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We argue that transient chaos in deterministic dynamical systems is a major source of noise-
induced chaos. The line of arguments is based on the fractal properties of the dynamical invari-
ant sets responsible for transient chaos, which were not taken into account in previous works.
We point out that noise-induced chaos is a weak noise phenomenon since intermediate noise
strengths destroy fractality. The existence of a deterministic nonattracting chaotic set, and of
chaotic transients, underlying noise-induced chaos is illustrated by examples, among others by
a population dynamical model.
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1. Introduction

When a system is under noise, several interesting
phenomena can happen. A particularly important
one is the phenomenon of noise-induced chaos. In
a general sense, noise-induced chaos is referred to
as a noisy attractor with sensitive dependence on
initial conditions, which disappears upon switch-
ing off the noise. The largest Lyapunov exponent

calculated from a typical trajectory on the noisy
attractor is positive.

The discovery and first description of the
phenomenon of noise-induced chaos goes back to
Iansiti et al. [1985], Herzel et al. [1987], Bulsara
et al. [1990], and Hamm et al. [1994]. The first bio-
logical examples were reported by Rand and Wil-
son [1991], Drepper et al. [1994], and Engbert and
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Drepper [1994], in the context of epidemics. The
recent interest in the ecological relevance of noise-
induced chaos (see [Dennis et al., 2003; Ellner &
Turchin, 2005]) makes it worth reconsidering its
relation to underlying chaotic sets.

We emphasize that a clear definition of noise-
induced chaos can be obtained by taking into
account fractality, which is an undetachable prop-
erty of chaos (see e.g. [Ott, 1993; Tél & Gruiz,
2006]). Guided by the requirement that noise-
induced chaotic attractors of invertible systems
should be fractal, one concludes that this can hap-
pen in the weak noise limit only, since stronger
noise washes out any kind of fractality. Chaos in
this limit can only be of deterministic origin. The
chaotic set of the deterministic problem must be
nonattracting, otherwise long term chaos would also
be present without noise. Nonattracting chaotic sets
can only generate chaos of finite lifetime, therefore
we conclude that transient chaos is a prerequisite
of noise-induced chaos. It is worth mentioning that
the relevance of deterministic chaotic transients has
already been pointed out in different contexts of
ecology (see e.g. [Huisman & Weissing, 2001; Hast-
ings, 2004]). The observation above can be consid-
ered as a further evidence for the importance of
deterministic transients.

Thus, the following picture emerges. The under-
lying deterministic dynamics is such that a typical
initial condition leads to a trajectory that behaves
chaotically only for a finite amount of time (tran-
sient chaos), which occurs when the trajectory is
near the nonattracting chaotic set. All such trajec-
tories must end at the periodic attractor, due to
the nonattracting nature of the chaotic set. Noise
makes it possible that a trajectory on the periodic
attractor occasionally leaves it and visits the chaotic
set again transiently, comes back to the periodic
attractor, and so on. Noise of sufficient (but small)
amplitude can thus dynamically link the periodic
attractor with the nonattracting chaotic set, leading
to a noise-induced attractor that contains the origi-
nal chaotic set as subset. Such an attractor typically
possesses at least one positive Lyapunov exponent.

Note that noise-induced chaos can always occur
in settings where, in the absence of noise, there
is one or more periodic attractor and a coexisting
nonattracting chaotic set, as in any periodic win-
dow of a nonlinear dynamical system. Noise-induced
chaos is thus a very generic dynamical phenomenon.

We start the argument by calling the attention
to the fact that the fractality of chaotic sets remains

unchanged in the presence of weak noise, and briefly
review the properties of transient chaos in determin-
istic systems. Via simple examples of noise-induced
chaos we demonstrate that by adding stronger
noise, the fractality of the noise-induced attractor
quickly becomes lost. The underlying nonattracting
chaotic set is constructed in several cases, includ-
ing a population dynamical model of fennoscandian
voles. Finally, further noise effects are mentioned,
and our conclusions are formulated.

