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Abstract. — Traditional quantities used to characterize stochastic resonance possess the com-
mon feature of low sensitivity to noise variation in the sense that they vary slowly about the
optimal noise level. In potential applications of stochastic resonance such as device develop-
ment, a high sensitivity to noise may be required. Here we show that, when the resonance
is understood as a manifestation of phase synchronization, the average synchronization time
between the input and output signal has an extremely high sensitivity in that it exhibits a
cusp-like behavior about the optimal noise level. Theoretical analysis and numerical evidence
are provided to establish the cusp-like behavior and its generality.

The important nonlinear phenomenon of stochastic resonance (SR), since its discovery [1],
has stimulated a large amount of research [2—6]. This phenomenon has been identified in a
variety of natural and man-made systems, including bistable lasers [7], biological cells [g],
and neural systems [9]. Given a nonlinear system, its response to a weak signal is generally
influenced by noise but, when SR occurs, noise can enhance the response. To characterize
SR, one usually uses signal-to-noise ratio (SNR) [2], correlations [5], entropies and other
quantities derived from the information theory [6], and measures how these quantities change
as the noise amplitude is increased from zero. Typically, one finds that they can be maximized
for an optimal value or for a range of values of the noise amplitude. One common feature
associated with these quantities is that they vary smoothly with noise about the optimal value,
exhibiting a “bell-shape” behavior. For potential applications such as assessing the working
environment based on the principle of SR [10], one might be interested in measures that are
sensitive to noise variation. However, a quantity with a “bell-shape” dependence on noise
amplitude cannot have a high sensitivity. The purpose of this letter is to present our finding
of a measure of SR that has an extremely high sensitivity in the sense that it exhibits, as
a function of the noise amplitude, a cusp-like behavior about the optimal noise level. The
measure is the average phase-synchronization time. Here we utilize the term “cusp-like” to
merely indicate a high sensitivity to noise. It is not rigorous in the sense that our heuristic
theory only predicts a fast rising and a fast falling behavior in the average synchronization
time when the noise level approaches and becomes larger than the optimal value, respectively.
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Recently, it has been shown that SR can be understood as a manifestation of phase syn-
chronization (PS) between the input and output signal. In particular, the relationship between
SR and PS has been demonstrated in noisy bistable systems with periodic and aperiodic sig-
nals [3,4] and in excitable systems with periodic [11] and aperiodic signals [12]. To define PS,
imagine an input signal x;,(t) that oscillates in time. A phase variable ¢;,(t) can be defined
where one cycle of oscillation in x;,(t) corresponds to an increase of 27 in ¢;,(t). A similar
phase variable ¢,,:(t) can be defined for the output signal x,:(t). PS is said to occur [13]
if the phase difference satisfies Ap(t) = |Pout(t) — ¢in(t)] < 27 for all t. Clearly, for a noisy
nonlinear system such perfect synchronization is not possible. However, PS can occur in finite
time intervals in the sense that A¢(t) can remain bounded within 27 for a finite amount of
time before a phase slip, typically 27, occurs. Given a noise amplitude D, one can then mea-
sure the average time 7(D) for phase synchronization. It was found [12] that for an SR system,
this time also exhibits a resonant behavior in that it increases with noise, reaches a maximum,
and then decreases as the noise level is further raised, as exemplified in fig. 1 for a system of
an array of coupled FitzHugh-Nagumo (FHN) oscillators, the paradigmatic model for study-
ing SR [5]. The interesting feature is that 7(D) exhibits extremely rapid rising and falling
behaviors for noise amplitude about the optimal value. More detailed and finer numerical
results with the coupled FHN system are difficult because of the demanding computations.

