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Abstract – Experiments have revealed that branched, fractal-like wave patterns can arise
in a variety of physical situations ranging from microwave and optical systems to solid-state
devices, and that the wave-intensity statistics are non-Gaussian and typically exhibit a long-tail
distribution. The origin of branched wave patterns is currently an issue of active debate. We
propose and investigate a “minimal” model of optical wave propagation and scattering with two
generic ingredients: 1) a finite-size medium for linear wave propagation and 2) random scatterers
characterized by a continuous refractive-index profile. We find that branched waves can emerge
as a general phenomenon in a wide parameter regime in between the weak-scattering limit and
Anderson localization, and the distribution of high intensities follows an algebraic scaling law. The
minimal model can provide insights into the physical origin of branched waves in other physical
systems as well.

Copyright c© EPLA, 2011

Wave propagation through random media occurs in
many physical systems, where interesting phenomena
such as branched, fractal-like wave patterns or rogue
waves can arise. There has been tremendous interest in
these complex wave phenomena. For example, in the past
decade there were theoretical and experimental studies of
rogue waves arising from long-range acoustic wave propa-
gation through ocean’s sound channel [1,2]. Quite recently
large-scale experiments on directional ocean waves were
conducted to probe the origin of these waves [3]. Similar
complex wave patterns arise in many other physical
situations such as nonlinear light propagation in doped
fibers [4], acoustic turbulence in superfluid helium [5],
resonance in nonlinear optical cavities [6], linear light
propagation in multi-mode glass fiber [7], and electronic
transport in two-dimensional semiconductor electron gas
(2DEG) systems [8]. For each of these contexts, there
were experimental and theoretical efforts. To illustrate
the extent to which branched wave patterns are presently
understood, we choose 2DEG systems as an example. In
ref. [8], electron flows from a quantum point contact were
reported to exhibit a striking, branched or fractal-like

(a)E-mail: xuan.ni@asu.edu

behavior with highly nonuniform amplitude distribution
in the physical space. The observed separate, narrow
strands of greatly enhanced electron wave intensities were
argued to be caused by random background potentials and
quantum coherent phase interference among the electron
wave functions. Subsequently a theory was proposed [9]
to predict the statistical distribution of the intensities
of branched electron flows in the presence of weak,
correlated Gaussian random potentials. A computational
paradigm based on the Green’s function method was also
developed [10], providing a systematic way to probe the
statistics of branched wave structures in 2DEG systems.
Whether branched, fractal-like wave structures have

a generic origin and if yes, it is currently a matter of
active debate [11]. A tacit assumption in most previous
investigations is nonlinearity in the underlying physical
medium. In particular, it was believed that the existence
of many uncorrelated, spatially randomly distributed wave
elements is key to the occurrence of these exotic wave
patterns. These elements can be, e.g., solitons in nonlinear
systems. However, quite recently, it was demonstrated
experimentally in a microwave system [12] and in a multi-
mode optical fiber [7] that branched wave patterns can
occur even in the absence of any nonlinearity. In view of
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these conflicting views, it is of fundamental interest to
develop a minimal, paradigmatic model that can generate
robust branched wave structures. In so doing, a key issue
is the statistical properties of branched waves, where
analysis of the moments of the intensity distribution dates
back to Berry [13] in the context of light-ray caustics.
In this regard, a general observation in all situations
where branched wave structures emerge is non-Gaussian
statistics of wave intensity with an algebraic tail in the
probability density function (PDF). A criterion for the
validity of any minimal model of branched wave patterns is
that it should generate the universally observed, algebraic
tail in the wave-intensity distribution.
In this paper, we propose and investigate a minimal

model for the emergence and statistical characterization of
robust complex branched wave patterns in optical media.
Our model contains two basic physical ingredients: 1) a
uniform medium of finite size and 2) spatially localized
scatterers randomly distributed in the medium, the refrac-
tive indices of which deviate from that of the background
medium. The second ingredient is required for generat-
ing dynamics beyond conventional wave propagation in a
linear medium, and we shall demonstrate that our mini-
mal model can generate robust branched, fractal-like wave
patterns. Moreover, our model leads naturally to an alge-
braic, long-tail type of distribution in the wave intensities.
Computationally, we consider a polarized, monochro-