2. Chaotic Sets Under Noise

The inclusion of fast external or internal perturba-
tions into the dynamics happens via a noise term,
which converts the purely deterministic equations
of motion into stochastic equations. For illustra-
tive purposes, we consider the case of additive noise
only. In our considerations the system variables are
assumed to be continuous. As for the role of noise
in discrete state systems, we refer the reader to
a recent paper by Scheuring and Domokos [2007].
We are thus interested in the noisy version of both
continuous and discrete time dynamics, which are
described (in dimensionless forms) by

dx
dt

= F(x, p) + σξ(t), (1)

and

xn+1 = f(xn, p) + σξn, (2)

respectively. Here p is the set of system param-
eters, σ > 0 represents the noise strength, and
the ξ-s are independent, identically distributed ran-
dom variables of zero mean and unit variance. The
distribution P (ξ) is assumed to be known and be
independent of time, which expresses that the noise
dynamics is in a kind of stationary state. The sim-
plest example of P is a Gaussian distribution,

P (ξ) ∼ exp
(
−ξ2

2

)
. (3)

This form shows that (even for small noise strength
σ) the random perturbation can be arbitrarily large,
but the probability for large perturbations decreases
exponentially. For discrete-time dynamics, we shall
also consider homogeneous noise with a uniform dis-
tribution, e.g. |ξ| ∈ (−1, 1).

A very strong noise makes the dynamics fuzzy,
and suppresses all the deterministic features. If the
dynamics bears some chaotic character, this can
only happen in the presence of weak noise, which
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is often the case in real situations, when

σ � 1. (4)

It is a general observation due to Ben-Mizrachi
et al. [1984] that such a weak noise does not modify
the fractal dimensions characteristic of the chaotic
dynamics. What it does is to make the dynamics
fuzzy below a certain threshold scale εc in phase
space, which grows with the noise strength. Below
the threshold scale, i.e. in an εc-neighborhood of the
deterministic fractal sets, trajectories fill the phase
space. Beyond that scale, however, the dimension of
the deterministic system is found when measuring
the noisy system. It is the breakdown of the fractal
scaling which depends on the noise strength. The
effect of weak noise is thus merely a shrinking of the
scaling region where a nontrivial fractal dimension
can be observed, but this does not influence the
value of fractal dimension itself.

Since the average amount of noisy perturba-
tions for Gaussian noise is σ, just like for homoge-
neous noise, these types of noise lead to qualitatively
similar weak noise behavior.

3. Transient Chaos

3.1. Basic features

Transiently chaotic time series have the follow-
ing characteristic properties [Kantz & Grassberger,
1985]:

1. For a fixed initial condition, the time series will
be chaotic up to a certain time and then switch
over, often quite abruptly, into a different, often
nonchaotic behavior which governs all the rest of
the time series. The actual length depends very
sensitively on the initial condition: nearby trajec-
tories might have drastically different lifetimes.

2. Nevertheless, the distribution of lifetimes is a
smooth function, which tends to zero for large
arguments, with an average value τ .

3. There exist arbitrarily long transients. They are,
however, exceptional, and the corresponding ini-
tial conditions form a set of measure zero. In
the phase space, these infinitely long-living orbits
form a fractal object, a nonattracting chaotic set.

It is thus an essentially new feature of tran-
siently chaotic signals that by observing them
in the phase space one finds, besides the actual
attractor(s), a novel phase-space object responsible
for the irregular transients. These objects do not
attract global trajectories from their surroundings.

Trajectories starting exactly from points of a
nonattracting set never leave the set and exhibit
chaotic motion forever. It is, however, completely
unlikely to hit such a point by random choice since
the nonattracting set is a fractal set of zero mea-
sure. What is observable is not the nonattracting
set but rather a small neighborhood of it. Trajec-
tories starting close to the set can stay for a long
time in its neighborhood and show chaotic proper-
ties, but sooner or later they escape the neighbor-
hood. These are exactly the trajectories producing
transiently chaotic signals.

3.2. Nonattracting chaotic sets

Any saddle-like unstable point possesses two differ-
ent invariant manifolds. A stable manifold, a sur-
face along which the point can be reached, and an
unstable manifold, which is the stable manifold of
the time-reversed dynamics (see e.g. [Ott, 1993; Tél
& Gruiz, 2006]). These concepts play an important
role in the following arguments.