Characterization of SR by using the phase-synchronization time is of fundamental interest
because this represents an alternative way to study SR. More importantly, this way of studying
SR can be practically useful because the synchronization time depends on the noise level
much more sensitively than the traditional measures such as SNR. Suppose an instrument is
to be built based on the phenomenon of SR. Then utilizing this time measure can be more
advantageous because of the higher precision it can potentially offer. In this letter, we will
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Fig. 1 — (a) Evolutions of the phase difference A¢(t) between the input and output signal and (b) aver-
age phase-synchronization time 7 vs. noise amplitude for an array of 3 FitzHugh-Nagumo (FHN) oscil-
lators [14] given by 0.0052; = x;(x;—1/2)(1—z;)—y:+S5(t)+0.00157(t), and y; = x;—y;—0.154+D&;(t),
i =1,2,3, where S(t) = 0.06 sin [wot + 0.5 cos (w1t)] is a frequency-modulated input signal, 0.00157(t)
is Gaussian white noise associated with the input, and D¢&;(t) are independent, Gaussian white noise
to each oscillator used to induce SR. The output of the system is the firing rate associated with the
ensemble-averaged spike train X (t) = > z;(¢), and the corresponding phase variable is calculated by
using the standard Hilbert-transform method [13]. In (a), the noise amplitudes for the five traces are
D = 0.065, 0.045, 0.025, 0.015, and 0.005, respectively (from top to bottom). In (b), for each value
of the noise amplitude, 100 realizations were used to obtain the value of 7. Near the optimal noise
amplitude, 7 apparently exhibits a cusp-like behavior.
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Fig. 2 — Tilted double-well potential as a result of external forcing.

provide a basic understanding of the behavior of the phase-synchronization time associated
with SR. To be able to obtain analytic understanding, we utilize the standard double-well
potential model with a periodic input signal. The dynamics of phase synchronization is then
analyzed based on the transitions between the potential wells, with the help of the Kramers’
formula. We find that, near the optimal noise level, the function 7(D) exhibits a cusp-
like behavior with distinct values of derivative depending on whether the optimal level is
approached from below or above. Although the specifics of 7(D) depend on the details of the
system and input signal, our analysis and numerical computations indicate that the cusp-like
behavior is general. While there is a huge body of literature on SR, to our knowledge, the
cusp-like behavior in the synchronization time presented here has not been noticed previously.

To provide a theoretical explanation for the cusp-like behavior in the transient synchro-
nization time, we consider the paradigmatic model for stochastic resonance: particle motion
in a double-well potential in the presence of external driving and noise, subject to strong
damping. The Langevin equation can be written as dz/dt = —dU (z)/dz 4+ F(t) + v2DE&(t),
where U(z) = —2%/2 + x*/4, D is the noise amplitude, and £(¢) is the white noise term that

satisfies (£(t)) = 0 and (£(¢)€(t')) = 6(t — t'). The potential has two wells at ©; = —1 and
x, = 1, respectively, and a barrier at x = 0. For simplicity, we consider the case where
the external driving F'(t) is a periodic rectangular signal of period Ty = 1: F(t) = —F,

for 0 <t < 1/2 and F(t) = Fp for 1/2 < ¢t < 1. Letting V(z,t) = U(z) — F(t)x be the
effective potential, the Langevin equation becomes dx/dt = —9V (x,t)/dx + V2DE(t). The
tilted potential V(x,t) can assume one of two forms in the first and second half of a period,
as shown schematically in figs. 2 left and right, respectively. Due to the external forcing, the
two wells become asymmetric with respect to each other. At a given time, one of the wells is
deep and the other is shallow, and they alternate periodically in time with period Ty. It is
thus natural to assign a phase variable ¢(t) for a particle in a well: ¢(¢) = 0 if the particle
is in the well at x, and ¢(¢) = 7 if it is in the well at ;. Due to noise, a particle initially
in one well can overcome the potential barrier to go to the other well, vice versa. The rate
of this transition is determined by the Kramers formula [15]: K ~ exp[—Ey/D], where Ej
is the barrier height. Let F; and E; be the barrier heights when the particle is in the deep
and shallow well, respectively, where E; > F,. The rates of transition (the probabilities of
transition per unit time) from the deep to the shallow and the opposite are Ky ~ exp[—Eq/D]
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and K ~ exp[—FE;/D], respectively. For different noise strength, the response of the particle
to the external forcing, as measured by the transitions between the two wells, determines the
extent of phase synchronization between the input and output.

