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Desynchronization and on-off intermittency in complex networks
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Abstract – Most existing works on synchronization in complex networks concern the synchro-
nizability and its dependence on network topology. While there has also been work on desynchro-
nization wave patterns in networks that are regular or nearly regular, little is known about the
dynamics of synchronous patterns in complex networks. We find that, when a complex network
becomes desynchronized, a giant cluster of a vast majority of synchronous nodes can form. A
striking phenomenon is that the size of the giant cluster can exhibit an extreme type of intermit-
tent behavior: on-off intermittency. We articulate a physical theory to explain this behavior. This
phenomenon may have implications to the evolution of real-world systems.
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When a regular oscillator network becomes desyn-
chronized, either wave patterns are generated [1–8]
or stationary synchronization clusters are formed [9].
Consider, for instance, a one-dimensional ring of identical
oscillators, each coupled with its nearest neighbors. For
nonlinear oscillator dynamics, it is typical that synchro-
nization occurs only when the coupling parameter, say ε,
lies in a finite range: ε1 � ε� ε2 [10]. When ε is decreased
through ε1, long-wave bifurcation occurs in the sense that
the desynchronization wave patterns generated for ε� ε1
have wavelengths of the order of the system size [1,2]. As
ε is increased through ε2, wave patterns with wavelength
much smaller than the system size are generated, hence-
forth the term short-wave bifurcation [2–4]. For ε� ε2,
even when the actual coupling strengths are randomized
(in this case ε is a nominal coupling parameter), robust
regular wave patterns can arise [7]. Considering that in the
synchronization regime, noise and small system mismatch
can induce desynchronization bursts, the occurrence of
stable wave patterns in the desynchronization parameter
regime is quite remarkable. A more recent work reveals
that regular wave patterns can persist in small-world
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networks that deviate slightly in topology from a regular
network, but the patterns can be destroyed if there are
too many random links in the network [8]. Previous
works have also revealed the situation where, when
desynchronization occurs, a regular network breaks into a
finite number of synchronous clusters. That is, oscillators
in each cluster are synchronized but the synchronized
dynamics differ from cluster to cluster. Such clusters are
usually stationary due to the regularity of the underlying
network.
While wave patterns associated with desynchronization

in regular networks, e.g., lattice and globally coupled
systems, have been relatively well understood, little has
been done to address the problem in complex networks,
for example random [11] and scale-free networks [12].
Intuitively, since the underlying network does not possess
a regular topology, no wave patterns can be formed.
However, we find that, in the desynchronization regime,
synchronization clusters can occur commonly. The
remarkable phenomenon that we wish to report in this
paper is that the evolution of the clusters can exhibit
an extreme form of intermittency. In particular, there
can be a giant cluster containing a substantial fraction
of synchronized nodes most of the time, but there can
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also be times when there are many small synchronous
clusters. If one focuses on the giant cluster, its size can
vary in an extremely intermittent fashion, exhibiting
characteristics that are typical of on-off intermittency
observed commonly in nonlinear dynamical systems [13].
As we shall demonstrate, the intermittency is due
completely to the underlying complex topology of the
network, and can occur with or without random noise.
To understand the origin of the size intermittency,
we have developed a theory based on the concept of
snapshot attractors in nonlinear dynamics [14,15]. Our
finding reveals that a complex network can be extremely
dynamic: nodes can spontaneously form different groups
of synchronous clusters at different times. This may
have broader implications, since our result suggests the
necessity to view synchronization as a nonstationary and
dynamic property: at different times different groups of
nodes (e.g., neurons) can be synchronized.
We consider the following model of coupled-map

network: xi(t+1)=F[xi(t)]−ε
∑
j Ci,jH[f(xj(t))], where

xi(t+1) =F[xi(t)] is the d-dimensional map representing
the local dynamics of node i, ε is the global coupling
parameter, C is the coupling matrix determined by both
the network topology and properties such as the weight of
links and the directionality of interaction between nodes,
and H is the coupling function. To preserve the generality
of our finding, we use the following coupling scheme [16]:

Ci,j =−Ai,jkβj /
∑N
j=1Ai,jk

β
j , for j �= i and Ci,i = 1, where

ki is the degree of node i, A is the adjacent matrix of
the network, and β is a parameter that can be adjusted
to model different coupling schemes and interaction
patterns in the network [16]. To facilitate numerical
computation while taking into account the possibility
of complicated oscillatory node dynamics, we use the
one-dimensional chaotic logistic map F (x) = 4x(1−x)
and choose H(x) = x. The linear stability of of the global
synchronization state {xi(t) = s(t),∀i} is determined by
the corresponding variational equations of the model
equation, which can be diagonalized into N blocks of
the form y(t+1) = [4(1− 2s(t))+σ)]y(t), where possible
values of σ are σ(i) = ελi and 0= λ1 <λ2 � . . .� λN
are the eigenvalues of the coupling matrix C. For σ �= 0,
the largest Lyapunov exponent Λ(σ) from the evolution
of the infinitesimal variation y(t), or the master stabil-
ity function [10], can be calculated. Synchronization
can be physically or numerically observed if Λ(σ)< 0.
For typical nonlinear oscillatory dynamics, the func-
tion Λ(σ) can be negative only for σ ∈ (σ1, σ2). For
the chaotic logistic-map dynamics, we find σ1 ≈ 0.5
and σ2 ≈ 1.5. Thus, two necessary conditions for
synchronization are R≡ λN/λ2 <σ2/σ1 ≈ 3≡Rc and
ε1 < ε< ε2, where R is the eigenratio, ε1 = σ1/λ2, and
ε2 = σ2/λN .
We first present results with desynchronization in

random networks in the regime ε� ε1 (see footnote 1).
1Similar results have been obtained in the regime ε� ε2.

We generate a random network of N = 1000 nodes and
average degree 〈k〉= 20. The smallest nontrivial and
the largest eigenvalues are λ2 ≈ 0.528 and λN ≈ 1.44
and, hence, ε1 = σ1/λ2 ≈ 0.946. The possible values of
the largest Lyapunov exponents associated with various
transverse subspaces are Λ(ελi) for i= 2, . . . , N . For ε
slightly below ε1, only a small fraction of the exponents
is slightly positive while the vast majority of them
remain negative. For example, for 0.90� ε� ε1, we have
Λ(ελ2)� 0 while Λ(ελi)< 0 (i= 3, . . . , N). Since the
asymptotic value of Λ(ελ2) is only slightly positive, in
any finite time interval the exponent can assume both
positive and negative values and, it fluctuates randomly
among these values in the course of time evolution.
This is in fact a necessary condition for on-off intermit-
tency [13]. For instance, we have examined the evolution of
∆X(t)≡√∑(xi(t)− x̄(t))2/N , where x̄(t)≡∑xi(t)/N
and found an apparent on-off intermittent behavior
with power law distribution of laminar phases that
has the well-known −3/2 exponent over several orders
of magnitude of the laminar-phase length. However,
the quantity ∆x(t)≡ xi(t)− x̄(t) characterizes only the
temporal deviation of the node dynamics from their mean
field. It does not reveal any spatial organization of the
desynchronization dynamics.
To reliably detect any spatial pattern associated with

desynchronization, we introduce a symbolic approach.
Given a long time series xi(t) from node i, we define
a symbolic sequence θi(t) where θi(t) = 0 for xi(t)<
0.5 and θi(t) = 1 for xi(t)> 0.5. We then divide θi(t)
into segments of equal length n� 1. If, for time t′, we
have θi(t) = θj(t) for all t= t

′−n, . . . , t′− 1, we say that
node i is synchronized with node j at time t′. Insofar as
n is reasonably large, the synchronization state so defined
is robust with exceedingly small numerical uncertainty,
as it requires a match of n bits between two chaotic
symbolic sequences. A synchronization cluster at time
t′ is identified as all nodes whose dynamics satisfy this
matching condition. In generating the symbolic sequence,
the decomposition threshold can be any value from the
system attractor, which will not affect the dynamical
features of pattern evolutions. However, with a good
threshold, e.g. the value 0.5 in logistic map, the pattern
phenomena will be more distinct and the analysis becomes
efficient.
A typical example of the desynchronization dynamics

in complex networks, organized in terms of temporally
synchronous clusters, is shown in fig. 1 for the random
network for ε= 0.945, where fig. 1(a) shows the evolution
of nc, the number of synchronized clusters. We observe
that most of time nc assumes small values, indicating the
existence of only a few synchronous clusters. In this case,
it is possible to have some giant cluster that contains a
large number of synchronized nodes. Occasionally, nc can
be large, which corresponds to the occurrence of a rela-
tively large number of small clusters. Figure 1(a) reveals
that large and small values of nc occurs in a highly
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Fig. 1: For a random network of 1000 nodes and average degree
20, with parameters β = 0 and n= 100, (a) evolution of the
number of distinct synchronous clusters, and (b) evolution of
the size G of the largest synchronous cluster for coupling para-
meter slightly below the desynchronization/synchronization
transition point (see text for parameter values). There is appar-
ently on-off intermittency.

