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Abstract—We propose a scheme to induce chaotic attractors in
electronic circuits. The applications that we are interested in stip-
ulate the following three constraints: 1) the circuit operates in a
stable periodic regime far away from chaotic behavior; 2) no pa-
rameters or state variables of the circuit are directly accessible to
adjustment and 3) the circuit equations are unknown and the only
available information is a time series (or a signal) measured from
the circuit. Under these conditions, a viable approach to chaos in-
duction is to use external excitations such as a microwave signal,
assuming that a proper coupling mechanism exists which allows
the circuit to be perturbed by the excitation. The question we ad-
dress in this paper is how to choose the waveform of the excita-
tion to ensure that sustained chaos (chaotic attractor) can be gen-
erated in the circuit. We show that weak resonant perturbations
with time-varying frequency and phase are generally able to drive
the circuit into a hierarchy of nonlinear resonant states and even-
tually into chaos. We develop a theory to explain this phenom-
enon, provide numerical support, and demonstrate the feasibility
of the method by laboratory experiments. In particular, our experi-
mental system consists of a Duffing-type of nonlinear electronic os-
cillator driven by a phase-locked loop (PLL) circuit. The PLL can
track the frequency and phase evolution of the target Duffing cir-
cuit and deliver resonant perturbations to generate robust chaotic
attractors.

Index Terms—Duffing oscillator, inducing chaos, phase-locked
loop (PLL), resonant perturbations.

I. INTRODUCTION

MANY modern devices rely on sophisticated electronic
circuits. An important class of these devices is electronic

tracking and guidance systems. To accomplish its intended mis-
sion, a hostile electronic tracking and guidance system operates
in a parameter regime where their performance can be character-
ized as stable or regular. If one regards the device as a dynamical
system, it is required that the state variables of the system behave
in a regular fashion. This is conceivable because the electronic
circuits in the system, when in operation, are indeed dynamical
systems that evolve state variables such as voltages and currents
continuously in time. Inducing chaos in the circuits is likely to
cause the system to fail in its intended mission.

There have been many previous works on inducing or main-
taining chaos in nonlinear systems. These can be categorized

Manuscript received June 16, 2005; revised September 30, 2006. This
work was supported by AFOSR under Grant. F49620-03-1-0290 and Grant
FA9550-06-1-0024. This paper was recommended by Associate Editor Y.
Nishio.

A. Kandangath, S. Krishnamoorthy, and Y.-C. Lai are with Department
of Electrical Engineering, Arizona State University, Tempe, AZ 85287 USA
(e-mail: anil.kumar; satishk; Ying-Cheng.Lai@asu.edu).

J. A. Gaudet is with Air Force Research Laboratory, AFRL/DEHE, Kirtland
AFB, NM 87117 USA.

Digital Object Identifier 10.1109/TCSI.2007.893510

into three classes: 1) inducing chaos by random noise [1]–[11];
2) converting transient chaos into sustained chaos by small per-
turbations—the problem of maintaining chaos [12]–[17] and 3)
inducing chaos by resonant perturbations [18]–[23]. In the first
class, the main question concerns how chaos can arise under
the influence of random noise. The pioneering work of Crutch-
field et al. [1], [2] established that, in the common route to
chaos via period-doubling bifurcations, noise tends to smooth
out the transition and induce chaos in parameter regimes where
there is no chaos otherwise. The observability and scaling of
fractal structures near the transition to chaos in random maps
were addressed in [6], [7]. Features of transition to chaos in
noisy dynamical systems, such as intermittency and the smooth-
ness of the Lyapunov exponents, were also found in the tran-
sition from strange nonchaotic to strange chaotic attractors in
quasi-periodically driven systems [24] and in the bifurcation
to chaos with multiple positive Lyapunov exponents in rela-
tively high-dimensional systems [25]–[27]. More recently, the
mechanism for transition to chaos in continuous-time dynam-
ical systems was investigated [11] where it was found that non-
hyperbolicity plays a fundamental role in shaping the transition.
The second class of problems deals with systems in parameter
regimes where there are nonattracting chaotic sets that physi-
cally lead to transient chaos. That is, under its own evolution,
from a random initial condition the system behaves chaotically
only for a finite amount time before settling into a nonchaotic
attractor. Since sustained chaos is believed to be beneficial in
circumstances such as biological applications [13], [14], [28],
it is desirable that chaos be maintained, which can indeed be
achieved by applying small perturbations to an available param-
eter or state variable of the system [12], [16], [17]. For the third
class, previous works demonstrated that for simple nonlinear
oscillators such as the Duffing system, resonant perturbations
can be used to drive the system in and out of chaotic motion
[18]–[23], provided that the system equations are known so that
the external excitation can be designed accordingly.