In systems described by differential equations
(flows in brief) or invertible maps (due to the invert-
ibility of differential equations, maps following from
differential equations are always invertible them-
selves), the nonattracting chaotic sets are not fully
repelling (and should thus not be called repellors).
They repell everywhere in the phase space with the
exception of a surface, the stable manifold. They
are, therefore, called chaotic saddles. Qualitatively
speaking, a chaotic saddle is an infinite union of
saddle points, and has a fractal pattern. An exam-
ple of a chaotic saddle and its manifolds is shown in
Fig. 1, where the “double fractal” pattern so char-
acteristic of chaotic saddles can be clearly seen [Tél,
1990]. This pattern is due to the fact that a chaotic
saddle is the intersection of its stable and unstable
manifolds, which are both fractal curves. The pat-
tern is, therefore, markedly different from that of
chaotic attractors in which only the unstable man-
ifolds are fractals (the stable manifolds are space
filling, otherwise a finite basin of attractions cannot
exist).

The construction of chaotic saddles (and their
manifolds) plays a central role in the field of tran-
sient chaos. Several methods have been developed
to this end, and we present here a particularly sim-
ple one [Lai et al., 1993] which were applied in all
the examples presented in this paper.

On a two-dimensional map or on a Poincaré sec-
tion of a flow, start N0 � 1 trajectories distributed



512 T. Tél et al.

−1.5 −1 −0.5 0 0.5 1

1.5

x

y
−1.5

−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1 y −1 −0.5 0 0.5 1 1.5y

Fig. 1. The (a) chaotic saddle and (b) stable and (c) unstable manifolds of the Hénon map xn+1 = 1−ax2
n + byn, yn+1 = xn

at parameters a = 2.0, b = 0.3, which coexist with a single attractor at infinity. (The well-known Hénon attractor belongs
to a = 1.4, b = 0.3.) To generate the invariant sets, region Γ was chosen as a square of size 1.5 × 1.5 centred at the origin,
N0 = 107, τ = 2.9. Panels (b), (a) and (c) show points of trajectories with a minimum lifetime n0 = 16 at iteration numbers
n = 8, n = 0 and n = n0 = 16, respectively.

uniformly over a region Γ containing the saddle.
Next, choose an iteration number n0 corresponding
to a multiple of the average lifetime τ , and follow
the time evolution of each initial point up to exactly
time n0. Keep only trajectories that do not escape
Γ in n0 steps. If n0/τ is sufficiently large (but not so
large that only a few points remain inside) then we
can be sure that trajectories with this long lifetime
get close to the saddle in the course of the motion.
This necessarily implies that their initial conditions
were in the immediate vicinity of the stable mani-
fold of the saddle (or of the saddle itself). Simulta-
neously, the endpoints must be close to the unstable
manifold of the saddle since most points still inside
after n0 steps are already in the process of leaving
the region. Points around the middle of these tra-
jectories (e.g. with n = n0/2) are then certainly in
the vicinity of the saddle. It applies in general that
the initial, intermediate and endpoints of trajecto-
ries with lifetimes of at least n0 trace out the sta-
ble manifold, the saddle and the unstable manifold,
respectively, within region Γ to a good approxima-
tion which is also illustrated in Fig. 1.

3.3. The escape rate

A quantity measuring how quickly particles lead
any neighborhood of the nonattracting chaotic set
is the so-called escape rate. Imagine that a large
number N0 of initial points is distributed (e.g. uni-
formly) in a region Γ which is supposed to be a sim-
ple region with a smooth boundary, e.g. a rectangle.

By iterating trajectories starting from the initial
points, many will leave the region Γ after a cer-
tain number of steps. Let Nn denote the number
of trajectories staying still inside Γ after n steps,
and take N0 so large that Nn � 1. As n gets large
one observes, in general, an exponential decay in
the number of survivors (see e.g. [Ott, 1993; Tél &
Gruiz, 2006]), that is, one finds

Nn

N0
∼ e−κn for n � 1, (5)

where κ is the escape rate.
The definition of the escape rate tells us that

the number of survivors decreases by a factor of 1/e
after about 1/κ steps. This implies that the major-
ity of trajectories do not live longer than 1/κ in a
region containing the nonattracting set. Therefore,
it is natural to identify this number with the aver-
age lifetime of transients, i.e. to write:

τ =
1
κ

. (6)

Besides the escape rate, which characterizes the
globally unstable dynamics, there is another impor-
tant characteristic number, the average Lyapunov
exponent λ, which is a measure of the local dynam-
ical instablity. The average is to be taken with the
distribution on the nonattracting chaotic set, gen-
erated by trajectories of long lifetime.