matic, Gaussian or uniform light beam propagating in
a dielectric medium of refractive index n0 and of size
35µm× 70µm, which has embedded within itself N
random scatterers. The spatial distribution function of
the refractive index for the whole system can be written as

n(r) = n0+

N∑
i=1

∆ni exp[−|r− ri|2/(2σ2)], (1)

where each scatterer is characterized by a Gaussian-
shaped index distribution of effective radius σ, and
r is a two-dimensional vector in the (x, y)-plane. To
simulate the scattering of electromagnetic waves, we
use the Finite-Difference Frequency Domain (FDFD)
method [14]. Briefly, the method uses Yee’s grid, which is
a leap-frog discretization scheme for electric and magnetic
field components. Instead of solving the Maxwell curl
equations directly with time iterations as in the clas-
sical FDTD (Finite-Difference Time Domain) scheme,
FDFD considers a snapshot of the steady state and uses
matrix formulation to solve the whole material system
at once [14]. In our simulations, the wavelength is chosen
to be λ= 1µm. The boundary conditions are properly
treated by using Perfect Matched Layers (PMLs) at the
boundaries of the material. The scatterers are randomly
placed within the material (excluding PMLs), so they do
not interact with the PML boundaries. As a result, there
are no reflections from the material boundaries.
Figures 1(a)–(c) show a system configuration of 50

random scatterers, the field magnitude from FDFD
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Fig. 1: (Color online) For a rectangular optical medium of
size 35µm× 70µm, (a) spatial distribution of 50 random
scatterers, (b) steady-state spatial field-magnitude distribution
from FDFD simulations, and (c) scaling behavior of PDF of
wave intensity. The PDF is calculated through a histogram
statistic of magnitudes of the magnetic components at all
lattice sites inside the perfect match layers at the boundaries.
The incident wave is uniform of width λ, magnitude |H0|= 1,
and sent along the +y direction. The solid line indicates the
theoretically predicted scaling law. The simulation parameters
are λ= 1µm, n0 = 1,∆n=−0.5, and σ= 0.22µm.

simulation, and the intensity distribution on a double-
logarithmic scale, respectively. Signatures of fractal-like
branched structure are apparent (fig. 1(b)), and the
intensity PDF exhibits an algebraic, long-tail behavior.
Such behaviors persist when the density of the random
scatterers is increased, as shown in fig. 2. While the value
of ∆ni is negative for both figs. 1 and 2, branched wave
structures have also been observed for positive or mixed
values of ∆ni. These simulation results thus suggest
the robustness of the branched wave structures in our
minimal model. Numerically, we observe that the shape
of the refractive-index distribution associated with each
random scatterer does not have a significant effect on
the emergence and statistical properties of the branched
waves. In general, insofar as the sizes of the scatterers are
comparable to the wavelength, branched wave patterns
can arise.
We now present a theory to explain the emergence of

the branched wave structures and the statistical intensity
distribution. The general setting is wave propagation in a
two-dimensional optical medium with random scatterers.
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Fig. 2: (Color online) (a) Distribution of 300 random scatter-
ers in the same medium as in fig. 1, (b) wave magnitude from
FDFD simulation, and (c) scaling behavior of the intensity
distribution. In (c), the deviation from the power-law distri-
bution for high intensity is caused by violation of the sparse-
scatterer assumption used in the theory. When the density of
scatterers is low, the distribution agrees with theoretical predic-
tion better than that in the high-density case, as shown in
fig. 1(c). Other simulation parameters are the same as in fig. 1.