The problem of inducing chaos that we wish to address in
this paper is significantly more challenging than those investi-
gated previously. In particular, we are interested in applications
where the following three constraints naturally arise: 1) The
electronic circuit to be defeated operates in stable state that is
far away from any chaotic dynamics; 2) the internal structure
and parameters of the circuit cannot be modified, i.e., no param-
eters or state variables of the circuit are directly accessible to
adjustment and 3) the system equations are unknown and only
a measured signal (time series) from the system is available.
In previous works, however, not all these three requirements
were assumed. For instance, in the work of maintaining chaos
[14], [17], [18], although system equations were unknown, the
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system was in a transiently chaotic regime and a system param-
eter or dynamical variable was externally accessible for contin-
uous adjustment. In the existing resonant-perturbation approach
[18]–[23], knowledge of system equations was assumed. For
our problem of disturbing a target electronic circuit under the
three constraints, a viable way is to radiate the circuit with ex-
ternal wave, e.g., microwave. Inducing chaos to interrupt the
normal operation of the circuit may be regarded as advanta-
geous because the absorbed energy required may be much less
than that needed to simply “overpower” the same electronics
by using large-amplitude excitations. In addition, it is gener-
ally desirable to use only small excitations to induce chaos, as
it may be difficult to generate large-amplitude waves in some
realistic applications.

We have developed a general approach to inducing chaos
in nonlinear circuits by making use of the principle of
phase-locking and resonance, without knowledge of system
equations. In this paper, we shall present a theory and demon-
strate the feasibility of this approach numerically and experi-
mentally. The idea is to apply judiciously chosen perturbations
to drive a target circuit into higher and higher resonant states.
The perturbations can be a sinusoidal signal with time-varying
frequency and phase, and how they vary is determined by
a real-time measured signal from the circuit. Our goal is to
control the perturbing field so as to maximize its effect on the
circuit, thereby driving it as far away from its equilibrium as
possible, eventually generating chaotic dynamics. To explain
our method, we start with a simple one-degree-of-freedom
Hamiltonian (conservative) system and argue that small-ampli-
tude, sinusoidal excitations whose frequency and phase match
approximately those of the measured signal from the system
can drive it gradually into higher and higher energetic states and
eventually into chaos. The key role played by the resonant per-
turbation is then to continuously feed energy into the system to
induce instability. We address the issue of the time required to
induce chaos and obtain a simple scaling relation between this
time and the amplitude of the resonant sinusoidal excitation.
We then consider the effect of dissipation and demonstrate that,
insofar as the average rate of increase of energy in the system
is positive, resonant perturbations can drive the system into
chaos, whereas the time required satisfies the same scaling law
as in the case of Hamiltonian system. For experimental imple-
mentation, we use a prototype of nonlinear electronic circuit,
the Duffing circuit, and show that resonant perturbations from a
phase-locked loop (PLL) circuit can readily drive the target cir-
cuit into chaos. Here, the role of PLL circuit is to continuously
track the instantaneous frequency and phase of the target circuit
and at the same time, deliver proper resonant perturbations.
We shall demonstrate that excitation of amplitude from the
PLL of about 10% of the maximum circuit voltage oscillation
can induce robust chaotic motion in the circuit. (Here “robust”
means that when a system parameter is changed, such as the
driving frequency, there are no periodic windows [29] amid the
induced chaotic attractors.) To demonstrate the power of the
resonant-perturbation approach, we will also show that in the
same parameter regime, random perturbations of much larger
amplitude are unable to induce chaos. A brief account of part
of the work has been published recently [30].

In Section II, we construct a simple toy model to enable an
understanding of our general method of inducing chaos. The
focus of this paper is experimental demonstration of the method
using a PLL circuit [Section III]. A discussion is presented in
Section IV.

II. GENERAL PRINCIPLE AND METHODOLOGY

The general mathematical principle that enables time-depen-
dent perturbations to cause a stable dynamical system to become
chaotic is as follows. Consider a dynamical system described by
a set of autonomous ordinary differential equations

(1)

where is an -dimensional vector with components
, and the velocity field is a nonlinear func-

tion. The state equations describing most typical electronic cir-
cuits can be written in the above form. Now imagine that an
external excitation is applied so that (1) becomes

(2)

where now the velocity field contains an explicit time depen-
dence due to the time-varying excitation and, hence, it is
nonautonomous. Equation (2), however, can be converted into
an autonomous system simply by introducing a new -di-
mensional variable , where .
The dynamical equation for can be written as

(3)

The system governing the motion of the new variable has a
phase-space dimension that is one higher than that of the orig-
inal equation in . An increase in the phase-space dimension in-
dicates a possible increase in the complexity of the system and,
hence, chaos is more likely to occur in the new system. In prin-
ciple, it is thus possible to induce chaos in a nonchaotic system
by using external time-dependent excitations.

