distribution. As a particular example 
uniform noise is considered. To ensure fair comparison 
between them, their powers are kept equal. We assume 
both the noise distributions to be zero mean. If the 
Gaussian distribution has zero mean and variance 2σ , and 
if have uniform noise density in the interval [-k; k] with 
amplitude 1/2k, the variance of this probability density 
function is 3/2k . We thus have .73.1≈k  
 
Figure 12 shows the performance comparison for both 
noise densities for two different noise variances (σ = 
0.01 m and σ  = 0.02 m).  
 
Figure 11. cP  (upper bound) versus time for various 
satellites 

 
Figure 12. Performance comparison for Gaussian and 
Uniform noise 
 
The performance is identical for both uniform and 
Gaussian noise densities for both cases. A possible 
explanation for this behavior is as follows. If we used the 
regular least squares techniques to solve for unknowns in 
linear model and Gaussian noise, the optimal estimator 
can be easily found. 
 
 For the case where noise is Uniformly distributed, this 
estimator may not be the optimal but it is still the best 
linear unbiased estimator. Further, the integer least 
squares method involves a grid search of integer points 
around the suboptimal solution. Therefore, it is reasonable 
that we have found the optimal solution for both uniform 
and Gaussian noise cases. 
 



 

CONCLUSIONS 
 
This paper addresses the performance of integer least-
squares algorithm for GPS signals in noisy environments. 
It is shown that increasing the noise variance results in 
shrinking the Voronoi cells. Hence, under noise the lattice 
points are closer to each other, thereby increasing the 
probability of error. We find that the observation time 

required to achieve a fixed value of cP  is directly 
proportional to standard deviation of phase measurement 
noise. From the simulations, we can also conclude that the 
nature of noise has little effect on the performance of the 
algorithm. 
 
For future directions, the study for the effect on noise on 
GPS positioning should be extended to kinematic GPS 
positioning algorithms. It is also recommended to develop 
a particle-filter based algorithm and compare its 
sensitivity to noise to that of integer least-squares 
algorithm for both static and kinematic positioning. 
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