intermittent fashion2. The remarkable result is shown in
fig. 1(b), the time evolution of the size G of the largest
synchronous cluster, or the giant cluster, where G is the
number of nodes contained in the cluster. We observe
that G is close to the system size (N = 1000) most of
the time, but the number can decrease dramatically in
an extremely intermittent fashion. This indicates that a
complex network can be extremely dynamic in the desyn-
chronization regime: the vast majority of nodes in the
network stay synchronized most of the time, but there
are brief moments where the synchronization state is
destroyed, leaving the network in a scattered state of
mostly desynchronized motion. The striking phenomenon
is that such a desynchronized state lasts only for a short
time, after which the network quickly reorganizes itself
to restore a highly coherent state. This on-off intermit-
tent synchronization phenomenon is purely determinis-
tic: it does not require any random perturbation to the
network. As we will analyze, the phenomenon is due to
the interplay between the nonlinear node dynamics and
the complex topology of the network. The phenomenon
is also robust: it persists even when there are external
random perturbations to the network.
We now provide a physical theory to explain the on-off

intermittency in the size of the giant synchronous clus-
ter. Focusing on the individual node dynamics, we see
that any node interacts with a number of nodes according
to the complex-network topology. To analyze the detailed
interactions among nodes is practically infeasible and may
not be necessary. Theoretically, the mean-field approach
is thus appealing. In particular, at every step of time
evolution, the mean field x̄(t) can be defined, which acts
uniformly on every node in the network. In the mean-

2In the simulation of coupled maps, spurious synchronization
might arise due to the finite computation precision. That is, after a
long transient period, the maps can always be synchronized whatever
the synchronization conditions [6]. This spurious synchronization,
however, is practically excluded in our model, as the transient period
of a large and sparse network is extremely long. In our simulations,
spurious synchronization is not found up to 1010 iterations.

field approximation, complicated node interactions are
replaced by the driving field x̄(t), common to all nodes at
any given instant of time. For densely connected random
networks, the couplings are mostly uniform with respect
to nodes in the network, so the mean-field treatment is
appropriate. Due to the chaotic node dynamics, the mean
field can be regarded effectively as random and, its influ-
ence on each node is identical. Since the node dynam-
ics are also identical, we can imagine a single dynamical
system, where dynamics at different nodes correspond to
trajectories from different initial conditions, all evolving
under the same system. The mean field is effectively a
random perturbation uniformly applied to all trajectories.
We have thus mapped our network synchronization prob-
lem to a problem in random dynamical systems: distrib-
ute a cloud of initial conditions (particles), evolve them
under the same system equations and common noise, and
examine the attractors formed by the particles at given
instants of time —snapshot attractors [14,15]. Complete
synchronization of all nodes corresponds to total collapse
of the particles onto a single point that moves randomly
(or chaotically) in time in the phase space. Partial synchro-
nization, characterized by a number of synchronous clus-
ters, corresponds to a few localized clouds of particles.
A giant synchronous cluster is represented by a localized
set of almost all particles. The numerically observed on-off
intermittency in the size of the giant synchronous cluster
is reflected on a similar behavior in the size of the snap-
shot attractor in the phase space, a problem that has been
treated previously in nonlinear dynamics [15].
To establish a quantitative relation between G, the size

of the giant cluster in the network, and S, the actual size
of the snapshot attractor in the phase space, we consider
typical times where most of the nodes in the network
are embedded in the giant cluster, and let xG denote
the dynamical variable of this cluster. The remaining
set of desynchronized nodes can be distributed in small
synchronous clusters of various sizes, and their dynamical
variables can be scattered in the phase space. Let xD
denote the “center of mass” of the dynamical variables
of all the nodes that are not contained in the giant
synchronous cluster. The size of the snapshot attractor

is [15] S ≡
√
(1/N)

∑N
i=1(xi− x̄)2, where xi (i= 1, . . . , N)

is the dynamical variable of node i and x̄= (1/N)[GxG+
(N −G)xD]. We have

S =

√
G(N −G)
N2

|xG−xD|. (1)

In the giant-synchronous-cluster case, we have G�N and,
hence, S ∼√1−G/N . In a nearly global synchronization
state where G approaches N , we have S→ 0, which
corresponds to the “off” state in figs. 1(a) and (b).
The physical theory of fractals in random dynamical

systems [15] predicts that, slightly above the transition
to chaotic attractor, the size of the snapshot attractor
exhibits on-off intermittency. Replacing chaotic motion
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Fig. 2: (Color online) For the random network in fig. 1,
(a) the exponential distribution of the laminar phase in the
size of the giant synchronous cluster, and (b) the intermit-
tency index vs. the coupling parameter. We see that I tends
to diverge as the coupling parameter approaches the synchro-
nition/desynchronization transition point.

