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Build to understand: synthetic approaches
to biology

Le-Zhi Wang,a Fuqing Wu,b Kevin Flores,c Ying-Cheng Laiade and Xiao Wang*b

In this review we discuss how synthetic biology facilitates the task of investigating genetic circuits that are

observed in naturally occurring biological systems. Specifically, we give examples where experimentation with

synthetic gene circuits has been used to understand four fundamental mechanisms intrinsic to development

and disease: multistability, stochastic gene expression, oscillations, and cell–cell communication. Within each

area, we also discuss how mathematical modeling has been employed as an essential tool to guide the

design of novel gene circuits and as a theoretical basis for exploring circuit topologies exhibiting robust

behaviors in the presence of noise.

Insight, innovation, integration
Gene regulatory networks (GRNs) are central to the fundamental mechanisms regulating cell function and behavior. The presence of feedbacks and stochasticity
can make the logic of GRNs non-intuitive. Small networks can be simulated in a ‘‘dry lab’’ setting, and also be engineered in a ‘‘wet lab’’ setting to probe detailed
dynamics of an integrated set of genes. In this review we discuss how synthetic biology facilitates the task of investigating genetic circuits that are observed in
naturally occurring biological systems. Specifically, we give examples where experimentation with synthetic gene circuits has been used to understand four
fundamental mechanisms intrinsic to development and disease: multistability, stochastic gene expression, oscillations, and cell–cell communication.

1 Introduction

The rapid development of synthetic biology over the last 15 years
has made it possible to engineer DNA sequences,1–4 design
genetic circuits,5–7 synthesize genomes8–10 and even reprogram
cell fates.11 This young and emerging field has shown great
potential in various application areas, including bioenergy,12–14

biopharmaceuticals,15–18 bioremediation,19–22 and regenerative
medicine.23–25 In addition to the development of enabling
technologies with clinical and industrial applications, synthetic
biology approaches have also proven to be very effective in studying
fundamental operating principles of biology.26–30

Synthetic biology greatly simplifies the task of investigating
genetic circuits that are ubiquitous in nature. In concert
with mathematical modeling, the ability to synthesize genetic

circuits greatly enhances our ability to test hypotheses about
the underlying principles guiding developmental, disease,
evolutionary, and adaptive cellular processes. Specifically,
synthetic biology enables the possibility of studying commonly
occurring gene regulatory network ‘‘motifs’’ or modules in
isolation from larger networks that they might be embedded
within. Once a network motif’s function is understood and can
be robustly engineered it can then be exploited to build novel
cellular devices with clinical, therapeutic, or other biotechnology
applications.

The use of mathematical modeling and analysis in synthetic
biology enables the ability to systematically quantify functional
attributes of commonly occurring gene network motifs and to
discover novel motifs with useful functions. Modeling has been
an essential tool for predicting the function of gene networks
constructed from smaller motifs, since such networks may
have complex topologies with multiple feedbacks that lead to
nonlinear and non-intuitive dynamics. Moreover, stochastic
models of genetic circuits have been useful for understanding
how to engineer networks with dynamic behaviors that are robust
in the presence of intracellular noise or variable environmental
signalling. Once parameterized by experimental data, mathematical
models can be used to run in silico experiments that are highly
accurate at capturing the dynamics of wet lab experiments, thereby
reducing the experimental cost of de novo gene circuit engineering.
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Finally, experimentally verified mathematical reasoning makes
it possible to develop theorem like dogmas for biology, just like
it did for physics in the last century, which would greatly
improve our understanding of life.

Here we review synthetic biology studies and mathematical
methods used to support and guide experimental design. We
frame our review by discussing four actively researched types of
biological phenomena that arise in developmental and disease
processes, and that have been explored using synthetic biology:
multistability, stochastic gene expression, oscillations, and
cell–cell communication.

2 Multistability

Multistability, the property of having multiple stable steady
states in a dynamical system, has been proposed as a principle

that guides cell differentiation and development in biological
systems, with cellular states represented as either valleys in the
developmental landscape31,32 or as dynamic attractors in a
high-dimensional gene expression space.33–35 According to
Waddington’s epigenetic landscape theory,31 cells are pictured
as marbles that run downhill through a bifurcating valley and
different routes lead to distinct cell phenotypes. Junctions in
the landscape represent where cells may make a decision
between steady states, based on the local dynamics of gene
regulatory networks (GRNs) and external perturbations. GRNs
regulate/control most of the important biological reactions,
including metabolism, signal transduction, cell division and
differentiation, and tissue development. However, it is often
intractable to investigate the underlying principles of multi-
stability and cell-fate decision in a natural setting. Synthetic
biology provides an effective platform to decompose the
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complex networks into small regulatory motifs. These motifs
can be further rationally designed and engineered using
standardized genetic components to reveal underlying regulatory
mechanisms.

The simplest example is one in which bistability enables
cells to switch back and forth between two stable steady states.
In general, bistability can arise from mutually inhibitory networks
or positive-feedback loops.36 A myriad of modeling and experimental
studies have been performed to investigate the nonlinear dynamics
and state transitions of bistable systems5,37–40 and their applications,
including the detection of chemical pollution through an engineered
plant sensor,41 creating photographs by controlling gene expression
in Escherichia coli (E. coli),42 and using E. coli strains to sense DNA
damage.43

In 2000 Gardner et al.5 paved the way for developing
synthetic biology with their ground-breaking work on the
‘‘toggle switch’’ circuit. In this circuit, two repressible genes
and their corresponding promoters were used to assemble a
genetic toggle switch. For example, the authors used LacI–PLacI

and TetR–PTet combinations. The LacI protein could inhibit
TetR transcription by binding the PLacI promoter while TetR
could bind PTet and block LacI transcription, forming a
mutually inhibitory network. The strength of the two mutual
inhibitions could be controlled by exogenous induction of
isopropyl-D-1-thiogalactopyranoside (IPTG) and anhydrotetracycline
(ATc) (Fig. 1a). Using mathematical modeling and experiments, it
was verified that the toggle switch system could flip between two
states with induction and display robust bistability.