To explain our approach of resonant perturbation without re-
quiring system equations, we imagine a simple, linear, conser-
vative (Hamiltonian) system: a harmonic oscillator that is a text-
book example in classical mechanics. In this system, the natural
oscillating frequency does not depend on the energy. As a
consequence, we can induce an arbitrarily large disturbance in
this system by applying an arbitrarily small perturbing force at
the fixed resonant frequency . It is important to note that the
resonant frequency is the same for all energies, because the nat-
ural frequency is constant. This convenient feature is, however,
restricted to linear systems. For nonlinear systems, the system’s
natural frequency does depend on the energy, and using a per-
turbing field with a fixed frequency in general cannot generate
resonance. Our basic idea is then to change the frequency of the
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perturbing field so as to “follow” the natural frequency of the
system as the energy changes due to perturbation.

Since our system has only one degree of freedom, in the ab-
sence of external perturbations, it exhibits simple stable motion
and fundamentally prohibits any chaotic motion. Demonstrating
that chaos can be induced in such a stable system by small reso-
nant perturbations illustrates the power of our method. The dy-
namics of the unperturbed Hamiltonian system is described by

(4)

where is a one-dimensional potential function. For a har-
monic oscillator, is a quadratic function. In general,
can be any differentiable function. We assume, however, that
has a minimum and a maximum. Although our method works
for any potential satisfying these constraints, for concreteness
we will focus on the pendulum potential given by

(5)

The maxima at define hyperbolic orbits at energy
. The hyperbolic orbits separate regions of confined and

non-confined motion. Widespread chaos arises in the vicinity
of the hyperbolic orbits, for arbitrarily small perturbations [31],
[32]. The oscillating frequency of the unperturbed system is a
function of the energy: , where is defined within
the region of the confined motion, . The frequency
at the minimum is , and it decreases toward 0 as

approaches 1, because it takes an infinite amount of time for
the hyperbolic orbits to go from one maximum to the other, say
from to . We stress that this last feature is not
particular of the pendulum potential, but it is true of all hyper-
bolic orbits: they have an infinitely long period. As the energy
for a hyperbolic orbit is approached, the period diverges, and the
frequency goes to zero. This is important for our method.

Consider now that the system is set up with an initial energy
. In the absence of perturbations, it will keep oscillating

with this constant energy. Our goal is to apply a small perturba-
tion so that the energy is increased toward , where the ho-
moclinic orbits lie, around which there is sustained chaos. If we
just apply a perturbation with a fixed frequency equal to the ini-
tial natural frequency , the system will rapidly fall
out of resonance, as we explained. The result is that the energy
oscillates around , with an amplitude that decreases with the
strength of the perturbation. This is shown in Fig. 1, where we
use (4) with an added constant sinusoidal term ,
and the energy is plotted as a function of the number of oscilla-
tions of the external excitation. Since we are interested in weak
perturbations (small ), it is clear that we will not be able to
reach in this way.

The key observation is that the system’s natural frequency
changes with the energy. We must therefore change the fre-
quency of the perturbation so that it always matches the natural
frequency, thus ensuring that the resonant condition be satis-
fied at all times. The frequency of the external excitation thus
changes with time, and we write . The form of cannot
be be written down explicitly, because it is adjusted in response

Fig. 1. Energy of the oscillator as a function of the number of oscillation pe-
riods for excitation at constant frequency, at resonance with the initial frequency.
The initial conditions are x(0) = 0:5, _x(0) = 0, with a corresponding energy
of E � �0:88, and the amplitude of the excitation is F = 10 .

to the time variation of the natural frequency of the system. The
equations of motion of the perturbed system can be written as

(6)

where is a time-dependent phase (to be discussed shortly).
Although for the particular case of the potential (5), the fre-
quency as a function of the energy can be expressed in terms
of the elliptical functions [32], we want to keep our method as
generic as possible, and so we assume such dependency is not
known. In fact, we do not assume any knowledge of the poten-
tial, other than the fact that it has a minimum (with a region
of confined, oscillating motion) and a hyperbolic orbit. In other
words, we only require that the underlying system be oscilla-
tory. Therefore, a practical way to determine the natural fre-
quency of the system at a given time is through the observed
dynamics, for instance, through the observation of the dynam-
ical variable . We cannot measure the period directly from
the dynamics, since the forcing term in (6) makes the motion
aperiodic. However, since the perturbation is small ,
at any given time the motion is almost periodic, meaning that
the energy changes only very slowly with time. Typically, the
system oscillates many times with only a small change in
and, hence, the resonant frequency changes very little as well.
Using this fact, we define for a given time as the average
over the past oscillations, where is small enough so that
the energy does not change appreciably in the corresponding
time interval. In this way is defined purely in terms of the ob-
served quantities of the system, and any previous knowledge of
the potential and/or the equations of motion are not assumed.
The only requirement is that the average oscillating frequency
of the system as a function of time be measured. In principle,
the forcing term in (6) involves a time delay because the forcing
is equivalent to a memory term. In our simulations, we consider
only one oscillation in the past. The results we present seem to
be independent of , to within the constraint mentioned.
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Fig. 2. (a) Energy of the oscillator as a function of oscillation period for F =
10 . The phase � in (6) is chosen as in phase with x(t) for E < 1:0 and it
remains constant for E � 1:0. Since (6) represents a Hamiltonian system, the
energy will oscillate about E = 1 under the influence of external perturbation
F sin(�t + �). (b) Frequency of the applied perturbation as a function of os-
cillation period.

