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ABSTRACT

Recent interest in exploiting machine learning for model-free prediction of chaotic systems focused on the time evolution of the dynamical
variables of the system as a whole, which include both amplitude and phase. In particular, in the framework based on reservoir computing,
the prediction horizon as determined by the largest Lyapunov exponent is often short, typically about five or six Lyapunov times that con-
tain approximately equal number of oscillation cycles of the system. There are situations in the real world where the phase information is
important, such as the ups and downs of species populations in ecology, the polarity of a voltage variable in an electronic circuit, and the
concentration of certain chemical above or below the average. Using classic chaotic oscillators and a chaotic food-web system from ecology as
examples, we demonstrate that reservoir computing can be exploited for long-term prediction of the phase of chaotic oscillators. The typical
prediction horizon can be orders of magnitude longer than that with predicting the entire variable, for which we provide a physical under-
standing. We also demonstrate that a properly designed reservoir computing machine can reliably sense phase synchronization between a
pair of coupled chaotic oscillators with implications to the design of the parallel reservoir scheme for predicting large chaotic systems.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0006304

The idea of using reservoir computing, a type of recurrent neural
networks, for predicting chaotic systems was articulated previ-
ously but recently it has gained momentum and focused atten-
tion. The core of a reservoir computing machine is a nonlinear
dynamical network capable of self-evolution. After proper train-
ing with time series data from the target chaotic system to be
predicted, starting from the same initial condition, the machine
can generate a dynamical trajectory that stays close to the true
trajectory but only for a limited amount of time, as stipulated
by the hallmark of chaos: sensitive dependence on initial condi-
tions. In existing studies, the goal has been to predict the time
evolution of the full dynamical variables of the target system for
which the prediction horizon is typically on the order of several
Lyapunov time. In physical or biological applications, it is often
desired to know the tendency of state evolution, i.e., the phase or
the ups and downs of some key dynamical variables of interest.
The main point of this article is that if the goal is to predict the
phase evolution of the system, then the prediction horizon can
be orders of magnitude longer than that with predicting the full

dynamical variables. We demonstrate this result using two repre-
sentative chaotic oscillators and provide a heuristic explanation
for the long phase prediction horizon with support from the esti-
mated Lyapunov spectrum of the reservoir computing system. We
also test the ability for a reservoir computing machine to correctly
sense and distinguish phase coherence of coupled chaotic oscilla-
tors with the implication to the utilization of the configuration of
parallel reservoirs.

I. INTRODUCTION

The idea and principle of exploiting reservoir computing, a type
of recurrent neural networks1–4 in machine learning, for predicting
chaotic systems were first laid out about two decades ago.1,3 With the
rapid development of the field of machine learning, interest in reser-
voir computing as a powerful paradigm for model-free prediction of
nonlinear dynamical systems spiked in recent years.5–21 In general,
there are three main components in a reservoir computing machine:
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an input layer, a high-dimensional neural networked system (the
reservoir), and an output layer. The input layer maps the typically
low-dimensional, time series data into the high-dimensional state
space of the reservoir neural network, and the output layer projects
the high-dimensional dynamical evolution of the neural network
state back into the low-dimensional time series (readout). Training
is administered to adjust the parameters associated with the projec-
tion matrix of the output layer to minimize the difference between
the output and the true input time series. Because of the nature
of the recurrent neural network, the reservoir network structure
and parameters are chosen a priori and fixed during the training
and prediction phases so as to achieve highly efficient learning. In
terms of hardware realization, reservoir computing can be imple-
mented using electronic, time-delay autonomous Boolean systems5

or high-speed photonic devices.6

In existing work on reservoir computing-based prediction of
chaotic systems, the goal has been to predict the time evolution
of the full dynamical variables of interest7,8,11–14,16,18,20 that encom-
pass both amplitude and phase information. The prediction horizon
is determined by the inverse of the largest Lyapunov exponent of
the target system. For classic chaotic systems such as the Rössler
or Lorenz oscillators, the prediction time with some reasonable
accuracy is typically short: about five or six Lyapunov times that cor-
respond to an approximately equal number of oscillation cycles of
the underlying system.7,8,11 Indeed, because of the sensitive depen-
dence on initial conditions (the hallmark of chaos), without state
updates to reduce and reset the error in the dynamical variables
between the reservoir and true systems from time to time,21 long-
term prediction of the detailed evolution of the dynamical variables
as a whole is fundamentally unachievable, regardless of the specific
methodology.