This proof-of-concept design has also been implemented in
mammalian cells38 and yeast.39 For example, the Fussenegger
group38 engineered a mammalian epigenetic transgene switch
in which E-KRAB and PIP-KRAB expressed on two individual
plasmids could inhibit each other by binding to ETR and
PIR operators in their respective promoters. The induction of
antibiotics indicated that this epigenetic circuitry exhibited two

stable expression states: high E-KRAB with low PIP-KRAB, and
low E-KRAB with high PIP-KRAB. Furthermore, the bistable
expression profiles were fully reversible even after rounds of
expression switching. Interestingly, the system also showed
long-term bistability in mice, suggesting that synthetic gene
networks could be used as therapeutic devices in clinic in the
future. Wu et al.39 engineered synthetic gene networks to
explore potential mechanisms for stochastic cell fate determination
in yeast (Saccharomyces cerevisiae). Mutual inhibitory networks
composed of two genes (LacI and TetR, Fig. 1a) were constructed
using three different promoters and bistability was further
investigated by experiments showing hysteresis (glossary: bifurcation
diagram), which is an indicator of a bistable system. Primary
experimental data were then used to calibrate parameters for
a mathematical model of the LacI/TetR network. Ordinary
differential equation (ODE) models (glossary: ODE) were built
to simulate reactions influencing LacI and TetR expression.
Parameters from the model were fit to experimental data of
ATc dose response curves44 and bistable regions were subsequently
predicted using a numerical search with the parameterized model.
In particular, a bifurcation diagram (glossary: bifurcation diagram)
was used to find bistable regions for the LacI/TetR network for
each of the three different strains and only a few parameters
needed to be modified for different promoter strains (Fig. 1b).

Fig. 1 Multistability in synthetic biology. (a) Schematic diagram of a typical
toggle gene circuit based on Gardner et al. (2000).5 In this circuit, two
genes, LacI and TetR, mutually inhibit each other, which can be regulated
by IPTG and ATc, respectively. The inset cartoon is a simplified diagram to
demonstrate an abstract form of the network topology. (b) A bifurcation
diagram can be used to find the inducer concentration range for bistability.
Here, five points are marked to illustrate different stability regions. In the
diagram, 1, 2, 4 and 5 are on the black solid lines and represent stable
steady states; 3 is on the red dashed line and represents an unstable state.
The system is bistable between 1 and 5, and monostable when the inducer
concentration is below 1 and above 5. (c and d) Landscape of a bi-stable
system under different concentrations of inducer (ATc). On each
subfigure, white lines are circled stable steady states, which are used to
locate attractor basins. It is shown that with different inducer concentrations,
the system has a different landscape and steady states. In (c), the system
has only one stable steady state; while in (d), the system is bistable. Based
on Wu et al. (2013).39
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Then, quasi-potential energy landscapes (glossary: energy land-
scape) under different doses of ATc were visualized (Fig. 1c and
d). The numerical results suggested that random outcomes of
cell fate would be realized when the cell’s initial state stayed
on the boundary between the two attractors in a multistable
landscape. To test this hypothesis experimentally, the authors
linked the synthetic gene networks with the yeast cell’s natural
glucose–galactose metabolism to achieve the specific initial
condition where no LacI or TetR are expressed in the cells.
Cells from these experiments diverged into different final states.
In summary, both theoretical and experimental analyses sug-
gested that stochastic and irreversible cell fate determination
could be realized by initializing cells at the attractors’ basin
boundaries.

Positive feedback is another ubiquitous topological structure
found in nature that has the capacity to generate bistability. For
example, the key regulatory mechanism for bacteria quorum-
sensing systems is positive feedback motifs, which enable cells
to make binary decisions in responding to environmental
signals.45 In eukaryotes, positive feedback loops embedded in
gene networks regulate stem cell differentiation and development.
For instance, positive feedback between the transcription
factor PU.1 and the cell cycle controls lymphoid and myeloid
differentiation;46 positive feedback between Sox2 and Sox6 in
neural progenitor cells represses neuronal differentiation;47 and
Cdkn1c interacts with Myod to form a positive feedback that
drives muscle differentiation.48

Robust bistable responses can also be achieved through
coupling multiple positive feedback loops. Guided by theoretical
model-based calculations, Chang et al.49 tried to identify para-
meters controlling the size of a bistable range in order to build
ultrasensitive systems. The authors created a composite system
with two coherent positive feedback loops, where the promoter
glnK drove expression of glnG and the lacZYA operon, respectively.
The expression of glnG was simultaneously inhibited by the
LacI protein and activated by the inducer IPTG. Functionally,
glnG could auto-activate glnK transcription, forming a positive
feedback, while the LacY gene product galactoside permease
could facilitate cellular uptake of IPTG to promote glnG expression
by deactivating LacI repression, forming another positive feed-
back. The experimental results showed that the double-positive
feedback circuit exhibited potent bistability over a B480-fold
range of induction concentrations, whereas circuits with a
single positive feedback showed a less than B12-fold range.
In the mathematical framework for bistability, the authors
first focused on one single positive feedback and formulated
mathematical terms that could result in an adjustment to the
bistable range, including sensitivity of the production rate
and the maximum difference of species concentrations. Then
they studied the interaction of two feedback loops and found
out that nonlinear rather than linear interactions would lead
to bistability. In the analysis, the authors assumed that the
production rate was determined by a feedback loop, degradation
was linearly controlled by an external signal, and the steady state
concentration of each species was state dependent. Together, this
study provided a novel approach to improve the robustness and

increase sensitivity of bistable systems for practical applications to
control biological processes.