Imagine that for some noise strength, in one period of time the probability of transition
from the shallow to the deep well is appreciable, but that of the opposite transition is negligible.
Assume initially a particle is in the shallow well. Thus, during the first half period the particle
moves to the deep well, generating a m phase change. In the second half period, the deep well
becomes shallow and vice versa and, hence, the particle moves to the shallow well, which is
the well that it was initially in, as shown in fig. 2. There is then another 7 phase change in the
second half period. The total phase change in one period is then 27, which matches exactly
the phase change associated with the input signal. That is, the phase of the particle can be
locked with respect to that of the input signal, giving rise to perfect phase synchronization.
For realistic system and noise, such a perfect synchronization cannot be achieved. Let Doy
be the noise amplitude for which the average synchronization time reaches a maximum value
Tmaz > 1. Let Py, (D) be the probability for a 27 change in one driving period. We thus
have Por(Dopt) = 1/ Tz = €.

Consider first the case D < Dgy,:. In the extreme case where D is slightly greater than
0, the Kramers rates are essentially zero, so that a particle initially in one potential well will
remain there for long time. Due to the 27 phase change in the input signal in one period,
there will be a corresponding 27 change in the phase difference A® between the input and
the output signal. We have P, (0) &~ 1. As D is increased from zero, it becomes possible for a
particle in the shallow well to hop to the deep well so that K will increase, but if D is small,
we expect Ky to remain negligible because of the higher potential barrier. This will reduce
Py (D) from unity. The amount of reduction is given by the Kramers rate K. The probability
for 27 phase change is thus (1 — CyK,), where Cj is a constant that can be determined by
the condition Psr(Dept) =~ €. We obtain Py (D) = 1 — (1 — €) exp|Es/Dopt] exp[—FEs/D].
The average phase synchronization time for D < D,y is thus given by 7<(D) ~ 1/P5 (D).

We have (1-o)E
—&)E,
dr<(D)/dD|p_p. ~ps—- (1)
P opt

We see that d7<(D)/dD|,_ - — oo for € — 0. For small value of ¢, we thus expect to

observe that 7<(D) increases rapidly as D — D,y from below.

For D > D,, it is possible for a particle in the deep well to overcome the high potential
barrier to hop to the shallow well. Thus, both transition rates become important. Because of
the large noise, in one driving period a particle in the deep well can hop to the shallow well
and then moves rapidly to the deep well again because of the relatively low potential barrier
for this transition (K ~ 1). This process induces a 27 phase difference between the particle
and the input signal. For larger noise, multiple transitions in one driving period are possible
so that the phase difference would increase continuously with time and, as a practical matter,
no phase synchronization can be observed. Since our interest is in the average synchronization
time, only the noise range in which a single transition can possibly occur in one driving period
is relevant. We thus have Py (D) &~ C) exp[—Ey/D]exp|—FEs/D], where the constant C is
given by C1 = eexp[(Eq + Es)/Dopt]. The average phase synchronization time for D > Dy
is given by 77 (D) = 1/Ps. (D). Taking the derivative we obtain
o @

€

opt

dr=(D)/dD|p_p+ = —
Again, we observe that ‘d7>(D)/dD|DHD+t — oo for € — 0. Equations (1) and (2) thus
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Fig. 3 — For the double-well potential system under periodic rectangular driving of amplitude Fp =
0.18, evolutions of the phase difference between the input and output for five different values of the
noise amplitude.

indicate a cusp-like behavior in 7(D) about D,,;. Moreover, comparison between these two
equations reveals that d7<(D)/dD|,_, - # |d77(D)/dD|, _, ,+ . For small value of ¢, for
opt opt

D — D, the rise of 7<(D) can be more pronounced than the rise of 7> (D) for D — D, or
vice versa, depending on the system details. Thus, in general, we expect to see an asymmetric
behavior in 7(D) near Dp;.