The main point of this paper is that there are situations in
physics, biology, and chemistry where the phase information is
important. In general, any oscillatory dynamical variable can be
regarded as containing two components: an amplitude and a phase
component, where both are time-dependent and the latter charac-
terizes the ups and downs of the variable. Often, one is interested in
the long-term behavior of the ups and downs of some key dynamical
variables of physical interest. For example, in ecology, the tendency
for the population of a species to go up or down in the future is of
critical importance, while the actual number of the species may be
less relevant. In a chaotic electronic circuit, one may be interested in
the time evolution of a voltage variable but only in terms of its polar-
ity, e.g., in logic circuit design. In such cases, complete information
about the time evolution of the dynamical variables is not neces-
sary—only the phase information is needed. Herein, we demonstrate
that reservoir computing can be powerful for long-term prediction
of the evolution of the phase of chaotic oscillators. The heuristic rea-
son lies in that, for a continuous-time chaotic oscillator, the phase
evolution corresponds to the Lyapunov exponent with respect to
perturbations along the flow. In an ideal situation, along the flow
the length of an infinitesimal vector is unchanged, leading to a zero
Lyapunov exponent. When a reservoir computing system has been
properly trained, it tends to reproduce the dynamical behaviors and
time series of the original dynamical system, i.e., it strives to achieve
“synchronization” with the original dynamical system but phase
synchronization22 can be achieved, often much more readily, than

complete synchronization. Because of the discrete time nature of the
reservoir system, the Lyapunov exponent determining the phase of
the system will never be zero but can have a value close to zero when
training has been accomplished. The inverse of this near-zero expo-
nent value can be large, giving rise to a large prediction time. Indeed,
we find that the typical phase prediction horizon of chaotic oscilla-
tors can be on the order of hundreds of natural cycles of the system
oscillation. Not only can the phase of a single chaotic oscillator be
predicted for a long time, we also demonstrate that distinct levels of
phase coherence between a pair of coupled chaotic oscillators can
be correctly “sensed” when the variables from both oscillators are
input into a single, integrated reservoir. In contrast, an independent
input scheme that employs two separated reservoirs, one receiving
input from an individual but different oscillators fails to sense phase
coherence. This has implications to the design of parallel reservoir
systems for predicting large chaotic systems.

II. RESERVOIR COMPUTING SCHEME TO PREDICT

PHASE AND SENSE PHASE COHERENCE

The working of reservoir computing to predict the phase of
a chaotic oscillator can be briefly described as follows. Let u(t) be
the Din-dimensional input vector constituting sequential measure-
ments of the dynamical variables of oscillator. At time t, u(t) is
mapped into a high-dimensional vector of dimension Dr through
a pre-defined input matrix Win of dimension Dr × Din, where
Dr � Din. The input data vector to the reservoir is Win · u(t).
The state of the reservoir dynamical network at time t is r(t),
whose time evolution follows the nonlinear updating rule: r(t +

1t) = tanh [A · r(t) + Win · u(t)], where A is the connection matrix
defining the structure and topology of the reservoir network. The
updated reservoir state is mapped to an output vector v of dimen-
sion Dout as v(t + 1t) = Wout · f[r(t + 1t)], where the reservoir-to-
output matrix Wout has dimension Dout × Dr, Dout � Dr and f(r)
is a nonlinear output function whose components are chosen as
fi(r) = ri and fi(r) = r2

i for odd and even indexes i (i = 1, . . . , Dr),
respectively.7,12

The elements of the input matrix Win and those of the reservoir
network matrix A are pre-determined so, together with their sizes,
they constitute the set of hyperparameters of the recurrent neural
network. Especially, a large number of elements of Win are set to
zero so that every node in the network receives exactly one scalar
component of the input vector u(t) but each such component is con-
nected to [Dr/Din] nodes in the network. The non-zero elements
of Win are chosen randomly from a uniform distribution in the
range [−σ , σ ]. A common choice of the reservoir network is a large,
sparse, directed, or undirected random network whose elements or
link weights are appropriately scaled so that the value of its spectral
radius (the largest eigenvalue) ρ can be freely adjusted. For a vari-
ety of nonlinear, chaotic, and spatiotemporally chaotic systems, the
choice of the value of ρ cannot be arbitrary:18 for a specific system, a
unique interval of ρ values exists from which successful training and
the subsequent short-term prediction can be guaranteed. To choose
the values of all the hyperparameters is a difficult task, and no gen-
eral rules are available to guide the choices, although optimization
methods such as those based on Bayesian estimation can be used for
small networks.17 The elements of the output matrix Wout are set via
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training based on some standard optimization methods,7,12 which
can be accomplished with a proper amount of the input data u.