Tuning the forcing frequency is not enough. We also need to
control the phase. Since we want the energy to increase in time
so that the system approaches the hyperbolic orbit, we have to
adjust the phase so that the forcing term is always in phase
with the system’s oscillation. We do that by making adjust-
ments in discrete times: every time crosses 0 in the positive
direction, we change so that the forcing term is in phase with

. For a real circuit, this could be achieved in continuous time
by a phase-locking scheme. However, we note that the adjust-
ment at each oscillation is small, because the oscillations depart
only a little away from periodic motion. Therefore, the results
would be essentially the same for both approaches. Imposing
this phase-adjusting mechanism, we ensure that energy is al-
ways transferred from the perturbing force to the system, and
not the opposite. If we do not do that, the phase would drift in
time, and the energy would not increase monotonically in time,
but would instead oscillate more or less randomly.

Now we apply the method described above to the system
given by (6), with the potential given by (5). The system starts
with the same initial conditions as in Fig. 1. The plot of energy
versus time is shown in Fig. 2(a). We see that the method does
indeed work: the energy increases monotonically with time, as
the perturbation continuously injects energy into the system,
until it reaches the threshold , at which chaos oc-
curs. Fig. 2(b) shows the frequency variation corresponding to
the changing energy, where it decreases as the energy increases
and remains constant when the energy reaches unity. We find
that will eventually reach for any values of , no matter
how small (this is not true for dissipative systems, as we shall
describe below). For perturbations of different magnitude, the
difference is that the smaller the value of , the longer it takes
for to reach . For small enough , we find that, approxi-
mately, this time is inversely proportional to . Specifically, let

be the number of oscillations of the external excitations

Fig. 3. Relation between n , the number of oscillations of the external ex-
citations required for energy E to reach unity (i.e., for chaos to occur), and the
perturbation strength F .

required for energy to reach unity. Fig. 3 shows the relation-
ship between and the perturbation strength , where we
observe the following:

(7)

This relation can be understood by writing down the energy
function of the system: , where

is the velocity of the particle. Taking time derivative of
, in combination with (6), gives

Thus, we have

Under the resonant condition, the velocity contains a term
proportional to the driving and, hence, the integrand contains a
term proportional to which gives the major
contribution proportional to (the integration of the re-
maining terms are approximately zero because of the long-time
average of the sinusoidal functions). Since , we
have: , which is the inverse relation (7).

After the energy reaches the threshold unity, the oscillatory
behavior becomes chaotic. This is so because the system has
been pushed to moving near the hyperbolic points about which
there is typically a homoclinic or heteroclinic tangle between
the stable and unstable manifolds of the fixed points and con-
sequently chaos [31], [32]. Because there is no dissipation, the
system energy remains to be (and the system therefore
remains chaotic) even if the time variations in the frequency
and phase of the perturbations are withdrawn. Fig. 4(a) shows
the chaotic time series of (unwrapped with respect to ).
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Fig. 4. For the nondissipative case: (a) induced chaotic time series x ,
(b) phase-space trajectory (x; y) on the stroboscopic section defined by
t = 2�n=�(E = 1) (n = 1; . . .), and (c) induced chaotic motion near the
hyperbolic fixed point.

The phase-space trajectory on the stroboscopic section
is shown in Fig. 4(b), where

. The induced chaotic behavior near the hyperbolic
fixed points can be seen more clearly in Fig. 4(c).

We now address the important issue of dissipation. As we
have seen, in the absence of dissipation, an arbitrarily small per-
turbation can drive the system to the vicinity of the hyperbolic
orbit. We can expect that dissipation will change this. The reason
becomes clear if we examine our method from the point of view
of energy transfer. What the method does is to ensure that en-
ergy is always transferred from the external perturbation to the
system. That is, we make sure that the external forcing always
injects energy into the system (and never extracts energy from
it). Without dissipation, the system’s energy keeps increasing
(albeit slowly), until the system inevitably reaches the energy
of the hyperbolic orbit. In the presence of dissipation: although
we still inject energy into the system using the external resonant
perturbation, now energy is also getting lost. For a given energy,
call the average energy input rate due to the forcing and the
energy output rate due to dissipation . Then, usually
increases the farther the system is from the equillibrium point,
which could be a stable fixed point or a stable cycle. The total
energy of the system will stop increasing when equals .
There are then two possible scenarios: 1) if this happens for an
energy above the energy of the hyperbolic orbit , we will
be able to achieve the goal of exciting the system to near
and therefore inducing chaos and 2) if, however, becomes
equal to for energy less than , then the system will
saturate at that energy, and we will not be able to push it to the
neighborhood of the hyperbolic orbit. We can expect that, for a

fixed forcing amplitude, as the dissipation increases from zero,
a transition from case (1) to case (2) will occur.

