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Abstract – One of the main modelling paradigms for complex physical systems are networks.
When estimating the network structure from measured signals, typically several assumptions such
as stationarity are made in the estimation process. Violating these assumptions renders standard
analysis techniques fruitless. We here propose a framework to estimate the network structure
from measurements of arbitrary non-linear, non-stationary, stochastic processes. To this end, we
propose a rigorous mathematical theory that underlies this framework. Based on this theory,
we present a highly efficient algorithm and the corresponding statistics that are immediately
sensibly applicable to measured signals. We demonstrate its performance in a simulation study.
In experiments of transitions between vigilance stages in rodents, we infer small network structures
with complex, time-dependent interactions; this suggests biomarkers for such transitions, the key
to understand and diagnose numerous diseases such as dementia. We argue that the suggested
framework combines features that other approaches followed so far lack.

editor’s  choice Copyright c© EPLA, 2014

Introduction. – Recent years have seen a large in-
crease in the availability of data. In fact, increasing
amounts of data play a key role in physics, such as for
the Large Hadron Collider (CERN) and the Square Kilo-
metre Array (South Africa), but also in other areas such
as in biology, e.g. genomic data, and data mining in the
social sciences. Dealing with these data sets efficiently
determines the success of the projects. This necessity to
better understand and analyse data has led to an outburst
of research into advanced methods of data analysis. Es-
pecially when dealing with complex data sets these algo-
rithms have to fulfill certain fundamental requirements:
i) they need to deal with truly multivariate data, i.e.

they must distinguish between direct and indirect influ-
ences, ii) they have to account for various concurrent noise
sources, iii) they need to addresses both linear and non-
linear systems, iv) provide results for each sampling point,
v) and estimate the strengths of the directed interactions.

Finally, vi) they need to provide a rigorous statistical
framework to allow their evaluation and vii) be numeri-
cally efficient. A multitude of algorithms has been devel-
oped to address these extremely challenging requirements,
but until now none can address them simultaneously.

This is partly due to the fact, that a rigorous math-
ematical framework, i.e. a theory of a suitable highly
versatile class of mathematical models to comprise all of
these features, was still lacking. In this letter, we pro-
vide a mathematical theory which encompasses a model
class that is versatile enough to describe systems of this
general nature. We provide the mathematical framework
to fit models of this class to measured data and finally
present an algorithm which automises this process. This
algorithm delivers a new, statistically rigorous view of a
large class of physical systems, and can contribute to a
substantially deeper understanding of their dynamics and
interactions.
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Fig. 1: (Colour on-line) rPDC analysis applied to murine EEG
data recorded bilaterally above the hippocampus (left: lHC,
right: rHC), and prefrontal cortex (Pfx) during a transition
from REM to NREM sleep. Diagonal: logarithm of the spec-
tra colour-coded with respect to frequency and time in sam-
ples —sampling rate 199Hz. Off-diagonal, time-resolved rPDC
analysis; colour coding indicates strength of coupling.

Before we introduce the theory and the algorithm,
we briefly demonstrate their performance analysing ex-
perimental electroencephalogram (EEG) signals, which
are non-linear, non-stationary, and stochastic (fig. 1) [1].
We obtained these EEG signals from a mouse during a
transition from slow-wave (NREM) to rapid eye move-
ment (REM) sleep under freely moving conditions with
a wireless device (sampling rate: 199Hz). Electrodes were
located in a prefrontal position, i.e. above the right pre-
frontal cortex, and in two parietal locations, i.e. above the
left and right hippocampus [2,3]. Using our algorithm, that
applies renormalised partial directed coherence (rPDC), as
introduced below, we analyse the strengths of the directed
interactions with respect to time and frequency among the
brain regions. From fig. 1 the time-resolved directed net-
work structure (fig. 2) can be inferred for each sampling
point. This leads to a temporal resolution of approxi-
mately 5ms, limited only by the sampling rate.