After the reservoir machine has been properly trained, it can
be used to predict the time evolution of the target system by simply
closing the system, i.e., to replace the input vector u(t) by the output
vector v(t) so as to make the whole reservoir machine a self-evolving
dynamical system. With the same initial condition as that of the tar-
get system, the machine can generate an oscillatory trajectory that
stays close to that of the target system for a finite amount of time.
The underlying phase variable can be calculated with the standard
approach of analytic signals based on the Hilbert transform.22

Under what circumstance is a reservoir computing machine
able to correctly sense phase coherence between a pair of coupled
chaotic oscillators? For near zero coupling, the oscillators are phase
incoherent. As the coupling strength is increased, there can be a

transition to phase synchronization: there is partial phase coher-
ence prior to the transition and complete phase coherence afterward.
There are two possible schemes to sense phase coherence, as shown
in Fig. 1. In the first scheme, the inputs from the two oscillators
are fed into a single reservoir network, where there is a probability
for each node in the network to receive inputs from both oscilla-
tors. At the output, the dynamical variables of the two oscillators are
separated through training. Their phase variables can then be cal-
culated, enabling correct sensing of phase coherence. We call this
the integrated input scheme. In the second scheme, as shown in
Fig. 1(b), the reservoir consists of two non-connected networks, each
receiving input from an individual (but different) oscillator. That
is, each node in each network receives inputs from one oscillator
only, and the outputs of the networks can be analyzed to determine
if there is phase coherence. This is essentially an independent input

FIG. 1. Two schemes of reservoir computing for sensing phase coherence between a pair of coupled chaotic oscillators. (a) Integrated input scheme: time series from both
oscillators are fed into a single reservoir network for training and prediction. (b) Independent input scheme: the reservoir consists of two non-connected networks, each
receiving input from an individual oscillator.
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scheme. We demonstrate that the integrated input scheme can cor-
rectly sense phase coherence while the independent input scheme
fails.

III. PREDICTING CHAOTIC PHASE EVOLUTION

We use a classic chaotic oscillator and a chaotic food-web
system from ecology to demonstrate that reservoir computing is
capable of long-term prediction of phase evolution.

A. Chaotic Rössler oscillator

The system equations23 are ẋ = −y − z, ẏ = x + 0.15y, and
ż = 0.2 + z(x − 10). We generate time series x(t), y(t), and z(t) with
integration step size 1t = 0.02. The values of the parameters for the
reservoir computing system are Din = Dout = 3, Dr = 500, σ = 0.1,
network sparsity sp = 0.98, network spectral radius ρ = 0.01, and
the ridge parameter for optimization is η = 10−4. After training, the
neural machine is closed and becomes a self-evolving dynamical sys-
tem: it generates x(t + 1t), y(t + 1t), and z(t + 1t) from x(t), y(t),
and z(t), respectively. Figure 2(a) presents an example of prediction,
where the predicted time series y(t) together with its true evolution
are shown, and time is in units of T (T ≈ 6.060), the average period
of oscillation of the Rössler chaotic attractor. It can be seen that
the predicted waveform matches with the true waveform but only
for about five periods. That is, the reservoir computing machine is
able to accurately predict the evolution of the dynamical variable as
a whole for about five oscillation cycles. The remarkable observa-
tion is, for t/T > 5, even though the predicted and true waveforms
do not agree with each other, the mismatch occurs only in ampli-
tude. In fact, the phases, i.e., the ups and downs, of the predicted and
true waveforms match exactly, indicating temporal phase synchro-
nization between the two waveforms. The phase match occurs for a
longer time duration as exemplified in Fig. 2(b). Since the reservoir
computing system represents only an approximate replica of the true
system, phase match or synchronization cannot last indefinitely: at
certain time, a phase mismatch will be inevitable.

To find out how long it takes for a mismatch to occur, we cal-
culate the phase variables of the predicted and true waveforms using
the standard Hilbert transform approach.22 Figure 2(c) shows the
absolute phase difference |1φ| as a function of time for a large num-
ber of realizations of the reservoir computing prediction. A phase
mismatch occurs when |1φ| exceeds 2π [indicated by the horizontal
line at 2π in Fig. 2(c)]. It can be seen that the phase synchronization
time is between about 400 and 800 average cycles of oscillation. A
histogram of the phase synchronization time is shown in Fig. 2(d)
with the mean time about 600. That is, on average, the reservoir
computing machine is capable of accurately predicting the phase of
the chaotic oscillator for about 600 cycles. As a reference, we also
include a distribution of the prediction time of the actual dynamical
variable (in both amplitude and phase)—the narrow peak near zero
in Fig. 2(d) with a magnified view in the inset, where the prediction
horizon is mostly less than five cycles of oscillation. Thus, if one is
content to predict the phase of the dynamical variable, the predic-
tion horizon can be two orders of magnitude longer than that with
predicting the actual variable itself!