The material is assumed to be isotropic and linear, it
is neither dispersive nor dissipative, and there is no
source (free charge or current). Since all disorders in the
refractive index are assumed centro-symmetric in three
dimensions, the propagation direction of wave/light with
linear polarization is confined within a two-dimensional
plane (denoted as the (x,y)-plane). This scheme has been
used and justified in ref. [15], where a refractive index
profile with large variations was used for studying photonic
black holes. For concreteness, we focus on the TE mode,
for which the magnetic field strength is given byH=Hez.
The Maxwell’s equations for H lead to

∇×
(
1

ε
∇×H

)
= k2µH, (2)

where k= ω/c is the vacuum wave vector, ε and µ are the
relative permittivity and permeability, respectively. The
refractive index is n=

√
εµ . The Helmholtz equation for

the scalar field H is(∇2+ k2n2)H = (∇n/n) ·∇H. (3)

The goal is to calculate the scattering field and its statis-
tical distribution throughout the medium. Our approach

is to first analyze the field from a single scatterer and then
extend the result to multiple scatterers. We assume that
the random scatterers are far away from each other as
compared with their sizes, which can be ensured if they
are sparsely distributed in the medium.
Consider a single scatterer located at the origin. With-

out loss of generality, we set n0 = 1. We decompose the
magnetic field H into the incident and scattering parts,
i.e., H =Hi+Hs. The incident field is a plane wave
Hi = eikx, whereas the scattering part is the response of
the small scatterer to Hi. Far away from the scatterer,
i.e., r� σ, the Helmholtz equation becomes(∇2+ k2)Hs(r) = f1+ f2+ f3, (4)

where

f1(r) = −(∇2+ k2n2)Hi,
f2(r) = ∇Hi ·∇n/n,
f3(r) = ∇Hs ·∇n/n.

At far field where Hi�Hs is satisfied, only f1 and
f2 contribute to the scattering field in the lowest-order
approximation. Also, higher-order corrections due to f3
can be obtained by Picard iteration and other techniques.
The Green’s function satisfies(∇2+ k2)G(r, r′) =−δ(r− r′). (5)

The standard solution to the Green’s function in two
dimensions is

G(r, r′) = (i/4)H(1)0 (k|r− r′|), (6)

where H
(1)
0 = J0+ iY0 is the Hankel function of the first

kind. The scattering field can then be written as

Hs(r)r�σ ≈
∑
j=1,2

Hsj (r), (7)

where Hsj (r) = (G ∗ fj)(r) (j = 1, 2). The scattering fields
due to f1 and f2 can be calculated separately. Since
disorders are spatially localized and, numerically, we find
that the shape of the refractive-index distribution of the
scatterer has little effect on the formation of the overall
wave pattern, we thus approximate, for distribution from
f1, the refractive index as

n2(r)≈
{
(1+∆n)2−∆n(1+∆n)[ r(ασ) ]2, r� rb,

1, r > rb,
(8)

where

rb = ασ

√
∆n+2

∆n+1
(9)

is the boundary of the scatterer, and α is the parameter
that controls the width of variation in n2. Similar approxi-
mation can be applied to calculating the contribution from
f2. We have

∇n/n≈
{
− ∆n
∆n+1

[1−βr2/(2σ2)]r
σ2

, r� r′b,
0, r > r′b,

(10)
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where r′b = σ
√
2/β and β serves the same role as α.

These approximated forms of the refractive index-related
function profiles allow us to evaluate analytically the
scattering field at far field by integrating the convolutions,
which requires the asymptotic form of the Hankel function
at far field:

H
(1)
0 (x� 1/4)∼ (πx/2)−1/2 exp [i(x−π/4)]. (11)

A lengthy algebra to evaluate the integral contained
in Hs(r)r�σ leads to the following expression of the
scattering field:

Hs(r, φ)r�rb,r′b ≈
eikr

r1/2
Φ(φ)+

eikr

r3/2
Ψ(φ), (12)

where

Φ(φ) = a11Φ1(φ)+ a21Φ2(φ),

Ψ(φ) = a12Ψ1(φ)+ a22Ψ2(φ),

and aij ’s are constants that depend on the wave vector
k, the parameters ∆n, rb, r