3.4. Fractal properties

As Fig. 1 illustrates, the chaotic saddle has a direct
product structure: its fractal dimension is the sum
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of the so-called partial fractal dimensions [Kantz
& Grassberger, 1985]. In two-dimensional invertible
maps, we have D0 = D

(1)
0 + D

(2)
0 , where D

(1)
0 and

D
(2)
0 are the partial dimensions along the unstable

and stable directions, respectively, and 0 < D
(j)
0 <

1, j = 1, 2. By taking into account the distribution
on the saddle generated by long-living trajectories,
partial information dimensions D

(1)
1 and D

(2)
1 can

also be defined [Ott, 1993; Tél & Gruiz, 2006]. They
cannot exceed the value of the corresponding fractal
dimension, but they are often rather close to them.
The partial information dimensions are thus often
good approximants to their fractal counterparts.

It is a central result of transient chaos theory
that these information dimensions can be expressed
via the Lyapunov exponents and the escape rate.
The so-called dimension formulae [Kantz & Grass-
berger, 1985] state that

D
(1)
1 = 1 − κ

λ
and D

(2)
1 =

λ − κ

|λ ′|
. (7)

Here λ
′ denotes the negative average Lyapunov

exponent on the saddle. The dimension of the
chaotic saddle is the sum of the partial dimen-
sions: D1 = D

(1)
1 + D

(2)
1 . These relations express

a link between the fractal geometry and the chaotic
dynamics on the chaotic saddle. The respective
information dimensions of the unstable and stable
manifolds are

D
(u)
1 = 1 + D

(2)
1 = 1 +

λ − κ

|λ ′|
and

D
(s)
1 = 1 + D

(1)
1 = 2 − κ

λ
,

(8)

since these manifolds are locally smooth one-
dimensional curves.

The case of one-dimensional maps is the limit
of infinitely strong contraction, i.e. |λ ′| → ∞. Since
contraction is immediate, the concept of stable
manifolds becomes ill-defined. The nonattracting
sets of one-dimensional maps are therefore chaotic
repellors.

It is worth mentioning that analogous (but
more complicated) formulae exist for maps of any
dimension [Hunt et al., 1996]).

4. Noise-Induced Chaos

The parameter p in the governing dynamics (1),
(2) is chosen such that the attractor of the deter-
ministic system xn+1 = f(xn, p) is not chaotic, but
nonetheless the system may possess nonattracting
chaotic sets. Now place the system in a noisy
environment. As the noise strengths are increased
through a critical value, the asymptotic attractor of
the system becomes chaotic, as characterized, e.g.
by a sudden enlargement into a fractal shape, or by
the appearance of a positive Lyapunov exponent.

4.1. Examples

Since one-dimensional models are widely used, our
first example is from such maps (see Fig. 2). We
consider the logistic map xn+1 = axn(1−xn) at a =
3.8008, which lies in a periodic window of period-8.
Figures 2(a) and 2(b) show, for a Gaussian noise of
strength σ = 10−4.8, the noisy chaotic attractor in
the (xn−1, xn) plane and the time series xn versus n,
respectively. An intermittent behavior can be seen,
where the trajectory visits the period-8 attractor
and the interval containing a chaotic repellor.