What is the dynamical mechanism behind the remarkable
power of a reservoir computing machine for long-term phase
prediction? The answer lies in the Lyapunov exponents. In
particular, a well trained reservoir machine can be viewed as a
high-dimensional replica of the target chaotic oscillator. For a con-
tinuous dynamical system, the evolution of the phase is determined
by the null Lyapunov exponent.22 Strictly, the reservoir computing
machine is a discrete time dynamical system that evolves the state
over time step 1t. However, for sufficiently small 1t, the reser-
voir system is approximately continuous in time. Although none of
the Lyapunov exponents is exactly zero, the one that is closest to
zero determines the phase evolution. The phase prediction time is
determined by the inverse of this near zero exponent, which can be
large.

To test this mechanism, we calculate the Lyapunov spec-
trum of the reservoir computing machine. Note that the network
in the reservoir has Dr nodes, where Dr � Din, which is thus a
high-dimensional dynamical system with Dr Lyapunov exponents
[in Fig. 2, Dr = 500]. Figure 2(e) shows, from one predicted tra-
jectory of the reservoir network, all the Lyapunov exponents.
Figure 2(f) displays a histogram of the Lyapunov exponent that is
closest to zero, whose center cannot be distinguished from zero.
Since the average phase prediction time is proportional to the
inverse of this exponent, the implication is that the phase of the
chaotic oscillator can be accurately predicted for significantly longer
time than that with predicting both amplitude and phase. Qualita-
tively, this is consistent with the result in Fig. 2(d).

From Fig. 2(e), we see that the remaining, vast number of
Lyapunov exponents have large negative values. The emergence of
the large set of very negative exponents is necessary, which can be
understood as follows. For Dr = 500, in order for the reservoir sys-
tem, a 500-dimensional dynamical system to be trained as a replica
of the original three-dimensional chaotic Rössler system, the high-
dimensional system must be “squeezed” along 497 directions in the
500-dimensional phase space, thereby requiring 497 very negative
Lyapunov exponents.

B. A chaotic food-web system

We study the chaotic food-web system given by24

ẋ = x − 0.2xy/(1 + 0.05x), ẏ = −y + 0.2xy/(1 + 0.05x) − yz, and
ż = −10(z − 0.006) + yz, where x, y, and z represent vegetation, the
normalized populations of herbivores and predators, respectively.
The system exhibits approximately uniform phase evolution but
with chaotic amplitude modulations. To obtain the training data,
we integrate the system using time step 1t = 0.02, and the length of
the training dataset is 1600. The parameter setting of the reservoir
computing system is Din = Dout = 3, Dr = 600, σ = 1, sp = 0.98,
ρ = 1.37, and η = 1 × 10−4. Figure 3(a) shows the result of pre-
dicting the evolution of the herbivores population y(t) in the time
interval 0 < t/T < 15, where T ≈ 6.626 is the average oscillating
period. It can be seen that the reservoir computing machine can
accurately predict about 10 cycles of y(t) (in both amplitude and
phase) but the predicted phase evolution is accurate in the entire
time interval and much beyond, as shown in Fig. 3(b) for 0 < t/T
< 30. Figure 3(c) shows the evolution of the absolute phase dif-
ference between the predicted and true variable for 1000 random