In the prominent alpha/beta range, i.e. ∼ 10–20Hz
a statistically significant influence from left hippocam-
pus (lHC) to prefrontal cortex (PFx) occurs at sampling
point ∼ 110. Interestingly, the interaction lHC to right
hippocampus (rHC) drops prior to this transition, while
there is an increase in the opposite direction (both statisti-
cally significant). This finding might serve as a biomarker
for NREM/REM transitions1. Note that based on these
observations alone, we can define the transition with a
temporal resolution of one sampling point, which cor-
responds to approximately 5ms resolution in this case
(cf. network in fig. 2); to our knowledge such a resolution

1Fragmentation of the REM sleep is an indication of the presence
of Alzheimer’s disease.

lHC rHC

PFx

transition 

point deined 

based on the analysis

Fig. 2: (Colour on-line) Graph obtained from rPDC analysis
applied to murine EEG data recorded bilaterally above the hip-
pocampus (left: lHC, right: rHC), and prefrontal cortex (Pfx)
during a transition from REM to NREM sleep. The red ver-
tical line marks the transition point that has been determined
based on the rPDC analysis with a precision of 5ms.

has not been achieved before2. An interpretation of the
results will be given elsewhere.

Although in some applications the network structure
can be determined by analysing meta information, in other
applications the network structure needs to be inferred
from observations of the dynamics it exhibits. There
has been extensive work on exploiting multivariate, linear
stochastic modelling to detect, for instance, neural inter-
actions and to infer the structures of small-scale networks
and the nodal interaction patterns [4–8]. Multivariate
non-linear deterministic as well as stochastic approaches
called dynamic causal modelling have been introduced [9].
Non-parametric, non-linear multivariate approaches have
only recently been suggested for small networks [10]. De-
spite these efforts, a general framework that allows in-
ferring the network structure from measured multivariate
signals is still lacking.

In this letter, we develop a theory for the most gen-
eral analysis and data-based modelling of measured sig-
nals from non-linear, non-stationary, stochastic systems.
We demonstrate that these systems can be represented
in a general non-stationary state space model. This, in
turn, suggests the development of a numerically efficient
algorithm based on the expectation maximisation optimi-
sation approach applying the dual Kalman filter. Based
on this algorithm we derive the frequency domain measure
of renormalised partial directed coherence to quantify the
direction and strength of network connections. A rigorous
statistical evaluation procedure guarantees the applicabil-
ity to measured signals. A simulation study motivated by
typical scenarios faced in experiments complements our
letter.

Methods: theory and estimation. – As the first

step, we develop the underlying theory by representing
non-linear systems in the framework of state space models.
In experiments, a time continuous multivariate dynamical

2Temporal precision in a (pre-)clinical environment is typically in
the order of 4–5 s.
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process Z(t) can only be observed as a multivariate time
discrete sampled signal,

Y (ti) = g(Z(ti), v) + η(ti), (1)

where g(·) denotes some observation function with param-
eter set v; η(t) is Gaussian-distributed independent mea-
surement noise with a given variance. The sampling points
are denoted by ti = iδt for the sampling time δt. Assum-
ing a linear observation function, we obtain

dZ(t) = f(Z(t), w) dt+ dW (t), (2)

Y (ti) = CZ(ti) + η(ti), η(ti) ∼ N (0,Γ) (3)

for the observed dynamical system, where now C repre-
sents the linear observation matrix, f(·) some potentially
unknown dynamical system with parameters w, Gaussian-
distributed observational noise η(ti), and dW (t) the in-
crement of a Wiener process. This model separates the
observed dynamics into the hidden dynamical equation (2)
and the observation equation (3).
We emphasise that the multivariate stochastic dynami-

cal system, eq. (2), is key to our flexible overarching frame-
work. It allows us to model systems whose dynamics is
known, which is often the case in first-principle modelling
in physics; it, however, also provides powerful means to
model unknown dynamics in data-based modelling such
as brain dynamics. It also accounts for exogenous input;
to make this more explicit we could use