The effect of noise can then be interpreted
as kicking the point out from the attractor. It
might fall close to a point of the repellor, and
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Fig. 2. For the logistic map at parameters a = 3.8008 with Gaussian noise of strength σ = 10−4.8 ≈ 1.6 × 10−5: (a) noise-
induced chaotic attractor and (b) intermittent time series {xn}. The critical noise strength below which no noise-induced
attractor exists is σc = 10−5.1. From [Lai et al., 2003].
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start jumping chaotically on the infinitely many
repellor points (more precisely, on their small neigh-
borhoods). Since, however, the repellor was not
hit exactly, and noise is active later on, as well,
the point will move away from the repellor, along
its instable manifold, the x axis. The permanent
wandering between the attractors and the repellor
traces out the noise induced attractor. Due to the
restricted dimensionality of the phase space, this
attractor is an interval, and hence atypical. Never-
theless, the repellor existing between the attractor
points (not shown) is a fractal, a Cantor set.

Our next example is a generic two-dimensional
map which possesses two fixpoint attractors with
a fractal basin boundary (the stable manifold of
a chaotic saddle) in between [Fig. 3(a)]. In the
presence of weak uniform noise, above a cer-
tain threshold value σc, the attractors merge with
some surroundings of the chaotic saddle to form a
noisy chaotic attractor of fractal shape [Fig. 3(b)].
Figure 4 presents the chaotic saddle of the deter-
ministic dynamics, along with its manifolds. A com-
parison with the noise-induced attractor of Fig. 3(b)
clearly shows that it is the unstable manifold of
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Fig. 3. Noise-induced chaos in the map: θn+1 = θn +1.32 sin 2θn −0.9 sin 4θn −xn sin θn +σξ
(1)
n , xn+1 = −0.9 cos θn +σξ

(2)
n ,

where ξ
(1,2)
n represent independent uniform noises. (a) Deterministic case, two fixed point attractors (white and black dots)

and their basins of attraction (in black and white). (b) Noise-induced chaotic attractor at noise strength σ = 0.01. The critical
noise strength is σc = 0.009.
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Fig. 4. Chaotic sets in the deterministic system: (a) stable manifold, (b) chaotic saddle, (c) unstable manifold. To generate
these sets Γ was chosen as the rectangle shown, N0 = 107, τ = 20. Panels (a)–(c) show points of trajectories with a minimum
lifetime n0 = 40 at iteration numbers n = 0, n = 5 and n = n0 = 40, respectively.
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the saddle which becomes part, in the presence
of noise, of the chaotic attractor. The reason why
the stable manifold does not appear as part of the
new attractor is that the approach of the saddle is
exponentially fast along the stable manifold (with a
rate set by |λ′|). The time spent around the saddle
and its unstable manifold is thus much longer than
the time spent along the stable manifold.

When applying a somewhat stronger noise,
the fractal pattern is washed out. For σ = 0.03
[Fig. 5(a)], for example, only three bands can be
resolved, which are washed together into a single
band by σ = 0.1 [Fig. 5(b)]. In these cases noise
dominates the dynamics, illustrated by the lack of
a clear fractality.

It is worth mentioning that noise-induced chaos
may also occur when there are only periodic sad-
dles besides the regular attractors. If the stable and
unstable manifolds of these do not yet cross, but
are about to form intersections in the determinis-
tic system, the presence of noise can materialize
at the intersections, creating a chaotic saddle in
the noisy problem, the so-called stochastic chaotic
saddle [Billings & Schwartz, 2002]. It is then the
unstable manifold of this saddle which merges with
the regular attractor(s) to form an extended noisy
chaotic attractor. The positivity of the Lyapunov
exponent in the noisy logistic map before reaching
the accumulation point [Crutchfield et al., 1982] is
also a similar phenomenon.

Finally, we consider an example of ordinary
differential equations. This is the ecological model
treated in [Ellner et al., 2005] to describe the
population dynamics of fennoscandian voles. The

equations of motions for the scaled pray (vole)
density, n, and predator (weasel) density, p, are

dn

dt
= 4.5n(1 − sin(2πt) − n)

− gn2

n2 + 0.01
− 8np

n + 0.04
, (9)

dp

dt
= 1.25p

(
1 − sin(2πt) − p

n

)
, (10)

with the parameters taken from Turchin and Ell-
ner [2000]. The seasonal variation is of the period
of t = 1 year. A stroboscopic section is taken with a
sampling of once per year (at t = 1, 2, . . .), and cor-
responds to an invertible two-dimensional map. The
attractor of the deterministic problem for g = 0.12,
a 13-cycle, was plotted in [Ellner & Turchin, 2005]
(their Fig. 4), along with the attractor induced
by noise. We demonstrate in Fig. 6 the presence
of a chaotic saddle coexisting with the 13-cycle,
obtained by the method described in Sec. 3.2. To
complete the picture, Fig. 7 displays the unsta-
ble manifold of this chaotic saddle. A comparison
with Turchin and Ellner’s plot clearly suggests that
the noise-induced attractor is the union of the old
attractor and the saddle’s unstable manifold.

