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Abstract. We investigate a class of nonlinear wave equations subject to periodic forcing and noise, and
address the issue of energy optimization. Numerically, we use a pseudo-spectral method to solve the
nonlinear stochastic partial differential equation and compute the energy of the system as a function
of the driving amplitude in the presence of noise. In the fairly general setting where the system possesses
two coexisting states, one with low and another with high energy, noise can induce intermittent switchings
between the two states. A striking finding is that, for fixed noise, the system energy can be optimized by
the driving in a form of resonance. The phenomenon can be explained by the Langevin dynamics of particle
motion in a double-well potential system with symmetry breaking. The finding can have applications to
small-size devices such as microelectromechanical resonators and to waves in fluid and plasma.

PACS. 05.45.Jn High-dimensional chaos – 05.45.-a Nonlinear dynamics and chaos – 05.40.-a Fluctuation
phenomena, random processes, noise, and Brownian motion

1 Introduction

The interplay between noise and deterministic nonlinear
dynamics often leads to interesting phenomena, such as
noise-induced chaos [1–3], stochastic resonance (SR) [4–6]
and coherence resonance [7–9]. For example, when a dy-
namical system is in a periodic window so as to permit
two coexisting invariant sets, one a periodic attractor and
another a non-attracting chaotic set, noise can connect the
two sets dynamically, leading to a chaotic attractor (noise-
induced chaos). In SR, noise can enhance and maximize,
often significantly, the response of a nonlinear system to
weak signals. In a coherence resonance, noise can induce
and optimize the temporal regularity of the system dy-
namics, regardless of the presence of any external signal.
In each of these examples, the particular phenomenon of
interest occurs as a result of noise variation. There can
conceivably be situations where the “environment” is fixed
for all relevant time scales of the system dynamics, but
some parameters of the system can be varied in a control-
lable manner. For instance, a change in the frequency of
the driving to a nonlinear system can lead to optimization
of the system performance [10–13].

In this paper, we investigate spatially extended non-
linear dynamical systems under external driving, whose
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amplitude can be controllably changed. In the purely de-
terministic case, variations of the parameter in a reason-
able range cause little change to the system dynamics and
in the associated quantities of physical interest. However,
drastic changes of these quantities are possible when a
small amount of noise is present. For instance, for a nonlin-
ear wave under periodic forcing, without noise, variations
of the forcing amplitude may not lead to significant change
in the energy of the wave system. The presence of spatially
uniform or nonuniform noise can enhance and optimize
the system energy via a suitable change in the forcing
amplitude. This finding may have practical implications.
For example, in small-scale devices such as microlectrome-
chanical resonators [14–17] where a large energy output is
often desired, deliberate supply of a small amount of noise
can be advantageous. In contrast, in a large-scale wave sys-
tem, the presence of small random perturbations, even of
fixed magnitude, can produce large output energy when
an external driving of appropriate amplitude is present,
which may cause damages to the surroundings.

In Section 2, we demonstrate the phenomenon of noise-
activated energy enhancement and optimization in a class
of forced nonlinear wave systems, and justify the reliability
of the numerical method that we use to integrate the non-
linear stochastic partial differential equation. In Section 3,
we construct a toy model based on symmetry-broken
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potential wells to understand the dynamical mechanism
of the phenomenon. Conclusions are offered in Section 4.

2 Noise-activated energy enhancement
and optimization

We consider a class of spatially extended dynamical sys-
tems described by the following nonlinear partial differ-
ential equation (PDE) under periodic forcing and noise:

∂φ

∂t
+a

∂3φ

∂t∂2y
+c

∂φ

∂y
+fφ

∂φ

∂y
+γφ = −ε sin (Ky − Ωt)+Dξ(t),

(1)
where the parameters a, c, f , and γ represent disper-
sion, drift, nonlinearity, and dissipation, respectively. The
amplitude and the frequency of the forcing are ε and
Ω, respectively, K represents the wavenumber, D is the
noise amplitude, and ξ(t) is a Gaussian process of zero
mean and unit variance. Because the forcing is periodic
in space, the boundary condition is chosen to be peri-
odic. Equation (1) has been used in fluid mechanics to
model regularized long waves [18,19] and in plasma physics
for understanding drift waves [20]. To solve equation (1)
numerically, we use the pseudospectral method or the col-
location method [21,22]. In particular, we discretize the
space into N equally spaced grid points, yj = j2π/N for
j = 0, 1, ..., N−1. To evaluate the spatial derivative terms,
the solution is expanded in terms of Fourier series,

φ(y, t) =
N/2−1∑

k=−N/2

φ̃k(t)eiky .