dZ(t) = f(Z(t), U(t), w)dt+ dW (t), (4)

in which U(t) would model the exogenous input. This
modification is not needed as U(t) can always be ac-
counted for by augmenting Z(t). By adjusting W (t), our
flexible framework incorporates stochastic as well as de-
terministic, linear as well as non-linear, stationary as well
as non-stationary dynamics. Models for effective connec-
tivity such as deterministic or stochastic dynamic causal
modelling [9] would thus be a special case of our general
framework. To keep the calculations clearer we assumed
a linear observation function. The framework is, however,
applicable to non-linear observation functions as well.
Formally, eq. (2) can be solved by integration,

Z(t+∆t) = Z(t) +

t+∆t∫

t

f(Z(τ), w)dτ

︸ ︷︷ ︸
=B(t)Z(t)

+

t+∆t∫

t

dW (τ)

with some function B(t) that will be determined below.
The Ito integral

t+∆t∫

t

dW (τ) =
√
∆tǫ(t), ǫ(t) ∼ N (0,Σ) (5)

further simplifies the hidden dynamical equation (2). Note
that the integration time ∆t and the sampling time δt

do not need to be identical. In the following we assume,
however, that ∆t = δt. The more general case in which
n∆t = δt with n ∈ N being a positive integer can be
coped with by modifying the observation equation accord-
ingly; an observation is only made every n∆t integration
steps [11].
Thus, we obtain the following model:

Z(i) = A(i)Z(i− 1) + ξ(i), ξ(i) ∼ N (0, Σ̃), (6)

Y (i) = CZ(i) + ρ(i), ρ(i) ∼ N (0, Γ̃) (7)

for some appropriately chosen variances Σ̃ and Γ̃ that will
be optimally determined in the estimation process. Time
t = iδt = i∆t is characterised by its non-negative integer
time i in these equations. The time-dependent A(i) is
equal to 1n + B(i), where 1n denotes the n-dimensional
identity matrix.
Determining the matrix A(i) from measured signals in

the most general case without any further assumptions is
not possible. A reasonable assumption regarding a sen-
sible integration time ∆t, however, is that the parameter
matrix A(i) should change more slowly than the (stochas-
tic) dynamics itself. This ensures a separation of time
scales. For such a case, we can augment the model to the
over-arching state space model,

a(i) = a(i− 1) + ζ(i), ζ(i) ∼ N (0, Ω̃), (8)

Z(i) = A(i)Z(i− 1) + ξ(i), ξ(i) ∼ N (0, Σ̃), (9)

Y (i) = CZ(i) + ρ(i), ρ(i) ∼ N (0, Γ̃). (10)

that will reflect the subsequent analyses. The a(i) are the
matrix entries of A(i) rearranged into a vector. Although
the augmented parameter equation for a(i) (eq. (8)) ap-
pears to describe a non-stationary process, it is only a
restriction on the parameter variations; the time discrete
version of a bounded derivative

a(i)− a(i − 1) = ζ(i), (11)

where the boundedness originates from the finite variance
of the stochastic variable ζ(i). Large parameter changes
are, thus, extremely unlikely.
The extent to which the past values influence the

present is determined by the parameters a(i) or the matrix
A(i), respectively. These causal influences can be repre-
sented as directed edges in a network, in which the nodes
represent the processes. In this sense the matrix A(i) con-
tains the interactions between the components of the orig-
inal process Z(t) modelled via f(Z(t), w), the information
about the network structure is contained in this matrix as
well. As we do not make any assumptions about the origin
of Z(t), it can model the sensor as well as the source space
equally well.
In several applications, the dynamics f(Z(t), w) actu-

ally depends on previous time steps as well. In networks,
influences with a certain delay are typically relevant. This
can be accounted for in state space modelling by including