4.2. Fractal features of noise-induced
chaotic attractors

In the absence of noise, since the attractor is
regular, the largest Lyapunov exponent of the
asymptotic attractor is zero in flows, and a nega-
tive number in maps. As noise is turned on and
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Fig. 5. Attractors in the presence of stronger noise: (a) σ = 0.03, (b) σ = 0.1. These attractors are no longer fractal, and
therefore we propose to not call them chaotic.
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Fig. 6. The chaotic saddle of the ecological model (9), (10) for g = 0.12. It is obtained by starting at N0 = 5 × 105 points
uniformly distributed on the rectangle Γ: 0.001 < n < 1.3, 0 < p < 0.3. The band 0 ≤ n ≤ 0.001 is not used since numerical
instability would show up there due to the term p/n in (10). The lifetime around the saddle is quite long: τ = 56 years!
Trajectories not entering a circle of size 0.0005 around any of the attractor points (shown by black dots) up to n0 = 100 years
are kept and their points taken at year n = 25 provide a good approximant to the saddle. The saddle is quite compact, nearly
a Cantor set, like the repellor of one-dimensional maps. The inset of magnification 22 indicates, however, the double fractal
character. A fourth order Runge–Kutta method of fixed time step of 0.001 year was used.

Fig. 7. The unstable manifold of the chaotic saddle of Fig. 6 obtained as described in the previous caption, just the endpoints
(n = n0 = 100) are plotted. This is practically the same as the noise-induced attractor displayed in Fig. 4(b) of [Ellner &
Turchin, 2005].
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Fig. 8. Schematic illustration of the meaning of the critical noise strength σc on a two-dimensional Poincaré surface of section:
(a) trajectories are confined near the periodic attractor for σ below σc, and (b) a typical trajectory can move intermittently
between the periodic attractor and the chaotic saddle for σ slightly above σc.

its amplitude becomes sufficiently large (but yet
small), there is a nonzero probability that a trajec-
tory originally on the attractor escapes it and wan-
ders near the coexisting nonattracting chaotic set.
In this case, the largest Lyapunov exponent λ1 of
the noisy system becomes positive, indicating that
the asymptotic attractor has become chaotic for tra-
jectories starting from random initial conditions.

Consider a two-dimensional Poincaré map, as
shown schematically in Fig. 8, where there are a
periodic attractor and a coexisting chaotic saddle.
The circular region surrounding the periodic attrac-
tor denotes the effective range of the influence of
noise of strength σ.

There exists a critical noise strength σc so that
for σ < σc, there is no overlap between the sta-
ble manifold of the chaotic saddle and the noisy
periodic attractor, as shown in Fig. 8(a). A rigor-
ous interpretation of the critical noise strength is
given in Appendix. For σ > σc, a subset of the sta-
ble manifold of the chaotic saddle is located in the
range of the noisy periodic attractor, as shown in
Fig. 8(b). As a result, there is a nonzero proba-
bility that a trajectory near the periodic attractor
is kicked out of its range and moves toward the
chaotic saddle along its stable manifold. Because
the chaotic saddle is nonattracting, the trajectory
can stay in its vicinity for only a finite amount of
time before leaving it along its unstable manifold
and then, enter the noisy periodic attractor again,
and so on. The noise-induced chaotic attractor is
thus the union of the simple deterministic attractors
and the saddle’s unstable manifold. We have seen
in Sec. 2 that the unstable manifold’s dimension is
unchanged under weak noise. Since the attractors
are zero dimensional objects on a Poincaré plane,

the overall dimension D0 or D1 of the noise-induced
attractor is the same as that of the saddle’s unsta-
ble manifold in the noise-free system D0 = D

(u)
0 ,

D1 = D
(u)
1 . In particular, using (8), we find that

D1 = 1 +
λ − κ

|λ ′|
(11)

is an approximant to the information dimension
of the noisy attractor. Note that the dimension
is independent of the noise strength, σ, in accord
with the claim that the weak noise limit is rele-
vant. The noise-induced chaotic attractor’s dimen-
sion is uniquely determined by the parameters
of the underlying chaotic saddle of the noise-free
problem!