3 Gene expression stochasticity

Inherent stochasticity, or randomness, of the physical world
has been widely recognized and well studied for a long time.50–53

However, its significance in biological systems had not been
appreciated until a group of pioneer synthetic biologists demon-
strated its implication on population heterogeneity using elegantly
designed synthetic gene circuits.54–57 For example, Elowitz et al. led
the way to analyze and quantify gene expression noise;54 Ozbudak
et al. used genetic parameters to regulate phenotypic variation;55

Blake et al. discovered that noise contributes to heterogeneity in
eukaryotic cell populations;56 and Raser et al. identified mutations
which could modify noise in eukaryotic gene expression.57

Now stochasticity in gene expression is widely accepted as an
important factor that may regulate a cell’s fate,58–61 adjust feed-
back loop behavior,62–64 control cell size65 and sense environmental
fluctuations.56,66

Cellular decision-making is a widespread biological
phenomenon across taxa, e.g., lysis/lysogeny state transitions
in bacteriophage lambda, the sporulation/competence decision
system in Bacillus subtilis, and spontaneous differentiation into
a specific subtype from embryonic stem cells in mammals.67

The choice of cell fate is often driven by GRNs, extrinsic stimuli,
and intrinsic stochastic fluctuations in gene expression (noise).
Noise has multiple origins such as randomness in biochemical
reactions including gene transcription and translation, fluctuations
in signal transduction, and overall variability in cellular mRNA/
protein degradation rates, cell size, and stage in the cell division
process.68,69 Although noise is usually thought to be detrimental
to cell function and may even cause disease, it can also be
advantageous for expression (phenotypic) diversity,70,71 cell
growth,72,73 flexibility in cell adaptation,59,74 and evolution.75–77

A key line of research has investigated the extent to
which noise functions in the cell-fate decision making process.
Experimental evidence indicates that that noise plays a critical
role in the state choice of multistable systems. Taking the above
‘‘toggle switch’’ circuit5 as an example of a bistable system,
only one state was anticipated for the pTAK117 toggle in
the presence of B40 mM IPTG. Instead, the system exhibited
a bimodal distribution, which has also been experimentally
observed in other multistable systems, including the lactose
operon system and synthetically engineered positive feedback
systems.43,78,79 The bimodal distribution of the ‘toggle switch’
circuit is very robust in yeast as Wu et al.39 found out that
inherent stochasticity in gene expression does not lead to state
transitions. Moreover, the Dubnau group80 demonstrated that
noise in comK expression could be utilized to drive Bacillus
subtilis cells to a competent state. Using an RNA FISH (fluorescence
in situ hybridization) technique, they detected and counted the
number of mRNA molecules from the coexpressed genes comK
and comK-M2 driven by the same comK promoter (Fig. 2a). The
authors proposed a mathematical model based on a positive
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feedback loop of comK and a degradation mechanism for the
protease complex. The authors also derived a formula to
describe how noise depended on mRNA transcription, protein
translation and degradation rates. Based on this formula, the
authors concluded that noise was inversely proportional to the
transcription rate and not strongly influenced by the translation
rate, which corresponded with experimental observations. Com-
bined with the experimental results, the study indicated that
intrinsic noise played a more important role than extrinsic
noise. In addition, the study found that reducing noise in comK
expression by changing its initial codon from ATG to GTG
(lowering translational efficiency) could significantly decrease
the percentage of competent cells. Similar findings have been
shown by other studies exemplifying that noise could coordinate
gene expression and enable probabilistic differentiation.56,59,81

Given its increased recognition, synthetic biologists have
explored ways to tune and control gene expression noise.
Murphy et al.82 designed combinatorial promoters to characterize
how operator sites would influence gene expression noise. Based
on this, they later developed a novel method to control noise in
synthetic gene networks in S. cerevisiae.83 Specifically, the authors
constructed a simple circuit where the bidirectional promoter
GAL10-GAL1 was used to drive TetR and green fluorescent protein
(yEGFP) expression, but with TetO2 binding sites between the TATA
box of the GAL1 promoter and the yEGFP transcription start site so
that yEGFP expression was regulated by the TetR repressor
(Fig. 2b). The authors established five different yeast strains,

designed with four different point mutations in the TATA box
of the GAL10 promoter. A mathematical model was developed
and the modeling predictions were tested using flow cytometry
measurements of yEGFP fluorescence. By combining the analysis
of mathematical models and the collection of experimental data,
the authors found that TATA box mutations could effectively
reduce noise levels of a target gene with little influence on its
dynamic range and basal expression.

Progress in understanding biological noise also helped
revitalize interests in stochastic simulation and analysis.84,85

First introduced in the 70’s, the Gillespie algorithm86 (glossary:
stochastic simulation methods) was the standard approach for
many years (Fig. 2c). Motivated by progress in synthetic biology
studies of noise, the algorithm has been actively researched
and improved.87–94 Several novel mathematical models have
been introduced to study the impact of noise in biological
oscillations,65 the cell cycle,95,96 and multistable systems.97–102

In particular, Tian et al.99 proposed a systematic method to
derive a stochastic model from a deterministic ODE using a
slight modification. In this method, each deterministic variable
in the ODE was replaced by a Poisson random variable within
a small time interval and binomial random variables were
used to approximate Poisson random variables in order to
avoid negative values for molecular numbers in simulations.103

Compared to previous stochastic methods,86,87 the method
proposed by Tian et al.99 saved computational time by keeping
the general description of biochemical reactions from the

Fig. 2 Stochasticity in gene circuits. (a) Schematic diagram of regulation in Bacillus subtilis based on Maamar et al. (2007).80 In this circuit, promoter
PComK controls comK and M2 expression, whose mRNAs could be recognized and bound by fluorescent probes. The inset cartoon illustrates the main
part of the network in an abstract form. (b) Illustration of a noise control gene circuit in yeast (from Murphy et al. (2010)).83 Five yeast strains including wild
type and four TATA box mutations in the GAL10 promoter were engineered to control gene expression noise levels. In this circuit, TetR driven by the
GAL10 promoter binds to TetO2 operators to inhibit yEGFP expression, which can be regulated by ATc. The inset cartoon is a simplified illustration of the
network topology. (c) Stochastic (blue) and deterministic (green) simulation results for a simple GFP expression system, which are shown in the inset
cartoon. It can be seen that stochastic simulation can generally follow deterministic dynamics but also show fluctuations. Numerical algorithms used to
simulate such stochastic dynamics have been significantly improved over the past decade, mainly motivated by synthetic biology studies. (d) Cell fate
determination can be visualized as a marble travelling in a rugged landscape. Local minima represent different cell fates and inherent noise can
spontaneously push the marble from one minima to another. In this landscape, x1 and x2 represent protein abundances of different gene products and
noise could lead to the transition from state A to state B. Based on Wang et al. (2015).102
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deterministic model. In addition to above methods, Bratsun
et al.104 reformulated the Gillespie algorithm using time delays
and formed master equations to explore delay issues in the
stochastic process of gene regulation. Wang et al.102 demonstrated
that noise could benefit control in multistable systems by
visualizing energy landscapes (Fig. 2d).