The spectral products ikφ̃k and (ik)2φ̃k are then formed
and transformed into the spatial domain using the in-
verse FFT to yield ∂φ/∂y and ∂2φ/∂y2, respectively. The
nonlinear term is evaluated by letting Uj = φ(yj) and
Vj = ∂φ/∂y and evaluating Wj = VjUj. The Fourier
transform of Wj can be shown to be

w̃k =
∑

p+q=k

ũpṽq +
∑

p+q=k±N

ũpṽq,

where the second term on the right-hand side is the alias-
ing error that can be removed by disregarding the Fourier
co-efficients for which |k| ≥ (1/3)N (the 2/3-rule or the
truncation rule [21,23]). Time integration is carried out
by using the standard second-order Huen’s method for
numerically solving stochastic differential equations [24].

The initial wave form, or the initial condition, required
for solving equation (1) can be conveniently chosen to be
one of its steady (solitary) wave solutions in the noiseless
case [20]. For D = 0, a typical solitary solution is [19,20]

φ(y, t = 0) = φa + (φb − φa)sn2(csy, κ), (2)
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Fig. 1. (Color online) For D = 0, ε = 0.12, and Ω = 0.35,
(a) space-time evolution of a typical wave solution φ(y, t) of
equation (1) and (b) the corresponding energy evolution.

where sn is the Jacobian elliptical function [25], with pa-
rameters given by

cs =
√

f(φc − φa)/(12ua),
u = c + f(φa + φb + φc)/3,

κ =
√

(φb − φa)/(φc − φa).

In our computation we fix the following parameter values:
c = 1.0, f = −6.0, γ = 0.1, K = 1.0, φa = 0, φb = 0.0625,
and φc = 0.125, which are chosen because the wave sys-
tem can potentially exhibit distinct energy states [20]. The
spatial discretization parameter is chosen to be N = 128.
The 2π spatial periodicity in the initial solitary wave stip-
ulates the following choice for a: a = −0.2871. The forcing
amplitude ε is taken to be the control parameter. For dif-
ferent choices of the parameters ε and Ω, various wave
patterns including periodic and turbulent patterns can be
generated [20]. A typical solution of equation (1) in the
deterministic case (D = 0) is shown in Figure 1a, which
apparently exhibits features of spatiotemporal chaos.

The wave energy is given by

E(t) =
1
2π

∫ 2π

0

[
φ2(y, t) − a

(
∂φ(y, t)

∂y

)2
]

dy. (3)

The evolution of the energy for the wave pattern in Fig-
ure 1a is shown in Figure 1b. For nonzero D and ε greater
than a certain value εc, the system exhibits two distinct
energy states so that the wave energy changes intermit-
tently, as shown in Figure 2. The times that the system
stays in the low-energy and high-energy states are found
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Fig. 2. (Color online) For D = 0.055 and Ω = 0.65, evolution
of the wave energy for four values of the noise amplitude (a)
ε = 0.11, (b) ε = 0.12, (c) ε = 0.13, and (d) ε = 0.14.

to be exponentially distributed, and the respective average
times depend on the driving amplitude ε. An observation
is that the system tends to stay in the high-energy state
for relatively long time for moderate value of ε.