30004-p3
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higher orders, i.e. including previous time steps in eq. (9),

Z(i) =

[
p∑

i′=1

Ai′ (i)Z(i− i′)

]
+ ξ(i), ξ(i) ∼ N (0, Σ̃),

(12)
up to some maximum time lag p. This maximum lag p can
be determined relying on a priori knowledge or based on
model selection criteria such as Akaike’s information cri-
terion. Rewriting this higher-order process as a first-order
process by introducing Ẑ(i) = (Z(i), Z(i − 1), . . . , Z(i −
p+ 1))′ leads to

Ẑ(i) = Â(i)Ẑ(i − 1) + ξ̂(i), ξ̂(i) ∼ N (0, Σ̂). (13)

The matrix Â(i) thereby assumes a specific structure:

Â(i) =

⎛
⎜⎜⎜⎜⎝

A1(i) A2(i) . . . Ap(i)
1n 0n . . . 0n

0n

. . .
. . .

. . .
...

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎠

. (14)

Replacing eq. (9) by eq. (13) leaves the state space model
unaltered.

As the second step, we present the numerically efficient

algorithm to determine the parameters in the state space
model. In the above form of eqs. (8)–(10) the trajectory
of the Z(i) and the a(i) can be determined purely based
on the observations Y (i). To this end, the so-called ex-
tended or unscented Kalman filters, here optimally the
dual Kalman filter can be proven to be highly efficient es-
timators [12–14]. These filters, however, rely on the knowl-
edge of the exact dynamics, i.e. on a precise knowledge of
C, Ω̃, Σ̃, and Γ̃. As these are typically not known, they
need to be estimated. The expectation maximisation algo-

rithm addresses this challenge [3,13,15]. Roughly speak-
ing, it is a recursive maximum likelihood estimator that
approximates the incomplete data likelihood applying the
dual Kalman filter. In the estimation step the likelihood
is calculated based on a (potentially wrong) assumption
about the dynamics. The maximisation step optimises
the parameters C, Ω̃, Σ̃, and Γ̃; thereby, yielding a bet-
ter approximation of the dynamics. Applying these steps
iteratively ensures convergence to the best estimator of
the underlying dynamical process Z(i) as well as the pa-
rameters a(i); “best estimator” here refers to the one that
minimises the squared distance between the true values
and their estimates [14].

It is worth noting that the estimation procedure is op-
timal under certain assumptions such as the Gaussianity
of the noise. If such assumptions are violated, better esti-
mators might exist. We refer the reader to the extensive
literature for such modifications, e.g. [13]. The numerical
complexity of the algorithm enables a sensible application
in real time on standard laptop computers for a reasonably
small number of nodes of the network.

Z Z

Z Z

1 2

3 4

Fig. 3: Network structure as simulated based on eq. (16). The
interaction between processes Z1 and Z2 is switched, it is con-
stant from Z1 to Z3, triangularly shaped for Z4 to Z1, and an
exponentially decaying oscillation from Z4 to Z1, cf. footnote

3.

As the third step, we derive the renormalised partial

directed coherence (rPDC) [16],

λu←v(ω) = Xuv(ω)
′ (Vuv(ω))

−1
Xuv(ω), (15)

a frequency domain measure for Granger causality
(see [16] and references therein) that quantifies the di-
rection and strength of network connections. It is
the normalised squared Fourier transform of the (u, v)
component of parameter matrices Ai′ (i), Xuv(ω) =
[R (FT (Ai′,uv)) , I (FT (Ai′,uv))]

′

with R the real part
and I the imaginary part, and N the number of data
points analysed. The normalisation by (Vuv(ω))

−1
is given

by the inverse of N -times the covariance matrix

Vuv(ω) =

p∑

i′
1
,i′

2
=1

cov
(
Ai′

1
,uv , Ai′

2
,uv

)