Chaos 30, 083114 (2020); doi: 10.1063/5.0006304 30, 083114-4

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 2. Using reservoir computing to predict phase evolution of the chaotic Rössler oscillator and the Lyapunov exponents of the reservoir computing system. (a) An example
of the predicted and true evolution of the dynamical variable y(t). Time is measured in units of T , the average oscillation period. The predicted and true waveforms match
but only for a few cycles of oscillation. In contrast, there is a match in the phases of the two waveforms for the time interval plotted. (b) The phase match occurs in a longer
time interval. (c) The absolute phase difference between the predicted and true waveforms vs time for a large number of statistical realizations of prediction run. A mismatch
occurs if the absolute phase difference exceeds 2π (the horizontal line). The time horizon for accurate prediction of phase falls in the range between 400 and 800 cycles of
oscillation. (d) Statistical distribution of the phase prediction time, where the average prediction horizon is about 600 cycles. In contrast, the time horizon for predicting the
dynamical variable itself is less than six cycles, as indicated by the peak near zero and the inset. (e) For a reservoir network of dimension Dr = 500, the corresponding 500
Lyapunov exponents. The values of the first three exponents are (λ1, λ2, λ3) ≈ (0.090, 0.002,−9.868), which agree with the true values of the three Lyapunov exponents
[approximately (0.064, 0.0025,−4.552)] of the chaotic Rössler system in the bulk part, while the values of the remaining 497 exponents are largely negative. (f) Distribution
of the exponent value that is closest to zero from 1000 statistical realizations of prediction run. The mean value of this exponent cannot be distinguished from zero, giving a
long phase prediction horizon.
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FIG. 3. Prediction of the state evolution of a chaotic food-web system and Lyapunov exponents of the reservoir computing system. (a) and (b) Predicted and true time series
of the herbivores population y(t) in the time interval 0 < t/T ≤ 15 and 0 < t/T ≤ 30, respectively. For the dynamical variable itself, its evolution can be accurately predicted
for about 10 cycles of oscillation but the phase can be predicted for a much longer time. (c) The absolute phase difference between the predicted and true variable vs time
for 1000 random realizations, where the horizontal line denotes |1φ| = 2π . (d) Statistical distribution of the phase prediction time with the mean value of approximately 700
cycles. The narrow peak near ten cycles is the distribution of the prediction time of the dynamical variable in both amplitude and phase, which is magnified in the inset. (e) All
600 Lyapunov exponents of the reservoir network system. The values of the first three exponents are (λ1, λ2, λ3) ≈ (0.061, 0.003,−2.870), which agree well with those
of the food-web system: approximately (0.060,−2.178 × 10−4,−2.667). The values of the remaining 597 exponents are strongly negative. (f) Distribution of the second
Lyapunov exponent, whose mean value cannot be distinguished from zero, giving rise to a long average phase prediction time.
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realizations, where the phase prediction time (or the phase synchro-
nization time) is the time when |1φ| reaches 2π . The histogram
of the phase prediction time is shown in Fig. 3(d), whose mean is
approximately 700 cycles. In comparison, the distribution of the pre-
diction time of the dynamical variable is centered about 10 cycles,
as shown by the narrow peak near zero in Fig. 3(d) and the inset.
The phase evolution of the chaotic food-web system can be predicted
about two orders of magnitude longer than that with predicting the
evolution of the entire variable.

Since the size of the reservoir network is Dr = 600, the sys-
tem has 600 Lyapunov exponents, as shown in Fig. 3(e). As
indicated in the caption of Fig. 3, the first three exponents
agree with the respective true values of the actual system. The
remaining 597 exponents are strongly negative, as the reser-
voir system has been well trained so its dynamics in the 600-
dimensional phase space is effectively reduced to three-dimensional.
The distribution of the second Lyapunov exponent is shown in
Fig. 3(f), whose mean cannot be statistically distinguished from zero,

FIG. 4. Reservoir computing based sensing of phase coherence between a pair of coupled chaotic Rössler oscillators with the integrated input scheme. The left, middle,
and right columns correspond, respectively, to phase incoherence (ε = 0.01, average oscillation period T ≈ 6.00), partial phase coherence (ε = 0.027, T ≈ 6.08), and
complete phase coherence (ε = 0.035, T ≈ 6.10). (a) and (b) True and predicted evolution of the absolute phase difference |δφ(t)| between the two oscillators, respectively,
for ε = 0.01. (c) The probability distribution of the phase coherence time, i.e., the time during which |δφ(t)| stays within 2π , for ε = 0.01. (d)–(f) The true, predicted evolution
of |δφ(t)|, and the probability distribution of the phase coherence time for ε = 0.027, respectively. (g) and (h) The true and predicted evolution of |δφ(t)| for ε = 0.035,
respectively. (i) The probability distribution of |δφ(t)| for ε = 0.035, where it is in the phase synchronization regime so that the phase coherence time is infinite. Parameter
values of the reservoir computing machine are Dr = 1000, σ = 0.1, sp = 0.97, ρ = 0.01 for the left column, ρ = 0.04 for the middle and right columns, η = 10−4, and
training time is 1600 with time step 1t = 0.02. The main message is that reservoir computing with the integrated input scheme is able to accurately sense the degree of
phase coherence between a pair of coupled chaotic Rössler oscillators.
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giving rise to the observed long time horizon for predicting the
phase.

IV. SENSING PHASE COHERENCE WITH RESERVOIR

COMPUTING

The results in Sec. III demonstrate that a successfully trained
reservoir computing system is able to predict the phase evolution of

a chaotic oscillator for a significantly longer time than that with pre-
dicting the evolution of the state variable through temporal phase
synchronization between the reservoir and the target systems. Phase
synchronization of this sort is between the target chaotic system
and machine, which is a form of artificial or synthetic phase syn-
chronization. What about genuine phase synchronization among
coupled chaotic oscillators? In particular, can a reservoir comput-
ing machine sense the phase coherence between a pair of coupled
chaotic oscillators?