How do we ensure that the intermittent energy bursts
are not merely a numerical artifact? This issue is partic-
ularly important as computations with nonlinear PDEs
usually involve more sophisticated integration and trans-
form procedures than those required for ODEs. As for the
integration of any PDE, the key factors determining the
accuracy, the reliability, and the feasibility of numerical
solutions are the step sizes of spatial and temporal dis-
cretization. To place a proper grid for spatial discretiza-
tion, we note that the wavelength of the periodic forcing
defines a natural spatial scale for the system. For the wave
patterns generated by the model, we find that their spatial
scales are not significantly smaller than the forcing wave-
length (2π for K = 1 in our examples), as can be seen from
Figure 1a. Thus, a resolution corresponding to a hundred
grid points in the basic 2π cell suffices for spatial dis-
cretization. We use N = 128. To determine the time step h
for numerical integration, we use the following procedure.
We set D = 0 and first use the forward Euler method
to perform the time integration. This method is accurate
and stable when the Courant-Friedrich-Levy condition1 is
fulfilled, which states that, given a spatial discretization,
a time step larger than some computable quantity should
not be taken or, equivalently, the time step should be small
to ensure that information has sufficient time to propa-
gate through the spatial discretization. (The comparison
is meaningful, of course, when the PDE is in a dimension-
less form.) In our case, the computable quantity is energy.
Its minimal value is of the order of 10−2. Our first try

1 E.W. Weisstei, “Courant-Friedrich-Levy Condition”, From
MathWorld – A Wolfram Web Resource (http://mathworld.
wolfram.com/Courant-Friedrich-LevyCondition.html).

is thus h = 10−2. For the same parameter setting as in
Figure 2a, we find that there are energy bursts initially
but the solution typically diverges after a finite amount
of time, indicating that the bursts observed are artificial
and that the step size should be reduced. We find, for
h = 10−3, there are no energy bursts and the solutions
do not diverge, indicating that this choice of the step size
may be proper. The forward Euler method is, however, a
first-order method. The observation that its solution di-
verges for h = 10−2 but converges for h = 10−3 leads to
the speculation that, for a higher-order method, solutions
would not diverge for both choices of the step size. Indeed,
when the fourth-order Runge-Kutta method is used, the
solutions are stable and the energy evolutions are quali-
tatively the same for both step sizes. Furthermore, there
are no energy bursts. These experiments thus suggest that
for the chosen parameters, in the deterministic case there
should be no energy bursts and, the choice of h = 10−3

is suitable for both low- and high-order methods. For the
stochastic case (i.e., D > 0), the standard integration rou-
tine is typically of low order. This justifies our choice of
h = 10−3. The systematic tests and reasoning also suggest
that the intermittent energy bursts observed for D > 0 in
Figures 2b–2d are not numerical artifacts but are a gen-
uine behavior of the system. Insofar as the above heuristic
rules for choosing the spatial grid size and the time step
for integration are followed, the computational results do
not depend on variations in these numerical parameters,
as we have observed.

To explore the mechanism responsible for the inter-
mittency in energy, it is necessary to examine the phase-
space dynamics. A convenient representation of the phase
space is the complex, time-dependent coefficient φ̃k(t) in
the pseudo-spectral expansion. Alternatively, we can use
the amplitude Ak(t) and the phase ϑk(t) of φ̃k(t). Since
the initial condition is a solitary wave, it is convenient to
use the reference frame riding with this wave: z = y − Ωt
and τ = t. In this frame, the solitary wave is simply a fixed
point in the two-dimensional plane [Ak(τ), θk(τ)] with a
fixed energy, where θk(τ) = ϑk(t) + kΩt. This is true for
any other planes, say [Ak(τ), Ak+1(τ)]. In the determin-
istic case (D = 0), a wave that generates regular energy
oscillations is represented by a cycle in such a plane. as
shown in Figure 3a for D = 0. As noise is turned on, we
expect the cycle to be smeared out and, in addition, the
trajectory can wander out of the original region confined
by the cycle, generating energy bursts. Such a behavior
is shown in Figures 3b and 3c. The intermittent nature
of the energy bursts is hinted by the noticeable differ-
ence between the densities of the trajectory points in the
original, cycle-confined region and in the newly accessible
region. Thus we see that, in an infinite dimensional nonlin-
ear system, intermittent energy bursts are generated by a
“metamorphic” expansion of the dynamical invariant set
in the phase space on which trajectories of the system
live. In low-dimensional dynamical systems, this mecha-
nism typically leads to an exponential distribution of the
time intervals between successive bursts [26], which also
holds for our system, as we have verified numerically.
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Fig. 3. (Color online) For ε = 0.193 and Ω = 0.65, a con-
tinuous trajectory in a two-dimensional representation of the
phase space: (a) the deterministic case D = 0, (b) D = 0.075,
and (c) D = 0.125. For D = 0, the dynamical invariant set on
which the trajectories live is topologically a cycle, giving rise
to regular energy oscillations (Fig. 2a). For D > 0, the set ex-
plodes to a larger phase-space region, generating intermittent
energy bursts (Figs. 2b, 2c).