For σ slightly above σc, the probability for the
trajectory to leave the noisy periodic attractor is,
however, small. Thus, as our examples also illustrate
(see e.g. Fig. 2), an intermittent behavior can be
expected where the trajectory spends long stretches
of time near the periodic attractor, with occasional
bursts out of it wandering near the nonattracting
chaotic set.

We note that another determining feature of
noise-induced chaos is that the positive Lyapunov
exponent of the attractor exceeds zero according to
a power law (see [Lai et al., 2003]).

5. Conclusions

Phenomena similar to noise-induced chaos also
exist. In the presence of a deterministic small size
(or multi-piece) chaotic attractor, the attractor
may suddenly widen by adding weak noise. This is
the so-called noise-induced crisis [Sommerer et al.,
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1991]. In such cases there is always a nonattract-
ing chaotic set coexisting with the chaotic attractor.
It is again the unstable manifold of this set which
merges with the old attractor into the new one. The
term comes from the observation that the motion on
the new attractor is intermittent, with long stays on
the old attractor and short excursions to the unsta-
ble manifold, just like at a slightly shifted param-
eter, where the deterministic system undergoes a
crisis. The properties of this intermittent behavior
are uniquely related to the properties of the noise-
free system around crisis [Sommerer et al., 1991]. In
particular, (11) provides the dimension of this new
attractor, as well, where the characteristic numbers
belong to the deterministic nonattracting chaotic
set lying around the chaotic attractor. This indi-
cates that the assumption of weak noise is useful in
all these noise-induced phenomena.

Recently, a debate has been developed on noise-
induced chaos in the journal Oikos. In their paper
Dennis et al. [2003] claim that “. . . chaotic dynam-
ics can be revealed in stochastic systems through
the strong influence of underlying deterministic
chaotic invariant sets.” By invariant set they mean,
however, chaotic attractors, and just mention by
passing the possibility of the existence of nonat-
tracting invariant sets. In a critical response, Ell-
ner and Turchin [2005] state that “Even when an
estimated skeleton predicts a system’s short time
dynamics with extremely high accuracy [i.e. if the
attractor is simple], the skeleton’s long term dynam-
ics and attractor may be very different from those of
the actual noisy system.” This formulation contains
the possibility of the coexistence of nonattracting
chaotic sets with the attractor, but as one of their
examples shows, the authors would also consider
noise-induced chaos as a chaos-like noisy behavior
in a system with a deterministic point attractor.
Based on fractality, we have argued for a version in-
between these points of view: Chaotic dynamics is
typically revealed in stochastic systems through the
strong influence of underlying nonattracting chaotic
invariant sets.

It is exactly the fractal property of the attrac-
tor which can be used as a condition to decide
whether the noise is weak. As can be seen from
Fig. 9, exhibiting the results of the box-counting
algorithm carried out for the example in Figs. 3–5,
noise makes the dynamics space filling at short
scales, smaller than εc ≈ e−4 = 0.018 for σ = 0.01.
For weak noise, there is always a scaling region with
the slope of the noise-free fractal dimension, which
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Fig. 9. Results of the box counting algorithm carried out
for the deterministic unstable manifold of Fig. 4(c) (black
dots), and for the noisy attractors of Fig. 3(b) (black squares,
σ = 0.01) and 5(a) (black diamonds, σ = 0.03). The slope of

the bold lines corresponds to the fractal dimension D
(u)
0 =

1.5 of the deterministic saddle’s unstable manifold and to
the phase space’s dimension d = 2 (cf. Fig. 1). The thresh-
old scale beyond which fractality holds is εc ≈ 0.018 for
σ = 0.01. Such a value does not exist at all for σ = 0.03: this
case is thus noise-dominated. Similar plot can be obtained
for the scaling of the information contents with the box
size. The noninteger slope is then provided by the infor-
mation dimension of the deterministic unstable manifold:
D