FIG. 5. Reservoir computing based sensing of phase coherence between a pair of spatially coupled chaotic food-web systems with the integrated input scheme. (a) and
(b) True and predicted evolution of the absolute phase difference |δφ(t)| between the two oscillators, respectively, for ε = 0.01. (c) The probability distribution of the phase
coherence time for ε = 0.01. (d)–(f) The true, predicted evolution of |δφ(t)| and the probability distribution of the phase coherence time for ε = 0.023, respectively. (g) and (h)
The true and predicted evolution of |δφ(t)| for ε = 0.025, respectively. (i) The probability distribution of |δφ(t)| for ε = 0.025 in the phase synchronization regime. Parameter
values of the reservoir computing system are Dr = 800, σ = 1.0, sp = 0.98, ρ = 1.29, 0.97, 1.13 for the left (ε = 0.01, T ≈ 6.42), middle (ε = 0.023, T ≈ 6.60), and
right (ε = 0.025, T ≈ 6.65) columns, η = 10−4, and training time is 1600 with time step 1t = 0.02. For the probability distributions in the bottom row, the respective
Bhattacharyya distances for the left, middle, and right panels are B ≈ 0.077, B ≈ 0.100, and B ≈ 0.003. The message is that reservoir computing with the integrated input
scheme is capable of accurately sensing the degree of phase coherence between a pair of coupled chaotic food-web systems.
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For a pair of coupled, slightly non-identical chaotic oscillators,
phase coherence can gradually emerge as the coupling parameter,
denoted as ε, is increased from zero.22 Depending on the degree
of phase coherence, there are three regimes of ε values of inter-
est: phase incoherence, partial phase coherence, and complete phase
coherence. In particular, let εc be the critical coupling value at which
a transition to phase synchronization or complete phase coher-
ence occurs. For ε & 0, the phase evolution of the two oscillators
is incoherent in that the absolute phase difference |δφ(t)| increases
linearly with time. For ε . εc, partial phase coherence sets in, which

is manifested as the occurrences of intermittent plateaus in which
|δφ(t)| fluctuates between zero and 2π , where the distribution of the
time duration of the plateaus follows a scaling law25,26 characteristic
of superpersistent chaotic transients.27–34 Complete phase coher-
ence arises for ε > εc, where |δφ(t)| remains bounded within 2π
indefinitely. Our question is whether reservoir computing is capa-
ble of distinguishing the three regimes of different levels of phase
coherence. In the following, we address this question by testing
two possible configurations of reservoir computing: integrated and
independent input schemes, as schematically illustrated in Fig. 1.

FIG. 6. Failure of the independent input scheme to sense phase coherence for the coupled chaotic Rössler system. (a) and (b) True and predicted evolution of the absolute
phase difference |δφ(t)| between the two oscillators, respectively, for ε = 0.01. (c) The probability distribution of the phase coherence time for ε = 0.01. (d)–(f) The true,
predicted evolution of |δφ(t)| and the probability distribution of the phase coherence time for ε = 0.027, respectively. (g) and (h) The true and predicted evolution of |δφ(t)|
for ε = 0.035, respectively. (i) The probability distribution of |δφ(t)| for ε = 0.035 in the phase synchronization regime. The two non-connected reservoirs have the same
set of parameter values: Dr = 500, σ = 0.1, sp = 0.98, ρ = 0.01, and η = 10−4, and training time is 1600 with time step 1t = 0.02. Both direct visualization (the top
and middle rows) and quantitative assessment in terms of the Bhattacharyya distance (the bottom row) indicate the failure.
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A. Integrated input scheme

A pair of coupled chaotic Rössler oscillators. The system
equations are

˙x1,2 = −ω1,2y1,2 − z1,2 + ε(x2,1 − x1,2),

˙y1,2 = ω1,2x1,2 + 0.15y1,2,

˙z1,2 = 0.2 + z1,2(x1,2 − 10),

where ω1,2 = 1.0 ± 1ω with the frequency mismatch 1ω = 0.015.
The three columns of Fig. 4 show, respectively, three distinct cases of

phase coherence. Especially, Figs. 4(a)–4(c) show, for ε = 0.01 in the
phase incoherence regime, the evolution of the actual absolute phase
difference |δφ(t)| between the two chaotic oscillators, the predicted
evolution, and the probability distributions of the true and predicted
time duration in which |δφ(t)| is below 2π , respectively. Comparing
the results in Figs. 4(a) and 4(b), we see that the reservoir computing
machine with the integrated input scheme can accurately sense that
the two coupled oscillators are not phase coherent at a quantitative
level. As shown in Fig. 4(c), the time duration for maintaining tem-
poral phase coherence is short, and the two distributions are close to
each other. The similarity between the two probability distributions