To understand the effect of dissipation, we can add a term
proportional to the velocity in our toy model

(8)

where is the dissipation coefficient. The frequency and phase
functions and of the perturbation are determined,
as for the nondissipative case. For small enough dissipation,
the system’s oscillations are again nearly periodic, and all the
assumptions we used for the calculation of and remain
valid. One interesting feature in dissipative systems is that,
when chaos is induced, in order to maintain it, the frequency
of the external excitation needs to be adjusted continuously to
keep the energy of the system at about 1. The reason is that,
when the system is driven to chaos, external energy is still
needed to be delivered to the system to keep it in the chaotic
state due to the dissipation. That is, it is still necessary to make
the external perturbations resonant with the system. However,
if continuous resonant perturbations are applied, it is likely that
the system will settle into faster and faster rotational motion
with monotonically increasing energy. Such a motion is in fact
not chaotic. To avoid this situation, we monitor the dynamical
variable (in practice, this can be measured). If it exceeds

, we turn off the time variations in and so that the
resonant condition is temporally not satisfied. As a result, little
energy is transferred into the system so that its energy starts to
decrease due to dissipation, at which point we turn on the time
variations of and so that the condition of resonance is
fulfilled again, and so on. This results in a continuous but small
change in the frequency . This should be contrasted to the
nondissipative case where, after chaos is induced, the system
energy can be maintained at about even when the time
variations in and are turned off [Fig. 2].

To confirm that chaos has indeed been induced, it is useful to
compute the largest Lyapunov exponent , as the positiveness
of the exponent is the defining characteristic of chaos. A com-
plication is that the system equations under external time-de-
pendent perturbation are not completely known. As a result,
the standard procedure for computing the Lyapunov exponents
in deterministic systems [33] is not applicable. Neither is the
system random, so that the methods for computing Lyapunov
exponents in random dynamical systems, such as those based
on products of random matrices [34], [35], are not suitable ei-
ther. However, the largest exponent can be estimated by
simply monitoring how the length of a small phase-space vector
changes with time. In particular, we start with a small vector

at and monitor its evolution up to time ,
where is the time at which the vector is still small
so that it can be related to approximately linearly. The
ratio is then recorded and the vector

is normalized so that it is small in length. The new vector
is evolved in time, and the same procedure yields a new ratio ,
and so on. The largest exponent is approximately given by

for large



1114 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 54, NO. 5, MAY 2007

Fig. 5. For F = 10 , the largest Lyapunov exponent � of the perturbed
dynamics versus �, where the exponent is positive for � < � . For each value
of �, the number of time steps is N = (2�=h)n, where h = 0:01 is the
numerical integration step, and n = 10 is the number of oscillatory cycles of
the system.

Fig. 5(a) shows, for , the largest Lyapunov exponent
versus , where we see that for , confirming
that the dynamics of the system under external perturbation is
indeed chaotic.

III. EXPERIMENTAL INDUCTION OF CHAOS BY USING PLLS

The method discussed above involves subjecting the oscil-
lator to well designed periodic perturbations that can drive the
system into higher and higher resonant states and eventually into
chaos. We have argued theoretically and demonstrated numeri-
cally that it is possible to keep the oscillator in resonant states
by using a perturbation with time-varying frequency and phase
that match those of the oscillator, respectively, raising its energy
until chaos is achieved. A convenient device that is capable of
tracking the frequency and the phase of a nonlinear oscillator is
PLLs [36]–[39].

To experimentally demonstrate the feasibility of our method,
we construct a prototype circuit system consisting of a Duffing-
type of circuit as the target oscillator to be driven into chaos and
a PLL circuit that tracks the natural frequency and phase of the
oscillator and delivers resonant perturbation. We will show in
this Section that chaotic attractors can be readily induced in the
Duffing oscillator that would otherwise exhibit a stable periodic
attractor without the perturbation.