4 Oscillation

Oscillating behavior has been a long observed phenomenon in
many biological systems.105,106 For example, a circadian clock
found in most living organisms from microbes to humans is
maintained by endogenous oscillating biological processes to
adapt to daily environmental alterations in the day/night
cycle.107 Cyanobacteria employ Kai proteins to produce sustainable
oscillations to keep biological time and regulate cellular
metabolism.108 Mammalian neural oscillations play key roles
in central nervous system functions, including information
processing, sleep, and memory.109 Moreover, owing to their
dynamical properties, self-sustainable oscillators play important
roles in some fundamental bioprocesses such as p53-mediated
DNA damage responses,110 NF-kB signaling transduction,111

and Cdk1-APC/C driven cell cycle progression.112

However, the exact molecular mechanisms and non-linear
dynamics of biological oscillators (natural periodic processes)
remain largely unknown. Early work on biochemical oscillations
mainly focused on discovering rather than probing oscillating
phenomena.113–117 A unifying scheme of oscillators in non-
specialized regulatory networks had not been proposed until

the blossom of synthetic biology in the early 2000s.6,37,54,107,118

These synthetic gene circuits helped scientists to study the
mechanisms generating oscillations in relatively simple contexts,
but within highly dynamic systems. Feedback, especially negative
feedback, is a general principle that has proven to be an
indispensable requirement for generating oscillating behavior
in protein concentrations6,119–121 or cellular populations.65,122–125

Here, we briefly introduce the negative-feedback oscillator and
combined positive- and negative-feedback oscillator.

4.1 Negative-feedback oscillator

A negative-feedback loop is a common design feature found in
genetic oscillators. In 2000, Elowitz and Leibler6 constructed a
synthetic oscillatory network, the ‘‘repressilator’’, in which
three transcriptional repressors (LacI, TetR, and cI) inhibit
each other by binding to their corresponding promoters. In
this circuit, the TetR protein can inhibit cI expression, which in
turn represses LacI transcription, and LacI can block TetR
expression, forming a cyclic negative-feedback loop (Fig. 3a).
The topology of the repressilator network enables periodic
expression of each repressor protein in E. coli, resulting
in oscillations with a period of B150 minutes that can be
transmitted to progenies. To build the repressilator, the
authors first formulated a deterministic model with six coupled
ODEs (glossary: ODE) to simulate the kinetic behavior of the
three-gene system. The deterministic system has one unique
steady state whose stability can be analyzed by using a bifurcation
diagram. To investigate the influence of intrinsic noise, the
authors used the Gillespie algorithm to perform stochastic

Fig. 3 Oscillations. (a) Simplified schematic of a negative-only feedback circuit based on Elowitz and Leibler (2000).6 In this circuit, TetR inhibits cI, cI
inhibits LacI, and LacI inhibits TetR, together forming a cyclic network. The inhibition from LacI to TetR can be regulated by IPTG. The inset cartoon
represents a simplified diagram of this repressilator network. (b) Simplified schematic of a positive and negative feedback circuit based on Stricker et al.
(2008).119 In this circuit, araC and LacI are driven by a hybrid promoter (Plac/ara-1) and form a positive and negative feedback. Inset cartoon is a simplified
diagram of this dual-feedback oscillator. (c) Illustration of oscillating behavior in a negative-feedback circuit (green) and a positive- and negative-
feedback circuit (orange). (d) Illustration of a typical Hopf bifurcation in oscillating systems. Here BP represents for the bifurcation point, after which is the
oscillation region. The red dashed line indicates an unstable steady state. The green and grey circles illustrate an oscillatory reporter signal, where green
means GFP on and grey represents a low fluorescence state.
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simulations using parameter values similar to those used in
the deterministic model. They found that their three-gene
system could exhibit oscillations over a wide range of parameter
values. Model predictions were later verified experimentally with
dampened oscillations (Fig. 3c, green). As proof-of-concept work,
this study demonstrated that oscillatory behavior could be
realized by combining rational network design, i.e., mathematical
modeling, and genetic circuit engineering. Furthermore, Stricker
and colleagues119 discovered that a signal negative-feedback
loop could also generate oscillations. The genetic circuit was
constructed based on the LacI protein repressing its own
expression by binding to its promoter PlacO-1. This circuit was
similar to a dual-feedback circuit we will discuss in Section 4.2.
Experimental and computational results indicated that the
single negative-feedback could also produce oscillations, but
that it was difficult to tune the oscillation frequency. The simple
circuit was also less responsive to IPTG inductions than the
dual-feedback circuit and the presence of oscillations only occurred
in a narrow range of inducer concentrations. Mathematical
modelling analysis suggested that the negative-feedback circuit
highly relied on a time delay to generate oscillating behavior.126

In comparison, the repressilator harbored a relatively long time
delay to realize periodic oscillations.

Moreover, negative feedback-based circuits could also be
employed to generate population-level oscillations. For example,
Balagaddé et al.122 put forward a microfluidic bioreactor device
to observe population dynamics of a synthetic circuit27 in E. coli.
The synthetic circuit consisted of a negative-feedback loop,
which regulated the cell population. Then they found out that
cell density had oscillating behavior and could be controlled by
the circuit’s states.

4.2 Positive- and negative-feedback oscillator

Negative-feedback loops can be engineered to generate autonomous
oscillations. However, as it was shown with the repressilator,
such oscillations tend not to be sustainable.6 The search
for robust oscillatory circuits started with mathematical and
computational analyses118 which indicated that a positive-
feedback motif could promote robust and adjustable oscillations
when coupled with negative-feedback loops. In addition, Tsai
et al.120 took the CDK1 oscillator in the Xenopus embryonic cell
cycle as an example and performed large comparative studies
between mathematical models with or without a positive-
feedback loop. They identified a range of parameters in the
model that could result in periodic behavior. The computational
results revealed that the negative-feedback only version could
yield oscillations but within a relatively small parameter range
and poor adjustability in frequency. However, the positive-plus-
negative feedback model achieved oscillations over a 4900-fold
range of frequencies in the parameter range, indicating that
the positive-feedback motif could significantly improve the
oscillator’s robustness and reliability.