Regarding the region of the original cycle as the low-
energy state and the region that the trajectory bursts into
as the high-energy state, we see that, under noise, the
system visits the states intermittently. For small forcing
amplitude ε, the system tends to spend more time in the
low energy state (Fig. 2b), so the average energy of the
system is small. For moderate values of ε, the system is
more likely to be found in the high-energy state (Fig. 2c),
leading to a large average energy. For both cases (Figs. 2b
and 2c), the rate at which the system switches between
the two states is relatively small. For large values of ε,
however, the switching rate is substantially increased, as
shown in Figure 2d, which effectively reduces the average
energy of the system. All these lead to a “resonance-like”
behavior in the system energy as a function of the forcing
amplitude, as shown in Figure 4a.

The energy resonance phenomenon can be explained
by examining the system’s average dwelling times τl and
τh in the low- and high-energy state, respectively. In par-
ticular, we find that, as ε is increased, τl decreases contin-
uously, so that the probability for the system to stay in the
low-energy state keeps decreasing. However, τh increases
first, reaches a maximum, and then decreases. These be-
haviors are shown in Figure 4b. The consequence of the
combined effect of the behaviors of τl and τh is that, the
average energy of the system increases first, reaches a
maximum, and then decreases, leading to the observed
resonance-like phenomenon. These observations suggest
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Fig. 4. (Color online) For D = 0.055, Ω = 0.65, (a) average
wave energy versus the forcing amplitude ε, and (b) average
dwelling times of the system in the low (open diamonds) and
high (open circles) energy state versus ε.

that, despite the sophisticated spatiotemporal nature of
the wave system, the root of the energy resonance phe-
nomenon2 is likely to have a low-dimensional origin: con-
tinuous symmetry breaking in the Langevin dynamics of
particle motion in a one-dimensional double potential well
system.

3 Toy potential model

Imagine particle motion in a double-well potential system,
where noise is present and damping is heavy so that the
acceleration of the particle can be neglected. The motion
is thus described by the classical Langevin equation, a
paradigmatic model for understanding SR [4,5]. In most
previous works on SR, the potential wells are chosen to be
symmetric and the focus has been on the rate of transi-
tions between the wells. This treatment has indeed proven
to be effective when considering measures that depend
mainly on the transition rate, such as the signal-to-noise
ratio, correlation, entropy [4,5] or even the more recent av-
erage phase-synchronization time [27]. The relative times
that the particle spends in different wells have no direct
influence on these measures, which justifies the symmetry
between the wells. Our interest here is in physical quanti-
ties that not only depend on the transition rate, but more
importantly, assume distinct values when the particle is
in different wells. Thus the relative dwelling times of the
particle in the wells become the key to our problem.

To break the symmetry in the dwelling time, a conve-
nient approach is to assume that the depths of the wells
are different. As a system parameter, say ε, is changed,
the depths vary and, in general, their dependences on the
parameter will be different. To be concrete, we consider a
physical quantity Z of interest that assumes a larger value
when the particle is in one of the wells, say the right well.
As the depth of the right well is increased, for fixed noise
amplitude, the average dwelling time of the particle in the

2 Similar behaviors have been found for spatially nonuniform
noise.
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right well will increase. If, at the same time, the depth of
the left well is reduced, the particle tends to spend less
time in the left well. As a result, 〈Z〉, the average value of
Z, is increased. This trend continues insofar as the right-
well depth keeps increasing and simultaneously, the left-
well depth decreases. For some optimal value of ε = ε̄, the
right-well depth reaches a maximum. If the left-well depth
has become small and does not change appreciably about
ε̄, the particle will spend a maximally possible time in the
right well, leading to optimization of 〈Z〉.