·
(
cosωi′1 cosωi

′

2 cosωi′1 sinωi
′

2

sinωi′1 cosωi
′

2 sinωi′1 sinωi
′

2

)

of the estimates of X . The covariance matrix of the es-
timated parameters cov

(
Ai′

1
,uv, Ai′

2
,uv

)
is determined in

the expectation maximisation algorithm [17].
As the fourth step, we introduce the rigorous statisti-

cal evaluation procedure. We propose a bootstrap-based
framework [17]:

1) Estimate the time-dependent parameter matrix Â(i)
by the state space model, eqs. (8)–(10). Then, esti-

mate the rPDC λ̂ based on the parameters according
to eq. (15).

2) Using Â(i) and the estimated parameters C, Ω̃, Σ̃,
and Γ̃ of the dynamics, generate m parametric boot-
strap realisations of the process according to the non-
stationary state space model in eqs. (8)–(10), i.e.

simulate the model using the estimated parameters.

3) Analogously to step 1, estimate the parameter matri-

ces {Âr(i)}r=1,...,m for all m bootstrap realisations.
Estimate the rPDC of the m bootstrap realisations,
{λ̂r}r=1,...,m, for each link and at each frequency of
interest, respectively.
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Fig. 4: (Colour on-line) Time-resolved renormalised partial directed coherence (rPDC) of the four-dimensional non-linear non-
stationary system of eq. (16). For this example we used the parameters given in footnote 3. It was estimated assuming a model
order p = 10 and dimension n = 4. Non-significant (5%-significance level) values are in black. On the diagonal the raw data
are shown for each node. Off-diagonal plots show time-resolved rPDC values colour-coded for frequencies between 0 and 0.25
(in inverse sampling time) and for all 5000 data points. Switching behaviour in the coupling (2 → 1 and 1 → 2) as well as
gradually changing coupling strengths (4 → 1, an exponentially decaying sinusoidal, and 4 → 3, with increasing and after 2500
samples decreasing coupling strength) are revealed by the rPDC. The corresponding graph is shown in fig. 3.

4) Calculate the standard error σ of bootstrap rPDC-

values {λ̂r}r=1,...,m. This is a measure of natural
fluctuation of the rPDC-values of the original system
with parameters obtained in step 1).

5) Determine the confidence intervals around the es-

timated rPDC values λ̂ of the original process as
the Gaussian quantiles at a given confidence level
α, i.e. [λ̂ − kασ, λ̂ + kασ] with kα being the α-
quantiles of the standard Gaussian distribution. For
α = 0.95 this yields [λ̂ − 1.96σ, λ̂ + 1.96σ]. We note
here that the assumption of a Gaussian distribution
for the rPDC value is an approximation [16]; if needed
the exact distribution is a possibly non-central χ2-
distribution [16].

6) If the confidence interval includes 0, the rPDC values
are considered to be non-significant.

We emphasise that the framework we introduced above
does not make any assumptions about the dimensionality
of the problem. We restrict ourselves to a 4-dimensional
model in the following simulation study as an illustrative
example.

Simulation study. – We now perform a simulation

study to demonstrate and illustrate the performance of our
general framework, as applied to murine vigilance stages
(fig. 1). To this end, we simulate an n = 4 dimensional

second-order non-stationary system given by (cf. eq. (12))

Z(i) =

2∑

i′=1

Ai′ (i)Z(i− i′) + ξ(i), ξ(i) ∼ N (0,14) (16)

with additional Gaussian observational noise with vari-
ance 1; the parameters and network structure are de-
picted in fig. 3 and are given in footnote3. Parameters
are estimated based on the expectation maximisation al-
gorithm applying the dual Kalman filter (eqs. (8)–(10)).
We then estimate the renormalised partial directed coher-
ence according to eq. (15); rPDC is shown in fig. 4 at fre-
quencies ω between 0 and 0.25 (in inverse sampling time)
and for all 5000 simulated data points. We perform sta-
tistical analysis as described above. Non-significant values
are black. The estimated network structure solely based
on the measurements reflects the true simulated network
structure (fig. 3). The statistical analysis based on boot-
strapping enables us to infer the correct network structure
for various time-dependent coupling strengths and various
signal-to-observational noise ratios.
We emphasise that our general framework is not re-

stricted to situations as presented in the above example.
It can be applied to non-linear, non-stationary, noisy sys-
tems in general, see also the “Remarks” section below.