In 2008, Stricker et al.119 also developed a dual-feedback
synthetic gene circuit that was demonstrated to be a tunable
and robust oscillator in E. coli. In this circuit, a hybrid promoter
Plac/ara-1 was employed to drive the expression of the genes araC,

LacI, and GFP. The expressed araC protein could activate Plac/ara-1

transcription under arabinose induction and LacI protein could
repress transcription in the absence of IPTG, together forming
interlinked positive- and negative-feedback loops (Fig. 3b).
Using a microfluidic device and time-lapse imaging, the authors
could easily tune growth and induction conditions and monitor
single-cell dynamic behavior of the oscillator in real-time.
With inductions of arabinose and IPTG, more than 99% of
cells observed displayed oscillations within several hours.
Furthermore, the oscillator was remarkably robust (Fig. 3c,
orange) over a wide range of inducer concentrations (IPTG or
arabinose) and external growing conditions, such as temperature
and media source. A mathematical model based on a previous
theoretical design118 was used to describe the biochemical
reactions in the oscillator. The dynamic behavior of the model
was explored using stochastic and deterministic simulations.
These simulations were used to predict the relationship
between the oscillation period and arabinose concentration.
The modeling results indicated that oscillations could arise
with increasing of doses of arabinose and that the oscillation
period would be faster when using a low rather than high
arabinose concentration. The authors then analyzed the dependence
of reaction rates on temperature in the model to predict the
relationship between temperature and the oscillation period.
Similar to the negative-feedback only circuit, a time delay is also
crucial to maintain oscillations in the dual-feedback circuit. By
extending the mathematical model to include time delayed
reactions, the authors were able to use bifurcation diagrams
to analyze the robustness of the feedback loop by calculating
the parameter region that would produce stable oscillations
(Fig. 3d). Their numerical results showed that a time delay in
the negative-feedback was a key design element for engineering
a robust oscillator. The experimental results were consistent
with the mathematical modeling analysis, further supporting
these conclusions. Compared to the negative-feedback only
circuit, both experimental and mathematical evidence have
strongly suggested that the positive-feedback motif can contribute
to the robustness and tunability of a genetic oscillator.

In many biological behaviors and processes, coordination of
rhythmic behavior among individual elements in a complex
community is a fundamental issue for homeostasis or even
survival. Along these lines, Danino et al.125 engineered synchronized
oscillations in a population of cells. They used the positive-
and negative-feedback oscillator circuit topology to construct
a synchronized oscillation device by incorporating quorum-
sensing components within a microfluidic platform. In this
circuit, the promoter PluxI drives the transcription of the LuxI,
aiiA and GFP reporter genes. The synthase gene LuxI directs
production of a small molecule AHL (3oxo-C6-HSL) that activates
PluxI when bound with LuxR protein, forming a positive-feedback
loop. AiiA is an AHL protease that degrades the AHL molecule
and hence negatively regulates the circuit. AHA molecules are
produced inside the oscillator cells and diffuse in and out of
bacterial cells, and are sensed by cells in neighboring chambers of
the microfluidic device. Therefore, the intracellular concentration
of AHL correlates with local cell density. The concentration of AHL

Integrative Biology Review Article

Pu
bl

is
he

d 
on

 0
9 

D
ec

em
be

r 
20

15
. D

ow
nl

oa
de

d 
by

 A
ri

zo
na

 S
ta

te
 U

ni
ve

rs
ity

 o
n 

06
/0

5/
20

16
 2

1:
30

:4
1.

 
View Article Online

http://dx.doi.org/10.1039/C5IB00252D


This journal is©The Royal Society of Chemistry 2016 Integr. Biol., 2016, 8, 394--408 | 401

increases as the cell population grows and the PluxI promoter
will be activated once the cell density reaches a threshold,
leading to a burst of LuxI, aiiA and GFP gene expression.
However, increased levels of aiiA in turn degrade AHL and
finally inactivate PluxI. The role of AHL is to activate an inter-
cellular signal to coordinate gene expression with nearby cells
and thus generate a synchronized oscillator. Moreover, the
oscillatory period and amplitude could be tuned by changing
the flow rate in the main channel of the microfluidic device to
control the degradation rate and effective AHL concentration.
To give a quantitative understanding of the experimental results,
the authors constructed a set of delay differential equation (DDE)
models (glossary: DDE) to simulate the concentrations of LuxI,
aiiA, internal and external AHL. A time delay was used to mimic
the cascading processes of transcription and translation. This
model was used to analyze the period of oscillations as a
function of amplitude and flow rate. Furthermore, the model
was extended to describe spatiotemporal patterns of GFP expression
in a population of cells by coupling DDEs to a diffusion
equation for AHL. The spatiotemporal model was able to display
synchronization of spatiotemporal diffusion under different
stochastic fluctuations as well as GFP expression wave propagation
with different external AHL diffusion rates. The simulation
results agreed well with experimental observations, suggesting
that modeling is a useful approach to analyze dynamic spatio-
temporal processes regulated by genetic circuits.

Later on, the same group engineered a more complicated
dual-feedback circuit and realized global synchronization of
thousands of oscillating colony ‘‘biopixels’’ at centimeter scale
resolution through coupling quorum sensing with hydrogen
peroxide (H2O2)-mediated redox signalling in E. coli.127 In this
circuit, the LuxI promoter drove the expression of LuxI, aiiA,
and ndh, of which the first two gene products contributed to
the formation of positive- and negative-feedback loops as in
the previous example. The ndh gene encoded an enzyme to
generate H2O2 vapour, which could also activate the LuxI
promoter and hence constitute another positive feedback. The
quorum-sensing machinery LuxI and aiiA enabled synchronized
oscillations within a colony. H2O2, however, could pass through
the microfluidic device and facilitate faster communication for
coordination between colonies. Using this platform, they also
constructed a liquid crystal display (LCD) in a microfluidic
device. It is necessary to point out that in the oscillation system,
controlling the protein or signal degradation rate is crucial
for the oscillator to function. Either by using an ssrA tag for
faster protein degradation or an external catalase to degrade
H2O2, this work has shed light on the importance of a signal
‘‘queuing’’ mechanism for oscillator synchrony.128 Furthermore,
Chen et al.129 recently constructed a robust oscillating system
within a synthetic microbial consortium using two strains of cells
with different gene circuits (an activator and a repressor strain)
that combined to make positive- and negative-feedback loops.