A. The Duffing Oscillator and Circuit

We have tested our method using the following periodically
forced Duffing’s oscillator (in a dimensionless form):

(9)

where , , , and . For this param-
eter setting the system exhibits a period-1 attractor and, hence,

Fig. 6. For the periodically forced Duffing oscillator described by (9) that ex-
hibits a period-1 attractor. (a) Change in the frequency in the external resonant
perturbation and three representative attractors [in the (x; dx=dt) plane] during
the induction of chaos. (b) Evolution of the energy of the oscillator. Here, time
n denotes the number of cycles of the periodic forcing.

it can be regarded as being far from chaos. To induce chaos, we
apply resonant perturbation of the form
to the right-hand side of (9), where and are esti-
mated from the measured time series . Fig. 6(a) shows the
evolution of the relative frequency as chaos is being
generated, together with a few representative phase-space plots
of the attractor at different stages. We see that the frequency of
the required resonant perturbation is decreased and remains at
constant when chaos is induced, as predicted by our theory. Due
to dissipation, the final frequency is finite. Fig. 6(b) shows the
evolution of the energy of the system:

, relative to its maximum value . The initial
energy assumes a negative value but it becomes approximately
constant with small fluctuations after chaos sets in. Again, due
to dissipation, the final average energy cannot reach its max-
imum possible value.

A circuit implementation of the Duffing’s oscillator was pro-
posed by Young and Silva [40], which uses square-wave driving
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Fig. 7. Young–Silva circuit implementation of the Duffing oscillator. A dif-
ferential amplifier (U5) was added to generate a single output proportional to
the voltage across (R7) in order to visualize the phase plot of the voltage at Y1
versus that at Y2 on an oscilloscope.

and is capable of chaos-based information processing in a wide
frequency range (kilohertz to gigahertz). For our experiment, we
designed the Duffing circuit to be working in the range of 1–10
kHz. To simplify the circuit, the nonlinear term in (9)
was replaced by a piecewise-linear function that can be imple-
mented relatively easily. It was demonstrated that the resulting
circuit preserves the essential dynamics of the original Duffing
oscillator, including various periodic and chaotic behaviors [40].

Our circuit was built using the quad-operational-amplifier
TL084 chip. The outputs are the voltages across the resistor R7
and from the operational-amplifier U2. The signals are digitally
recorded using a digitizer (National Instrument) and analyzed
using LabView (Version VI). In order to obtain the phase-space
plot of the outputs for visualization, a differential amplifier
using a TL082 chip was added to generate a voltage propor-
tional to the potential across R7. The complete circuit diagram
is shown in Fig. 7. The voltage V and the supply voltages of
the operational amplifiers are fixed as 9 V. Utilizing the driving
frequency as a bifurcation parameter, it was demonstrated that
the Duffing circuit can generate a variety of nonlinear behaviors
including periodic and chaotic attractors [40].

B. PLL

A PLL is a circuit that synchronizes a signal with another
signal in both frequency and phase. We use PLL to generate a
signal that has the same frequency, and is synchronized
in phase with an input signal . The input signal is from
the Duffing’s circuit with a periodic attractor, and the output
signal is the resonant perturbation to be applied to the Duffing’s
circuit. Because of the match in both the frequencies and phases
between the intrinsic oscillations of the Duffing’s circuit and
the external driving, the circuit can be brought into a hierarchy
of resonant states, as suggested by our method. The basic block
diagram of a PLL is shown in Fig. 8, which consists of a phase
detector (PD), a loop filter with transfer function , and
a voltage-controlled oscillator (VCO). The PD generates an
output voltage proportional to the phase error between

Fig. 8. Block diagram of a PLL. The output V of the VCO (voltage controlled
oscillator) is matched in frequency and synchronized in phase with the input V
to the PD.

the input signal and the output of the VCO, as
follows:

(10)

where is the PD gain. The alternating current components
of the output of the PD are filtered out by the loop filter. The
output of the VCO has a frequency that depends on the voltage
input to it and is given by

(11)

where is the center frequency of the VCO and is the VCO
gain.

A PLL works by matching the output frequency of the
VCO with the input frequency . The presence of the loop filter
makes the PLL immune to noise, meaning that the PLL can track
the input signal even if noise is present. The center frequency or
free running frequency of the PLL is the frequency at which
the VCO oscillates even if the input signal is absent. The
capture range of a PLL is the range of frequencies over
which it can initially acquire a lock. Once a lock has been ac-
quired, the PLL will continue tracking the input frequency over
a range known as the lock range . If the input frequency
varies beyond the lock range, the locked loop will become un-
locked. The capture range is always smaller than the lock range.
The PLL can be designed appropriately such that its capture and
the lock ranges are within the frequency range of the circuit of
interest.

We emphasize that using a PLL causes the output signal to
be synchronized in both frequency and phase, which is the es-
sential requirement for driving the target system to chaos in our
method. Note also that a PLL typically introduces a finite delay
in the feedback loop which gives the system time to respond to
the change in perturbation.