FIG. 7. Failure of the independent input scheme to sense phase coherence for the coupled chaotic food-web system. (a) and (b) True and predicted evolution of the absolute
phase difference |δφ(t)| between the two oscillators, respectively, for ε = 0.01. (c) The probability distribution of the phase coherence time for ε = 0.01. (d)–(f) The true,
predicted evolution of |δφ(t)| and the probability distribution of the phase coherence time for ε = 0.023, respectively. (g) and (h) The true and predicted evolution of |δφ(t)|
for ε = 0.025, respectively. (i) The probability distribution of |δφ(t)| for ε = 0.025 in the phase synchronization regime. The two independent reservoir networks are slightly
different in their values of the spectral radius: (ρ1, ρ2) = (0.4, 0.5) for the left column, (ρ1, ρ2) = (0.41, 0.69) for the middle column, and (ρ1, ρ2) = (0.41, 0.41) for the
right column. Other parameter values of the reservoirs are: Dr = 600, σ = 1, sp = 0.98, and η = 10−4.
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can be measured by the Bhattacharyya distance35 B, where B = 0
indicates that the two distributions are exactly identical. For the dis-
tributions in Fig. 4(c), we have B ≈ 0.017, indicating a high degree
of similarity. Essentially identical results are obtained for the par-
tial and complete coherence regimes, as shown in Figs. 4(d)–4(f)
and 4(g)–4(i), respectively, where the B values are B ≈ 0.034 and
B ≈ 0.011. (Note that, in the regime of complete phase coherence,
the phase synchronization time is infinite, so the distribution in
Fig. 4(i) is one on the absolute phase difference.) The results in
Figs. 4(a)–4(i) are thus strong evidence that the reservoir comput-
ing machine with the integrated input scheme is capable of sensing
the degree of phase coherence between a pair of coupled chaotic
oscillators.

A pair of coupled chaotic food-web systems. The system equa-
tions are24

˙x1,2 = x1,2 − 0.2x1,2y1,2/(1 + 0.05x1,2),

˙y1,2 = −b1,2y1,2 + 0.2x1,2y1,2/(1 + 0.05x1,2) − y1,2z1,2 + ε(y2,1 − y1,2),

z1,2 = −10(z1,2 − 0.006) + y1,2z1,2 + ε(z2,1 − z1,2),

where b1 = 1.1 and b2 = 1.055 so that the two food-web systems
are not identical. This set of equations describes the population
dynamics of two spatially adjacent patches with mutual dispersal of
herbivores and predators between the two patches. With the inte-
grated input scheme, we obtain essentially the same result as for the
case of a pair of coupled Rössler oscillators that reservoir computing
is capable of accurately sensing phase coherence and distinguishing
regimes of characteristically distinct phase coherence, as shown in
Figs. 5(a)–5(i) [with the same legends as in Fig. 4(a)–4(i)].

B. Independent input scheme

The independent input scheme is illustrated in Fig. 1(b), where
the dynamical variables of each oscillator are input into its own
reservoir network, and the two networks are not connected. Each
network is well trained with sufficient amount of input data from
the respective oscillator. Figure 6 shows the results with the same
coupled chaotic Rössler system as in Fig. 4. With the same legends
as in Figs. 4, Fig. 6 demonstrates complete failure of the reser-
voir computing system to sense phase coherence. In particular, for
ε = 0.01, where there is no phase coherence, while the true and
machine predicted |δφ(t)| both exhibit a monotonically increas-
ing behavior [Figs. 6(a) and 6(b), respectively], the Bhattacharyya
distance between the true and machine generated probability distri-
butions of the temporal phase coherence time is large: B ≈ 0.674.
For ε = 0.027, the true system exhibits partial phase coherence
with |δφ(t)| exhibiting intermittent plateaus [Fig. 6(d)]. However,
the reservoir machine does not give any such apparent plateau
[Fig. 6(e)]. In this case, the Bhattacharyya distance is still quite large:
B ≈ 0.622. For ε = 0.035, where there is complete phase coher-
ence with |δφ(t)| < 2π for all time in the true system [Fig. 6(g)],
the reservoir system generates a monotonically increasing behavior
[Fig. 6(h)]. In this case, the Bhattacharyya distance between the true
and machine generated probability distributions of the phase change
over a certain time interval is even larger: B ≈ 1.414. Results with the

coupled chaotic food-web system are characteristically the same, as
shown in Fig. 7.