The positive- and negative-feedback topology has also been
successfully used to generate robust oscillations in mammalian
cells. Tigges et al.121 engineered a synthetic mammalian
oscillator circuit using a sense–antisense regulation mechanism.

In this circuit, the promoter PhCMV*-1 and PPIR drive the sense
and antisense expression of tetracycline-dependent transactivator
(tTA), respectively. tTA auto-activates PhCMV*-1 transcription,
forming a positive-feedback, while PIT (pristinamycin-
dependent transactivator) driven by PhCMV*-1 induces PPIR activation,
leading to the antisense transcription of tTA and the negative
regulation of tTA expression. The linking of positive- and
negative-feedbacks in this circuit enabled autonomous and
sustainable oscillations with a period of 170 � 71 min for more
than 20 hours in Chinese hamster ovary cells. Furthermore,
the mammalian oscillator could be fine-tuned by varying the
transfected DNA doses to change the frequency and amplitude.
Interestingly, the oscillating cells showed considerable variability
in timing and amplitude, suggesting that gene expression noise
may shape this dynamic process. The authors validated this
concept using a deterministic mathematical model for the
expression of tTA, PIT, and GFP. They then modified this model
to incorporate time delays for tetracycline and interactions
between sense–antisense expression units by adding a diffusion
process and assuming that the occupancy of RNA polymerases
would change the transcription probability. The authors
used Monte Carlo simulations (glossary: stochastic simulation
methods) to find parameter sets that could lead to oscillatory
behaviors. The oscillation frequency predicted by the refined
deterministic model agreed well with the experimentally observed
oscillation period. To consider the influence of intrinsic noise, the
authors proposed a stochastic model and used a generalized
Binomial t-leap algorithm (Bt-DSSA),91 which included a time
delay to increase the efficiency of multi-cellular calculation.
Their stochastic simulation results recapitulated the patterns
of cell–cell variability seen in experimental data and confirmed
the importance of stochastic effects.

5 Cell–cell communication and
pattern formation

Cell–cell communication exists in unicellular and multicellular
species, and is responsible for coordinating collective population
behaviors, such as biofilm formation,130 cell differentiation40 and
vertebrate embryonic development.131 Before synthetic biology,
cell–cell communication mainly focused on synaptic trans-
mission132 and cellular signal processing.133 Recently, the use
of molecular components and devices for cell–cell communication
has enabled synthetic engineering of more complex circuits to
investigate cell–cell interactions and phenomena at higher levels of
biological organization, such as population decision-making and
behaviors.

Quorum sensing (QS) is a widespread cell–cell communication
mechanism in the bacteria world,134 such as the LuxR/LuxI system
in Vibrio fischeri and the LasR/LasI system in Pseudomonas
aeruginosa. So far, quorum-sensing mechanisms, coupled with
engineering principles, have been employed to program population
control,27,132,135–139 build synchronized oscillations,125,128,140

produce diverse cell phenotypes,141,142 control biofilm signaling,130

produce pattern formation,80,143–146 and to construct synthetic

Review Article Integrative Biology

Pu
bl

is
he

d 
on

 0
9 

D
ec

em
be

r 
20

15
. D

ow
nl

oa
de

d 
by

 A
ri

zo
na

 S
ta

te
 U

ni
ve

rs
ity

 o
n 

06
/0

5/
20

16
 2

1:
30

:4
1.

 
View Article Online

http://dx.doi.org/10.1039/C5IB00252D


402 | Integr. Biol., 2016, 8, 394--408 This journal is©The Royal Society of Chemistry 2016

ecosystems.123 Here, we mainly review the representative studies
that integrate mathematical reasoning with experimental validation
to probe mechanisms involved in pattern formation and cell–
cell communication.

In 2005, Basu et al.145 programmed a synthetic multicellular
system to form bullseye, ellipse, heart, and clover patterns
based on local AHL gradients around sender cells (Fig. 4a).
Morphogen diffusion on the solid plate established a natural
gradient that could be sensed by receiver cells and induced
differential responses at distinct regions. The authors built a
system of five ODEs to model a single cell’s response to AHL
and performed spatiotemporal simulations of AHL diffusion
and intercellular communication. By combining mathematical
modeling and experimental evidence, this study provided us
with a better understanding of the multi-scale mechanisms
underlying pattern formation in development.

In a recent study from the You group,143 a novel pattern
forming mechanism was developed using a synthetic gene
circuit in E. coli. This circuit is composed of an auto-activating
motif driven by the activator T7 RNAP and negative regulation of
the activator induced by AHL from a positive-feedback module
(Fig. 4b). Bacteria harbouring this circuit generated a self-
organized ring pattern. An agent-based computational model
was further developed to simulate the spatiotemporal dynamics.
In the simulation, cells on a grid were assumed to have identical

concentrations of intracellular T7 RNAP and lysozyme and,
at each time step, a cell division or movement event was chosen
randomly with equal probability. The simulation results suggested
that a robust pattern is not dependent on morphogen gradients,
but rather these gradients act as a timing cue to initiate pattern
formation and maintenance. This research sheds light on a novel
morphogen timing mechanism to generate spatial patterns in
developmental processes.