In our experiments, an LM565 PLL integrated circuit is used
whose internal circuitry is shown in Fig. 9. The center frequency
is given by

(12)

and the lock range is

(13)

where is the supply voltage to the circuit. The outputs of
the PLL at pins 4 and 5 are a square wave with the same fre-
quency and phase as the input signal at pin 2. The output of
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Fig. 9. Schematic diagram of the PLL circuit implemented using an LM565
chip in our experiments. The center frequency of the VCO is adjusted using the
variable resistor R .

Fig. 10. Block diagram of our experimental scheme: the PLL is used to track
the output frequency of the oscillator, and a signal at this frequency is used to
drive the oscillator with the delay introduced by the PLL. A voltage divider
circuit with a potentiometer is used to vary the output amplitude.

the Duffing circuit is fed to one of the inputs of the PD and the
output of the VCO is used to feed the resonant perturbation to
the Duffing circuit. A voltage divider at the output of the VCO
is used to adjust the amplitude of the driving signal. Our ex-
perimental scheme can be summarized as the block diagram in
Fig. 10, where is a 10 k potentiometer and is a 1-k
resistor.

C. Experimental Results

The Duffing circuit is driven using square wave signals. The
output of the circuit can be periodic or chaotic, depending on
the frequency selected and the amplitude of the square wave
driving. Initially, we choose a frequency for which the Duffing
circuit exhibits a stable periodic attractor. When the feedback
loop is completed by using the output from the Duffing circuit as
the input to the phase-looked loop, the circuit typically becomes
chaotic, as desired.

To characterize the degree of the induced chaos in the circuit,
we use the maximum Lyapunov exponent. Since we assume
that the system equations are unknown, it is necessary to recon-
struct the phase space based on a measured signal. We use the
voltage signal from the port Y1 in the Duffing circuit and

reconstruct from it a seven-dimensional dynamical system using
the standard delay-coordinate embedding method [41], [42]. A
straightforward strategy for estimating the maximum Lyapunov
exponent is to directly monitor the growth of an infinitesimal
vector in the reconstructed phase space [43]. In particular, let

be a state vector in the reconstructed phase space at time
and be its nearest-neighboring vector. Given a long time

series and sampling time interval , we assume that we
have (large) iterations available for the phase-space vectors

and , where one iteration corresponds to one sampling in-
terval. After iterations, the distance between the two vectors
becomes . We can then define the prediction error
as

(14)

where iterations are used to search for the nearest neigh-
bors, , and . If the dynamics is nonchaotic,
the prediction error will fluctuate about a constant, except ini-
tially when the error increases rapidly from zero to the constant
value. The slope of , which should fluctuate about zero, is
an estimate of the maximum Lyapunov exponent. Usually, a his-
togram of the exponent can be constructed from independent
runs and its center provides a reliable estimate for the exponent.
For nonchaotic dynamics, the histogram should center at about
zero. For chaotic dynamics, because of the exponential growth
in the distance between nearby points, the prediction error
will increase with continuously until it becomes as large as
the maximum variation of the original time series. The slope of

for , where is the time when becomes
saturated, should be positive. Again, the center of the histogram
of the maximum exponent provides a good estimate for it. In our
computation we use , , and .
The number of runs used to construct the histogram of the max-
imum Lyapunov exponent is 1000. The time delay used in the
delay-coordinate embedding is , which corresponds
to approximately half of the average oscillating period of the
voltage signal.

To emphasize the point that chaotic attractor can be induced
by our method when the system is far away from chaos, we
show in Fig. 11 an experimentally obtained bifurcation diagram,
where the parameter value indicated by the vertical arrow is used
for experimental test. At this setting, the circuit exhibits a stable
periodic attractor, as shown in Fig. 12(a) and (b), the phase-
space plot from two outputs of the Duffing circuit and voltage
signal , respectively. The circuit is driven by a square wave
of peak-to-peak amplitude of 4 V and frequency 4.5 kHz to the
port X1. Fig. 12(c) shows the evolution of the prediction error

, which fluctuates around a constant (after a rapid initial
increase). A histogram of the slope of in the time after the
initial transient increase is shown in Fig. 12(d). The center of the
histogram is approximately zero, indicating that the maximum
Lyapunov exponent is zero, as the case for a periodic attractor.

At this point, it is useful to explain what we mean when we
say that the unperturbed system is far away from chaos. As
shown in Fig. 11, because the attractor is period-1, it cannot be in
a period window so that transient chaos associated with periodic
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Fig. 11. Experimental bifurcation diagram for the Duffing circuit. The vertical
arrow indicates the initial period-1 state of the system that is to be brought into
chaos using a resonant perturbation.