′
b and σ

2. To the lowest order
r−1/2, the scattering field is

Hs ≈ r−1/2 exp(ikr)Φ(φ), (13)

where the functions Φ1(φ) and Φ2(φ) are given by

Φ1(φ) = J2(krb
√
2− 2 cosφ)/(2− 2 cosφ),

Φ2(φ) = J3(kr
′
b

√
2− 2 cosφ)/

√
2− 2 cosφ, (14)

and Ψ1 and Ψ2 are also generalized hypergeometric
functions. While eq. (12) is derived under the assumption
n0 = 1, the cases where n0 is not unity can be treated by
using the simple substitutions k→ kn0 and ∆n→∆n/n0.
Note that in eq. (14), the size of scatterer is reflected

in the angular part of the scattering field. This means
that the scatterer size will affect the number of branches
in the field. We have examined that small changes in
the size of scatterers will not affect the PDF to any
notable extent. However, very large scatterers will cause
the branched structure to disappear. The extreme case
of large scatterers corresponds actually to the short-
wavelength limit, where geometric optics can be used to
describe the behavior of light rays. In this case, intensity
statistics become meaningless.
The scattering field structure calculated directly from

eq. (12) is shown in fig. 3. We see that, in the forward
direction, the strength of the scattering field damps with
the radius and the field is composed of a series of magnified
flows radiating in all directions, which capture the typical
behavior of the scattering field obtained from direct FDFD
simulations. Note that in fig. 3, both the r−1/2 and r−3/2

terms have been taken into account, but the r−3/2 term
is at least two orders of magnitude weaker than the r−1/2

term, providing further justification for using only the first
term in eq. (12).
Our expression for the scattering field of a single scat-

terer provides a qualitative explanation as to why a highly

Fig. 3: (Color online) Forward scattering field from a single
scatterer. The wave (of wavelength λ= 1µm) is incident in the
forward (+x) direction on a scatterer located at the origin.
The parameters characterizing the refractive-index function
of the scatterer are σ= 0.22µm and ∆n=−0.5. The two plots
|H1| and |H2| including the r−1/2 and r−3/2 terms are from f1
and f2, respectively.

nonuniform field structure can arise. In particular, the
analytic result explains, instead of a uniform spread of
the scattering field in all directions, it tends to form a
branched structure with hot spots. Multiple scatterers
make the branched structure finer. In particular, each
scattering event gives rise to a few dominant branches
that spread out into the far field. Some of the remain-
ing scatterers are within the large branches while most
other scatterers are located outside any large branched
structure. The scatterers in the latter group are essen-
tially not affected by the scattering field. Second-stage
scattering will also induce some large branches, which can
possibly “meet” with the branches from the first-stage
scattering and generate constructive interference. Signif-
icantly finer and highly localized structure of the field can
result from such interference. The probabilities of destruc-
tive and constructive interferences are approximately the
same. However, since the higher-level scattering fields are
necessarily weaker than the ancestor wave branches, the
already generated intense branches cannot be eliminated,
especially for the branches near the center direction of
the propagation. This provides a plausible explanation as
to why in most cases of branched waves the strongest
branch either is along the center direction or tilts slightly
to one side. The former is due to equal probabilities that
random scatterers appear on both sides of the main propa-
gation direction, and the latter is caused by the asymmet-
ric distribution of the refractive index of the scatterer on
both sides. This branch-accumulation process is extremely
sensitive to the spatial distribution of the refractive index,
leading to the emergence of hierarchical, fractal-like wave
patterns.

44002-p4



Origin of branched wave structures in optical media and long-tail algebraic intensity distribution

We now calculate the scattering field intensity from
multiple scatterers. Let the subscript 0 denote infinity
where the incident wave is originated, and assume that
the incident wave beam is first scattered by only one
scatterer, labeled by 1. Treating the field point j as
another scatterer, we obtain the total field from all
possible scattering paths

q0,1,j +
∑
i

q0,1,iq1,i,j +
∑
i,�

q0,1,iq1,i,�qi,�,j + . . . , (15)

where the cumulative factor qi,j,� can be derived by
applying eq. (12) to calculating the resulting field from
three consecutive points along the scattering path. We
obtain

qi,j,� =
eik|rj−ri|√|rj− ri|] ·Φ

[
cos−1(eij · ej�)