To date, diverse mechanisms have been proposed about
how cells produce spatial patterns, either dependent on or
independent of morphogen gradients. Liu et al.146 recently
used synthetic approaches to reveal another mechanism that
could generate spatial patterns by coupling cell motility with
density. The authors engineered a synthetic gene circuit having
two modules: the constitutively expressed LuxR/LuxI system to
monitor local cell density (density-sensing module), and a
module with LuxR/LuxI regulating cheZ expression to control
cell motility (motility-control module). At high cell densities,
the LuxR–AHL complex would inhibit cheZ transcription, resulting
in a loss of motility. However, cheZ reintroduction made cells
regain motility at low cell densities. When placed in the middle
of semi-solid agar plates, the engineered E. coli automatically
and sequentially developed periodic stripes with alternating
high and low cell densities as cells moved radially outwards. The
authors also used modeling to investigate this self-organized

Fig. 4 Cell–cell communication. (a) Illustration of a gene circuit that can produce a bullseye pattern based on Basu et al. (2005).145 This circuit has three
operations in different AHL concentrations with initiation of the LuxI–LuxR complex. When AHL concentration is low, LacI represses GFP expression;
when AHL concentration is medium, GFP is expressed; when AHL concentration is high, LacIM1 represses GFP. The inset cartoon shows the bullseye
pattern. (b) Illustration of a gene circuit that can produce a self-organized pattern based on Payne et al. (2013).143 The circuit consists of two parts: an
activation part containing a positive feedback loop with T7 RNA polymerase (T7 RNAP) and an inhibition part of quorum sensing-mediated lysozyme
expression. Specifically, T7 RNAP self-activates itself as well as LuxR and LuxI expressions, and the two gene product LuxR–AHL complex then induces T7
lysozyme (T7 Lys) expression. T7 Lys then inhibits T7 RNAP. The dynamics is reported by mCherry and CFP. The inset cartoon illustrates the self-organized
ring pattern. (c) Illustration of the Allee effect in a programmed circuit and the growth rate of an engineered bacterial population based on Smith et al.
(2014).138 In the circuit, the PLac/ara promoter controls the LuxR and LuxI quorum sensing (QS) system. In the presence of AHL, the QS system activates
CcdA. Then CcdA inhibits CcdB, which will lead to cell death. The inset cartoon is a simulation result of the Allee effect. (d) Illustration of the crosstalk
circuit based on Wu et al. (2014).79 LuxR protein driven by PLux is bound by AHL molecules (C6 or C12), and the complex further activates PLux, forming a
positive feedback. GFP is used as a reporter for LuxR dynamics. The inset cartoon represents the bistable region under C6 (blue) and C12 (yellow)
induction. C6: 3oxo-C6-HSL; C12: 3oxo-C12-HSL.
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pattern formation. A random walk was used to model the
motion of cells and the logistic equation was used to model
population growth and saturation. Fisher’s propagation diffusion
equation147,148 with an additional drift term was used to capture
the effect of chemotaxis and the nutrient concentration was
coupled to cell density. Parameter values were estimated using
relevant literature and experimental data. With these above
assumptions, a spatiotemporal profile for the cell population
was generated. Moreover, to gain a deeper understanding, the
dependence of cell motility on density was considered in a basic
Fisher’s equation. In order to circumvent instabilities of wave-
length in the modified diffusion equation, the rate of AHL was
used as a signal in cell density. A nutrient field was also
included in the modified model to avoid the cell saturation
problem. The mathematical model integrating diffusion-like
equations with logistic equations suggested that the autonomous
stripe pattern is produced from a recurrent aggregation of
AHL molecules at the propagating front of the expanding cell
population. Further experiments showed that the number of
stripes could be manipulated by tuning expression in the genetic
circuit. This study reveals that a recurrent spatial structure can be
generated by tuning the cell’s motility and density, which may
provide novel insights for developmental systems.

Another example in which the relationship between an
individual cell and a population of cells was explored was
performed by Smith et al. In this study, the authors built a
synthetic circuit integrating LuxR/LuxI QS and CcdA/CcdB
toxin–antitoxin system to investigate the Allee effect in bacteria,
a common biological phenomenon describing the relationship
between population density and individual fitness (Fig. 4c). In
this circuit, IPTG induces LuxR and LuxI expression, as well as
the cell-killing protein CcdB. LuxI directs the synthesis of AHL,
which can bind the LuxR protein and activate the expression of
the cell-rescuing protein CcdA when the cell density exceeds a
threshold. To understand the behavior of this system, the
authors built a mathematical model of five DDEs to simulate
bacterial density under different concentrations of CcdA, CcdB
and AHL. The five-DDE system was then simplified to two DDEs
on bacterial density and AHL concentration. The model was
parameterized using data collected in previous studies and new
experiments. The authors extended the DDE model to examine
the impact of leaky AHL expression, the metabolic burden of
AHL, and nonlinear CcdA synthesis. They found out that if
these three factors were in a certain range, they would not have
substantial influence on experimental results, exemplifying the
sufficiency of the simple model to describe the dynamics of the
genetic circuit. The DDE model was later modified to describe
stochastic dynamics by adding white noise (glossary: stochastic
simulation methods) and making the cell density threshold
probabilistic. The models (DDE and Stochastic) agreed with
experimental results and showed that a strong Allee effect
resulted in a trade-off between population spread and survival
for a cooperative species: a high dispersal rate benefits spread,
but also increases the risk that the population fails to invade or
might even go extinct. By combing theoretical analysis and
experimental observation, this study provided a novel understanding

of the mechanisms affecting bacterial spread and may be helpful
for exploring novel interventions to treat infectious diseases.

QS based cell–cell communication has also been found to
induce unexpected host–circuit interactions. Recently, Wu and
colleagues79 systematically characterized crosstalk between
LuxR/LuxI and LasR/LasI systems and found that QS crosstalk
can be decomposed into signal crosstalk and promoter cross-
talk. Furthermore, different crosstalk mechanisms could be
engineered to generate distinct population dynamics from
unimodality to bimodality using positive-feedback loops. Under
the guidance of stochastic simulation, the authors found
that promoter crosstalk could exhibit trimodal responses
due to crosstalk-induced mutations. Signal crosstalk instead
significantly decreases the circuit’s bistable potential while
maintaining unimodality (Fig. 4d). This study suggested that
intercellular communication specificity was limited in bacteria
and that crosstalk might be widespread in single organisms
given the high prevalence of QS mechanisms.