with the unstable motion of the synchronous manifold
in the transverse subspace of Λ(ελ2), the intermittency of
the snapshot attractor in random systems has essentially
the same dynamical origin to the intermittency of pattern
evolution in desynchronized complex networks. The only
difference is that, when the network is synchronized,
the synchronous manifold is chaotic; while for a random
dynamical system, below the transition point the collec-
tive trajectory is periodic. To provide quantitative valida-
tion of the applicability of the dynamical-system theory to
network synchronization, we quote the main results from
the theory [15] and provide tests from direct simulations of
the network dynamics. The first result is that the laminar-
phase distribution of the size of the intermittent snapshot
attractor exhibits a strong exponential tail. This has been
confirmed, as shown in fig. 2(a), where the network para-
meters are the same as in fig. 1, time series G(t) of length
108 are used to calculate the distribution, and the “off”
state is defined as G(t)> 950. (If this threshold is changed,
the laminar phase still has an exponential distribution, but
with a different exponent.) The second result is that the
following intermittency index I ≡ 〈S2(t)〉/〈S(t)〉2 should
diverge when the transition point to the chaotic attractor
is approached. Physically, the index is roughly the inverse
of the fraction of in which that a snapshot attractor has
a large size. In our network synchronization problem, I
is thus the inverse of the fraction of time in which the
size of the giant synchronous cluster becomes small. If the
network is effectively temporarily desynchronized, nc is
large and G is small, then S can be roughly treated as
constant, and we have I ≈ 1. As the coupling parameter
approaches the transition point, nc becomes smaller and G
becomes larger, the averages 〈S2〉 and 〈S〉 are dominated
by the rare events of large S or small G, resulting in the
divergence of I at the transition point. As the coupling
parameter in the desynchronization regime approaches
the transition point to synchronization, the intermittency
index should then diverge. This behavior is shown in
fig. 2(b). The results in figs. 2(a) and (b) thus provide
strong support for the applicability of the theory of snap-
shot attractors to synchronization in random networks.

Fig. 3: (a) Example of on-off intermittency in the size of the
giant synchronous cluster for a scale-free network of 1000 nodes
and average degree 8. The smallest nontrivial and the largest
eigenvalues of the coupling matrix are λ2 ≈ 0.6 and λN ≈ 1.58.
The long-wave bifurcation point for desynchronization is ε1 ≈
0.835. The coupling parameter used to generate the intermit-
tency is ε= 0.83� ε1. (b) Laminar-phase distribution P (τ).
There is a strong exponential tail for τ > 50.

The results presented so far are for random networks.
What about scale-free networks? For a scale-free network,
there is a small set of nodes with far exceeding aver-
age number of links (here we consider scale-free networks
with degree distribution exponent γ > 2 so that an aver-
age degree can be defined), the vast majority of nodes
possess a relatively small number of links. We thus suspect
that the mean-field justification for the applicability of
the snapshot attractor theory may not be unreasonable.
Indeed, extensive numerical computations reveal a simi-
lar behavior of intermittency in the size of the giant
synchronous cluster. A representative example is shown
in fig. 3, where fig. 3(a) displays an example of inter-
mittency in G, and fig. 3(b) presents the distribution
of the laminar phase. Again, there is a strong expo-
nential tail in the distribution. We also find that the
intermittency index tends to diverge near the synchro-
nization/desynchronization transition point. These results
suggest that the snapshot attractor theory is quite suitable
for quantitatively describing the pattern dynamics associ-
ated with desynchronization in scale-free networks as well.
In summary, we have uncovered an interesting phenom-

enon associated with desynchronization in complex
oscillator networks: near the transition point there can
be a giant cluster of synchronous nodes and the size of
the cluster can exhibit on-off intermittency. We have
argued and provided strong evidence that the fractal
theory of snapshot attractors, originally developed in
random dynamical systems, is suitable for explaining
the intermittency phenomenon both qualitatively and
quantitatively. To our knowledge, prior to our work
there has been no effort addressing desynchronization
patterns in complex networks of small-world and scale-
free features. This may be due to the intuition that
organized patterns are unlikely due to the complex
interactions in the network. Our results indicate that this
intuition is incorrect. Indeed, both random and scale-free
networks can exhibit quite ordered patterns in the form
of a giant synchronous cluster in the desynchronization

28001-p4



Desynchronization and on-off intermittency in complex networks

regime, although the complex-network topology causes
the evolution of the cluster to exhibit the highly irregular,
intermittent behavior. Our findings suggest that in
real-world systems situations can be expected where
synchronization is highly dynamic: the number of nodes
participated in synchronization can have a strong depen-
dence on time in the sense of on-off intermittency. Such a
dynamic synchronization may be advantageous from the
standpoint of learning and adaptation in the evolution
process.
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