(u)
1 = 1.4.

is 1.5 in this case. This property is in full harmony
with the statement of Ben Mizrachi et al. [1984]
mentioned earlier. As soon as this scaling region
becomes too short, fractality cannot be identified,
not even on gross scales, as is the case for σ = 0.03.
Then noise smearers out the dynamics into large,
finite bands of the phase space (cf. Fig. 5). This
is a sign of noise being more influential than the
original deterministic dynamics, and noise can be
considered from here on to be strong. This is the
case of the first examples, noisy logistic flow and
noisy Ricker map, of both Dennis et al. [2003] and
Ellner and Turchin [2005]. Here a fixed point is
turned into an extended attractor of the dimen-
sion of the phase space. Due to the lack of fractal-
ity, we suggest not to call this a chaotic attractor,
despite the positivity of the Lyapunov exponent
(which is only one feature of a chaotic attractor,
the other one, fractality, is missing here). The term
“stability masked by noise”, suggested by Ellner
and Turchin [2005] perfectly characterizes the
situation.
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We are aware of the problem that the selec-
tion of noisy and deterministic dynamics is often
an important task. Our arguments indicate that the
determinism dominated behavior, i.e. noise-induced
chaos or intermittency, can clearly be understood
in terms of the noise-free dynamics. Much less
is known, however, about cases where the noisy
and deterministic effects become comparable. This
belongs to the realm of strong noise when fractality
is washed out, and the dynamics do not rely any
longer on any fingerprint (the skeleton, in terms
of Ellner and Turchin [2005]) of the deterministic
problem. In such cases only methods borrowed from
the praxis of time series analysis [Drepper et al.,
2003; Ellner & Turchin, 1995; Kantz & Schreiber,
2003] can be used to judge how relevant is the deter-
ministic influence.
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Appendix: Physical Meaning of the
Critical Noise Strength

We have argued that noise-induced chaos sets in
when a periodic attractor and a chaotic saddle
are dynamically linked by noise. In the case of
Gaussian noise (3), if one is allowed an infinite
amount of computational or experimental time, the
two sets will connect for arbitrarily weak noise.
Thus the meaning of a finite critical noise strength
for the onset of noise-induced chaos needs to be
clarified.

To define a critical noise strength for a finite
physical time, we note that under Gaussian noise,
the steady-state probability distribution for point
x on the attractor can be written as [Freidlin
& Wentzell, 1984; Hamm et al., 1994]: W (x) ∼
Z(x)e−Φ(x)/σ2

, a form similar to that describing
fluctuations in thermal equilibrium and Φ(x) is
analogous to the free energy. While the explicit
form of Z(x) and Φ(x) cannot be obtained from
the mere knowledge of the equations of motion, the
interesting feature is that they are both indepen-
dent of the noise strength. This allows for a proper
threshold to be defined for dynamical events such

as noise-induced chaotic attractors [Hamm et al.,
1994]. In particular, for chaotic attractor induced
by noise in a periodic window, before the transi-
tion, the periodic attractor appears to be fuzzy in
the presence of noise. The noisy attractor can be
defined as the region on which the probability distri-
bution is close to its maximum. The potential value
of the attractor can be conveniently set to zero and
as such the probability density W (x) around the
attractor is large. By choosing a small threshold
value χ according to the resolution of the proba-
bility variation, we can define the noisy attractor as
the set of points where W ∼ exp(−Φ/σ2) ≥ χ. Col-
lision of this noisy attractor with the nonattract-
ing set occurs at a critical noise strength σc. We
thus have exp(−∆Φ/σ2

c ) = χ, which gives σc =√
∆Φ/ ln χ−1, where ∆Φ is the potential differ-

ence between the attractor and the non-attracting
chaotic set. Thus, despite the unbounded nature
of the Gaussian noise, the finite observational time
allowed in any physical application renders mean-
ingful a proper noise strength for noise-induced
chaos.