Mathematical modeling has also been used to explain and
direct the study of multicellular QS generated phenomena, such
as bidirectional communication mediated biofilm formation.
Brenner et al.130 designed a microbial consensus consortium
(MCC) network comprised of two groups of cells, in which
Circuit A in group I cells synthesize 3oxo-C12-HSL molecules,
and Circuit B in group II cells produce C4-HSL molecules.
3oxo-C12-HSL can be sensed by group II cells and activate
C4-HSL expression, while C4-HSL can induce 3oxo-C12-HSL
synthesis in group I. At sufficient population densities, the
two auto-inducers would promote the corresponding circuit’s
activation and lead to a MCC response in which the two
microbial populations could communicate with each other
and coordinate gene expression. The full MCC was modeled
with a system of four ODEs. The authors obtained a possible
threshold for obtaining a consensus response by solving the
equations analytically. The modeling results indicated that both
groups’ feedback designs exhibited higher levels of expression
within the presence of each other. This finding confirmed
experimental results showing that when two groups of cells
grow together, a sustained consensual consortium was developed
in engineered bacterial biofilms. As expected, such multicellular
systems may contribute to our understanding of the interactions,
cooperation and formation of pathogenic biofilms.

In addition to QS based cell–cell communication, other
mechanisms have been explored to engineer microbe consortiums.
In particular, Momeni et al.149 used S. cerevisiae strains to show
the fitness effect of exchanging essential metabolites in a spatial
environment, which was based on a metabolic/auxotrophic
cross-feeding interaction. They set up a community using
randomly distributed yeast with three colored strains, which
represent different interaction strategies: competition, cooperation,
and cheating. Without adenine and lysine supplements, the
cooperation interaction strain dominated. However, under the
condition of adenine and lysine supplements, pure competition
leads to three evenly distributed strains. An extended diffusion
model was then used to simulate this organized pattern formation.
Together with experimental results, the authors argued that
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cheaters, who contributed less and received less from self-
organization, were isolated in a shared resource environment.
With an abundance of nutrition, cells were forced to grow upward
and the three strains obtained an equal chance of survival.

6 Conclusions

Gene regulatory networks are central to the fundamental
mechanisms regulating cell function and behavior. Previous
studies suggested that transcriptional network dynamics largely
influence and control differential gene expression and develop-
mental patterns. However, investigations of such processes in
natural systems are usually confounded by the complex contexts
and other unknown interactions that may affect such networks.
Alternatively, building synthetic gene networks from the bottom
up provides a unique approach to confront this challenge. With
the help of synthetic biology strategies, we have made inroads
into this problem with the hope of better understanding
cell development.150 Mathematical modeling complements the
toolbox of synthetic biology by enhancing the capacity to predict
and explore the behavior of unbuilt gene circuits and multi-
cellular systems. The presence of feedbacks and stochasticity
can make the logic of GRNs non-intuitive, thus, simulating
these systems in a ‘‘dry lab’’ setting can enable the exploration
of a high dimensional space of possibilities which would have
otherwise been time consuming or costly in a purely wet lab
setting. Similarly, the current state of synthetic multicellular
consortia, which consists of two or three distinct cell populations,
gives us a better understanding of how cells communicate and
synchronize with each other.

In this review, we briefly discussed how synthetic biology
approaches in the past 15 years have helped inform our under-
standing of gene regulation and complex cell behaviors. Specifically,
we highlighted examples combining synthetic gene networks
and mathematical modelling to understand four fundamental
mechanisms: multistability, stochastic gene expression, oscillations,
and cell–cell communication. The creation of small artificial
networks opens a novel window to decipher naturally occurring
complexity. Furthermore, with the increasing development of
more reliable and interoperable devices as well as effective
design principles, we will be able to engineer higher-order
networks and systems to probe the mechanisms underlying cell
differentiation and multicellularity, the development of micro-
bial consortia, and cellular evolution.

Glossary

Ordinary differential equation (ODE)
An ODE is a dynamical system equation consisting of
functions with only one independent variable. It is a
convenient tool for modeling interactions among
genetic circuit components.151,152 Some ODEs can be
solved analytically to obtain steady states, while in
most cases, the equations can only be solved using
numerical algorithms such as Runge–Kutta methods,

which are already embedded in popular software and
programming languages like MATLAB and Python.

Delay differential equation (DDE)
A DDE is an equation with functions that rely on a
delayed time coordinate. The steps method with a
given initial condition is used to obtain numerical
solutions.

Stochastic simulation methods
One important method to simulate stochastic
biochemical reactions is the Gillespie algorithm86

and related improved algorithms.87,89 The Gillespie
algorithm was first applied in modeling chemical
reactions and later widely used in synthetic biology.
Another method to build a stochastic model is
based on a Brownian motion process. In signal and
communication fields, engineers use a Wiener process
to generate Gaussian white noise153 in order to simulate
environmental noise. In addition to the above methods,
Monte Carlo algorithms, which are based on randomly
repeated sampling, are another popular methodology
employed to simulate a physical environment or mathe-
matical model with noise.

Bifurcation diagram
A bifurcation diagram is a dynamical system analysis
tool that can give a visualization of a system’s dynamical
behavior. It is a method to illustrate the equilibria
or orbits of a system as a function of a changing
parameter.154 In synthetic biology, two kinds of bifur-
cations are widely used, the saddle-node bifurcation
and the Hopf bifurcation. A saddle-node bifurcation,
also called a fold bifurcation, describes the creation or
annihilation of two fixed points and has been applied
in toggle structures. The Hopf bifurcation, which is
found in many oscillatory systems, can represent the
transition between a limit cycle or oscillation and
an equilibrium point. Hysteresis occurs when two
attractors (equilibria) coexist at the same parameter
value. Thus, in a system with hysteresis, changing a
parameter from p1 to p2 can change the system from
state S1 to state S2, but changing the parameter back to
p1 may not return the system back to state S1.

Energy landscape
Attractor and stability theory provides a realistic frame-
work to study nonlinear system dynamics.155 In dynamical
systems, the quasi-potential energy landscape proposed by
Waddington31 has been widely applied to characterize
the stability of a system. In general, the landscape
potential (U) is defined as (U = �ln P), where P is the
probability of attractor states.99 Similarly, in synthetic
gene networks with multiple steady states, different
cell types correspond to different attractor states, and
the differentiation path between each cell is represented
by the transition between each attractor.156 In simulation,
the weighted-ensemble algorithm157,158 based on
random walks is widely used to numerically obtain
pseudo potential energy landscapes.
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G. Montoya, Nature, 2008, 456, 107–111.
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