3Parameters for the example: A1,11(i) = 1.3, A1,22(i) = 1.6,
A1,33(i) = 1.5, A1,44(i) = 1.7, A2(i) = −0.8 · 14, A1,12(i) =
0.7 if i > 3333, A1,21(i) = 0.7 if i ≤ 1000, A1,14(i) = exp(−i/2500) ·
sin(0.005i), A1,31(i) = 0.5, A1,34(i) = 0.8i/2500 if i ≤ 2500,
A1,34(i) = 2− i/2500 if i > 2500, and Ai′,kl(i) = 0 for all remaining
parameters and the remaining times, respectively.
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The EEG example of fig. 1 demonstrates the per-
formance of the approach to non-linear, non-stationary,
stochastic systems. In a forthcoming study we will inves-
tigate the robustness of results we identified in this ex-
periment. We will investigate its role for diseases such as
dementia.

Conclusion. – We have shown that a wide class of
models that generate time series can be interpreted as a
non-linear, non-stationary state space model. This led to
an overarching framework for data-based modelling that
for the first time allows us i) to deal with truly multivariate
data, i.e. it distinguishes between direct and indirect influ-
ences, ii) to account for various concurrent noise sources,
iii) to address both linear and non-linear systems, iv) to
provide results for each sampling point, v) to estimate the
strengths of the directed interactions, vi) to provide a rig-
orous statistical framework, and vii) to analyse complex
systems numerically efficiently. As demonstrated numeri-
cally, novel insights into processes can be gained through
this method. We particularly emphasise that this overar-
ching framework can provide justification for several anal-
yses that have been preformed retrospectively; the theory
can be extended as well. We discuss this briefly in the fol-
lowing remarks as a detailed description would be beyond
the scope of this manuscript.

Remarks. – a) In several publications including [16],
it has been shown numerically that ordinary, station-
ary, linear Granger-causality–based approaches can elu-
cidate the network structure for non-linear systems such
as the Rössler system or the stochastic van der Pol sys-
tem. The, so far, missing mathematical theory underlying
these observations is included in the theory introduced in
this manuscript. Averaging the time-resolved coefficients
estimated in the state space model yields the stationary
coefficients that characterise ordinary Granger-causality
analysis.

b) By fitting a time varying autoregressive model of
higher orders to the signals, the spectral content of the
signals can be obtained as well. This enables tracking the
dominant frequencies over time.

c) In the derivations above, we limited ourselves to a
specific observation function. This is not a limitation of
the technique per se as the overarching framework can be
adapted to more general observation functions; we used
the linear observation function here to keep the notations
simpler.

d) State space modelling is robust against few isolated
outliers in the data. This is due to the robustness of the
Kalman filter. This robustness can further be improved
by applying the Huber norm rather than the L2 norm in
the estimation process.

e) For larger networks the time-resolved rPDC approach
suffers from the challenge that too many parameters are
non-zero, though non-significant inherent in maximum
likelihood L2-based estimation; this could potentially be
overcome by L1 regularisation as, for instance, in the least
absolute shrinkage and selection operator (LASSO) [18]
estimation.
f) Compressive sensing [19] opens the possiblity to ex-

tend the time-resolved rPDC approach to sums of various
non-linear functions of Z(t), i.e. explicitly accounting for
non-linearities in the dynamics. This becomes particularly
relevant in cases in which the approximation that the a(i)
in eq. (8) change on a slow time scale is invalid.
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