Notice that egs. (1) and (2) were derived for regimes where D < Dgy and D > Dy,
respectively. They only indicate a fast rising and a fast falling behavior in the average syn-
chronization time for noise amplitude below and above the optimal value, respectively. Our
argument is not applicable when the noise amplitude is in the infinitesimal vicinity of the
optimal value. Thus, our heuristic theory cannot predict whether there is a cusp behavior in
the mathematical sense of discontinuity in the derivative. Recent analytic expression [16,17]
for the instantaneous phase diffusion coefficient in a periodically driven system suggests, how-
ever, a smooth behavior in the phase-synchronization time about the optimal noise level. In
particular, the diffusion coefficient shows a sharp but smooth peak at the optimal noise level.
Since the average phase-synchronization time can be algebraically related to the diffusion
coefficient [18], it is reasonable that the behavior of this time also be smooth.

We now present numerical evidence for the cusp-like behavior. Figure 3 shows, for the
double-well potential system with periodic rectangular driving of amplitude Fy = 0.18, evolu-
tions of the phase difference between the input and output x(¢). Here the phase variable associ-
ated with the output is ¢ou:(t) = tan=! [Z(t)/z(t)], where Z(t) is the Hilbert transform of z(t).
The five traces shown from top down correspond to D = 0.037, D = 0.035, D = 0.03 = D,
D = 0.025, and D = 0.023, respectively. Within the time considered (500 driving periods),
we observe 27 phase slips for all noise levels except for D = 0.03, indicating that relatively
long phase synchronization has been achieved and, hence, this is approximately the optimal
noise amplitude. As D deviates away from Dy, 27 phase slips appear to occur more often.

To verify the cusp-like behavior in the average phase-synchronization time 7, we choose a
number of values of the noise amplitude about the optimal value. For each value, we use 20 re-
alizations of the stochastic system to calculate the average value of the time between successive
27 phase slips. The result is shown in fig. 4(a), where we see that 7 exhibits apparently a cusp-
like behavior about the optimal noise amplitude D,,;. The asymmetric behavior in 7 about
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Fig. 4 — For the double-well potential system under periodic rectangular driving, (a) cusp-like behavior
in the dependence of the average phase-synchronization time on noise amplitude, (b) asymmetric
behavior of this dependence about the optimal noise amplitude.

Dy, as predicted by our theoretical analysis, is shown in fig. 4(b), which is a blowup of part
of fig. 4(a) near D,,;. The behavior does not appear to depend on the form of the input signal,
as we have verified using different choices of the input signals such as the sinusoidal signal.

In summary, we studied stochastic resonance by using the approach of phase synchroniza-
tion and discovered that the average phase-synchronization time between the input and output
signal in general exhibits an extremely high sensitivity to noise variation, characterized by a
cusp-like behavior about the optimal noise amplitude. Numerical computations using different
models and input signals as well as theoretical analysis suggest that the cusp-like behavior is
general. While our analysis is heuristic, a more rigorous treatment may be possible using a
recently proposed two-state, discrete phase model for SR [4]. Our finding can be potentially
useful for applications such as device design and development based on stochastic resonance
where a high degree of sensitivity to noise variation is required.

Our approach to understanding stochastic resonance may also be useful for the phe-
nomenon of resonant activation [19] where, for a particle in a potential well with a time-
varying barrier, in the presence of noise the average dwelling time can exhibit a minimum as
a parameter controlling the barrier height varies. In previous works, the reported resonance
peak is typically broad [19]. Our results here imply that if resonant activation is treated
using phase synchronization, it is possible that the average synchronization time can exhibit
a cusp-like, sharp maximum. A possible setting to establish this is to assume that the barrier
height is controlled by a time-varying signal (e.g., chaotic) for which a phase variable can be
defined. The relative phase difference between the particle and this signal, and consequently
phase synchronization, can then be investigated as in this letter.
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