Fig. 12. (a) Phase-space plot of the attractor from the Duffing circuit in a stable
periodic state. The quantities plotted are voltages from the ports Y1 and Y2 in
the circuit (in volts). (b) Voltage signal Y , where n is the iteration number. (c)
Evolution of prediction error. (d) Histogram of the maximum Lyapunov expo-
nent. The center of the histogram is approximately zero.

window is ruled out. On the other hand, careful examination of
the measured time series indicated no sign of transient chaotic
behavior associated with the period-1 attractor. Our case is thus
quite different from that studied previously by In et al. [17]
where the periodic state is embedded in a chaotic attractor. As
a matter of fact, in many existing works based on chaos control
[12]–[17], some sort of chaos, either a chaotic attractor or tran-
sient chaos as in a periodic window, was assumed. While in our
case, as we described, there is no chaos initially, not even tran-
sient chaos. It is precisely in this sense that we say our system
is far away from chaos.

Fig. 13(a) shows the phase-space plot of the Duffing circuit
when resonant perturbations (the output of the PLL) of ampli-
tude 1.3 V are applied to the point X of Fig. 7 through the resistor

Fig. 13. (a) Phase-space plot of the attractor from the Duffing circuit under res-
onant driving. The quantities plotted are voltages from the ports Y1 and Y2 in
the circuit (in volts). (b) Voltage signal Y , where n is the iteration number. (c)
Evolution of prediction error. (d) Histogram of the maximum Lyapunov expo-
nent. The center of the histogram is positive, signifying chaos.

Fig. 14. (a) Phase-space plot of the attractor from the Duffing circuit in a
stable periodic state under noise. (b) Voltage signal Y , where n is the iteration
number. (c) Evolution of prediction error. (d) Histogram of the maximum Lya-
punov exponent. The center of the histogram is approximately zero, indicating
lack of chaos.

. The attractor is apparently chaotic, as can also be seen from
the irregular voltage signal in Fig. 13(b). Fig. 13(c) shows
the growth of the prediction error where it can be seen that the
slope is mostly positive. The histogram of is observed to
center at , as shown in Fig. 13(d), which
is clear evidence for chaos.

To show the effectiveness of the resonant driving in inducing
chaos, we replace the resonant driving by a noisy signal of
amplitude up to 6.4 V to the point X through a resistor .
The resulting phase-space plot and voltage signal are shown
in Fig. 14(a) and (b), respectively. We see that the attractor,



1118 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 54, NO. 5, MAY 2007

despite the large-amplitude noisy driving, appears to be only a
smeared version of the original periodic attractor in Fig. 12(a).
The evolution of the prediction error is shown in Fig. 14(c),
which is similar to Fig. 12(c) in that it does not show a growth
over time. The histogram of the maximum Lyapunov exponent
is observed to center at , as shown in Fig. 14(d), indi-
cating lack of chaos.

IV. CONCLUSION

We have developed a strategy, demonstrated by numerical
computation and laboratory experiments, that a regular system
far away from any complicated motion, can be driven to chaos
through external time-dependent small perturbations. The key is
resonant perturbation, whose frequency and phase match those
of the nonlinear oscillator. We have shown that for experimental
electronic circuit this can be conveniently implemented by using
a PLL. We conceive the following situation of application: a
signal is measured from a target system to be driven into chaos
and the instantaneous frequency and phase of the systemare com-
puted using the signal, based on which continuous-time resonant
perturbations are delivered to the system. As the frequency and
the phase of the system are changing, those of the perturbations
are changed accordingly to maintain the resonant condition. As a
result of the continuous resonant excitations, the system can be
driven to and maintained at a chaotic state. This can be achieved
even if the amplitude of the perturbations is small (of course, the
required amplitude depends on the amount of dissipation in the
system). The external perturbations can be from a microwave
source with time-varying frequency and phase.

Our strategy bears resemblance to the methodology of con-
trolling chaos that has been pursued actively in the past fol-
lowing the idea of Ott, Grebogi, and Yorke [44], although the
goals of inducing chaos and controlling chaos are exactly oppo-
site. The basic observation in controlling chaos is that a chaotic
set has typically embedded within itself an infinite number of
unstable periodic orbits. Thus, one can choose an unstable peri-
odic orbit that according to some criterion yields the best system
performance, and apply small, judiciously chosen, temporal pa-
rameter perturbations to stabilize the system around this peri-
odic orbit. To maintain the system at the desirable periodic mo-
tion, continuous perturbations are necessary [44], [45].

It should be noted that, in order to change the state of a circuit
system, some parameters or dynamical variables must be acces-
sible to perturbations. A basic assumption in our method is that
no parameter or variable of the target system is accessible to di-
rect control, in contrast to the control-based methods [12]–[17].
As a result, only external excitation can be used to influence the
system. The key difference between our method and the reso-
nant-perturbation approach by Chacon [23] is that, in our case,
we assume that the system equations are not available, versus
Chacon’s case where external controls are calculated based on
full knowledge of the system equations. It is with respect to
these points that we feel that our method of inducing chaos using
resonant perturbations differs from and actually goes beyond the
previous methods.
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