A suitable potential system can indeed be constructed
based on the above considerations. For instance, we have
found the following potential:

U(x) = −x2/2 + x4/4 + hx + f1(x, ε) + f2(x, ε), (4)

in equation (4), ε is a control parameter, and the functions
f1(x, ε) and f2(x, ε) are given by

f1(x, ε) = exp {a[b − (c − g1(x, ε))2]},
f2(x, ε) = exp [dg2(x)] − 1,

where g1(x, ε) = εek1(x−1), g2(x, ε) = εeK2(x+1), a, b, c, d,
h, k1, and k2 are parameters. In the absence of f1(x, ε) and
f2(x, ε), U(x) is a tilted double-well potential with two lo-
cal minima: one at x = −1 and another at x = +1. The
functions f1(x, ε) and f2(x, ε) are chosen such that they
are appreciable for x near −1 and +1, respectively, and
they approach zero rapidly as x deviates from their respec-
tive local minima. Thus the dependence of the depth of the
right-side well on ε is mainly determined by f1(+1, ε), and
f2(−1, ε) determines the dependence of the left-well depth
on ε. In particular, as shown in Figure 5a, for x = +1, as ε
is increased from zero, f1(+1, ε) increases, reaches a max-
imum, and then decreases. However, f2(−1, ε) decreases
continuously with ε. As a result, the depth of the right
well exhibits a pronounced maximum as a function of ε
and, in the same ε-range the depth of the left well de-
creases mostly and attains a local miminum for a value of
ε near that for which the right well depth reaches maxi-
mum. These features are precisely what is required for the
symmetry-breaking phenomenon described in the preced-
ing paragraph.

An example of the dependences of the depths of the
potential wells on the control parameter ε is shown in
Figure 5a. Theoretically, the average dwelling time of a
particle in a well is given by the Kramer’s formula [28]. To
obtain the actual dwelling times, we simulate the Langevin
dynamics:

dx/dt = −dU/dx + Dξ(t),

where ξ(t) is a Gaussian random process of zero mean
and unit variance. The resulting dwelling times Tl (open
squares) and Tr (open circles) in the left and right well,
respectively, are shown in Figure 5b as functions of ε for
D = 0.28. We observe that Tr exhibits a pronounced max-
imum for ε̄ ≈ 2, about which Tl assumes much smaller
values. Suppose the physical quantity Z possesses larger
values when the particle is in the right well. We can then
expect Z to be maximized about ε̄.

0 1 2 3 4
ε

0

0.1

0.2

0.3

0.4

0.5

0.6

ΔU

0 1 2 3 4
ε

10
1

10
2

10
3

10
4

10
5

T

(b)

Fig. 5. (Color online) For the potential system (4), (a) the
depths of the right (red) and the left (black) potential wells
versus the control parameter ε, and (b) the actual dwelling
time of a Langevin particle in the right (red, open circles) and
in the left (black, open squares) wells. Parameters are a = 0.3,
b = 0.56, c = 0.6, d = 0.13, e = −0.35, f = −1, and g = 0.3.

4 Conclusion

In summary, we have uncovered a phenomenon in spa-
tiotemporal dynamical systems described by nonlinear
PDEs: in a noisy environment, physical quantities such as
the wave energy can be optimized by continuous variation
of a control parameter. The dynamical mechanism for this
phenomenon contains two essential ingredients: (1) noise-
induced switchings between two coexisting states with dis-
tinct values of energy and (2) symmetry breaking in the
dwelling times of the system in the two states. Langevin
dynamics in a class of asymmetric double-well potential
provides a physically intuitive understanding of these in-
gredients. The energy optimization problem in spatially
extended dynamical systems can be important for appli-
cations such as enhancing energy output in small-scale
systems, e.g., microelectromechanical resonators, mathe-
matically also described by nonlinear PDEs. On the con-
trary, large energy output can be of significant concern
in other spatiotemporal systems such as fluid and plasma
systems, where abnormally large energy may cause severe
damage to the system and surroundings.

This work is supported by AFOSR under Grant No. FA9550-
06-1-0024.
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