]
, (16)

where eij is the unit vector associated with rj − ri. Since
the scatterers are randomly distributed, the summation
over the same scattering level will not cause any order-
of-magnitude change in the scattering field, due to the
fact that complex variables of similar magnitude but of
random phases will cancel each other, generating a number
located close to the origin of the complex plane. In order
to obtain the statistical properties of high-intensity spots
that are located close to the scatterers, we need to make
approximations on each qi,j,� term. Specifically, we write

qi,j,� ≈ q= ρ−1/2 exp(ikρ)Φ(ϕ), (17)

where ρ is the distance between each pair of scatterers
and ϕ is the angle determined by the relative positions
of the three consecutive scatterers. Using this model, the
sum of the first m terms in the series becomes Sm =
q+ q2+ q3+ . . .+ qm. Let q= aeiθ, where a� 0. We get
the sum of the geometric series

S∞ =
aeiθ

1− aeiθ . (18)

Similar to geometric series of real numbers, a∈ [0, 1) is
the condition that guarantees the convergence of the
sum. In our case, this condition is satisfied because we
assume weakly correlated scatterers so that a→ 0. The
total intensity of the scattering field is then

I(ρ, ϕ) = |S∞|2 =
∣∣∣∣ aeiθ1− aeiθ

∣∣∣∣
2

. (19)

To the lowest order, we obtain I = |Φ(ϕ)|2/ρ, which
is similar to the formula for the single-scatterer case.
This is reasonable because, under the assumption of
weakly correlated scatterers, contributions from higher-
level scattering processes are small for most points in the
space.
The probability distribution of the intensity of the

scattering field can be obtained if the distributions of the

position parameters ρ and ϕ are available. To be concrete,
denote fρ,ϕ(ρ, ϕ) as the joint PDF of random variables ρ
and ϕ. The expression I = I(ρ, ϕ) alone is not sufficient
to derive the PDF of the intensity. What is needed is an
auxiliary function J = J(ρ, ϕ). We have

fI(I) =

∫
fI,J (I, J)dJ =

∫
fρ,ϕ(ρ(I, J), ϕ(I, J))∣∣∣det( ∂(I,J)∂(ρ,ϕ)

)∣∣∣ dJ,

(20)
where ∂(I, J)/∂(ρ, ϕ) is the Jacobian matrix associated
with the corresponding transform. The joint PDF of the
variables in the polar coordinate is proportional to the
unit area of the two-dimensional plane, fρ,ϕ ∼ ρ, and a
convenient choice for J(ρ, ϕ) is J =ϕ. We then obtain the
following algebraic scaling law of the PDF of the intensity
of the scattering field:

fI(I)∝ I−γ , (21)

where the scaling exponent is γ = 3 for our minimal model
to the lowest order.
To verify the algebraic scaling law, we have carried out

extensive FDFD computations for different realizations
of random scatterers of different densities, as exemplified
by figs. 1(c) and 2(c). From these results (and many
others cases as well), we observe branched wave patterns
and the associated algebraic scaling law for the intensity
distribution, as predicted by our theory. Especially, when
the random scatterers are weakly correlated, the algebraic
scaling behavior is robust, implying the existence of
“hot” branches with extremely high local intensities.
As the density of the random scatterers is decreased,
this hallmark of branched waves tends to be somewhat
weakened because, when the scatterers are further apart,
the intensity of the wave scattered from one scatterer
may already have weakened significantly before reaching
the next scatterer, making it less probable for fields from
different levels of scattering to interfere constructively.
In summary, we proposed a minimal model to probe into

the origin of branched, fractal-like wave patterns. We have
established, through computations and an analytic theory,
that robust branched wave structures can emerge in a
wide range of system parameters with algebraic (power-
law) tails in the distribution of the intensity, regardless of
the difference in the physical properties of the random
scatterers. Our analysis suggests that branched wave
patterns in physical systems can be caused by the following
two mechanisms: 1) break-up of wave by a single scatterer,
and 2) constructive interference of “broken waves” by
multiple scatterers randomly located in the space. Note
that these two mechanisms are fairly “elementary” in wave
physics, and we believe that they explain why branched
structures arise as a universal phenomenon in all kinds of
wave systems. Although our computations and analysis
are for optical waves, the physical insights should be
applicable to many other wave systems in various areas
of science and engineering as well.
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