V. DISCUSSION

Reservoir computing machines have been demonstrated to be
able to predict the state evolution of chaotic systems for several
Lyapunov time.7,8,11–14,16,18,20 While the actual prediction time varies
among different chaotic systems, for a typical chaotic system such as
the Rössler oscillator, this time corresponds to approximately sev-
eral cycles of oscillation. The fundamental reason for this relatively
short time horizon of prediction lies in the very nature of chaos: sen-
sitive dependence on initial conditions. In particular, a well trained
reservoir system is effectively a high-dimensional replica of the tar-
get system with inevitable differences between the two systems. Due
to chaos, the difference grows exponentially at the rate determined
by the largest positive Lyapunov exponent. Without state updating
with real data to correct the errors from time to time, long-term
prediction of the state evolution is unlikely.21

For any chaotic oscillator, its state naturally can be represented
by amplitude and phase variables. The main point of our work is
that if we relax the prediction criterion by being content to predict
the evolution of the phase variable only, then the prediction hori-
zon with reservoir computing can be much longer, typically at least
two orders of magnitude longer than that with predicting the evolu-
tion of the entire state. The basic reason is that the phase evolution
is determined by the null Lyapunov exponent of the system. For its
replica realized by reservoir computing, a strictly zero exponent does
not exist but its value can be quite close to zero, so the phase predic-
tion time, which is proportional to the inverse of this exponent, can
be long. This result should be encouraging for situations in physical,
biological, and applied sciences where the ups and downs of the sys-
tem are more important than the amplitude variations of the state
variables.

We have also studied the ability for reservoir computing to
sense phase coherence between a pair of coupled chaotic oscilla-
tors. The main finding is that the integrated input scheme, in which
data from both oscillators are sent to a single, large reservoir and are
thus completely mixed, has the power to discern different degrees
of phase coherence, e.g., phase incoherence, partial and complete
phase coherence. However, the independent input scheme, in which
the single, large reservoir is replaced by two smaller and uncon-
nected reservoirs, each receiving inputs from one oscillator, fails
to correctly sense phase coherence. The finding may have impli-
cations in using parallel reservoirs to predict large chaotic systems,
e.g., a system of a large number of coupled chaotic oscillators or a
spatially extended chaotic system of a large size. In particular, to
predict the state evolution of a very large spatiotemporal chaotic
system, if a single reservoir is used, its size needs to be so large
that computations are infeasible. It was demonstrated that a num-
ber of small, parallel reservoirs, each receiving data from a spatially
localized region with the whole spatial domain covered by all the
reservoirs altogether, can be used for the prediction task.12,15 While
short-term prediction is possible with the parallel reservoir scheme,
our result implies a potential difficulty for this scheme to sense the
collective dynamical behavior (e.g., phase coherence) of the whole
system.
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We discuss three general issues concerning reservoir comput-
ing based prediction of chaotic systems.

A. Prediction performance of reservoir computing for

different parameter values of the target dynamical

system

For a fixed set of parameter values of the target nonlinear
dynamical system, insofar as the reservoir computing machine is
trained based on time series obtained from the same set of parame-
ter values and the machine’s hyperparameter values are determined
via some standard optimization procedure as described in Sec. II,
the prediction accuracy, time interval and horizon change little with
respect to different initial conditions. For the configuration of the
reservoir computing machine studied in this paper, when there is a
change in the parameter values of the target system, it is only nec-
essary to re-train the machine using time series from the new set
of parameter values and to re-optimize the hyperparameter values.
Empirically, it is always possible to find a set of optimal hyperpa-
rameter values for different dynamical systems for a fixed structure
of the reservoir neural network.

B. Effects of network structure on training efficiency

and prediction accuracy

In our work, the reservoir network structure was chosen to
be random. A question is whether it is possible to optimize the
reservoir network structure to improve the training efficiency and
prediction accuracy. At the present, there is no general, theoreti-
cally justified answer to this question, but some recent studies have
provided insights. For example, in Ref. 18, two types of network
topology, random and small-world, were studied for predicting spa-
tiotemporal dynamical systems with the finding that the network
structure has no significant effects on the training efficiency and pre-
diction accuracy. In fact, both directed and undirected networks led
to similar performances, provided that the hyperparameter values
are chosen properly. In Refs. 17 and 36, reservoir computing with a
simple cyclic network structure as the standard echo state machine
was studied for prediction. In another recent work,20 similar perfor-
mances were obtained of reservoir computing with both symmetric
and completely random networks. These results are encouraging
from the point of view of experimental implementation of reser-
voir computing, as they suggest the possibility of using some simple
network structure to achieve the desired prediction performance.

C. Intuitive explanation for the failure of the

independent input scheme to sense phase coherence

While there has been no solid theoretical explanation for the
results of machine learning in general, the success of the integrated
input scheme and the failure of the independent input scheme to
sense phase coherence may be intuitively understood, as follows.
Note that phase coherence in the weakly coupling regime in a sys-
tem of coupled non-identical chaotic oscillators is an aspect of the
collective dynamics of the whole system. With the integrated input
scheme through training, the reservoir computing system is able to
learn well the collective dynamics of the target system as a whole,
even when the coupling is weak. However, with the independent

input scheme, each reservoir system learns the behavior of the spe-
cific oscillator that provides the input time series for training. As a
result, while each reservoir is able to independently predict the evo-
lution of its target oscillator for a finite amount of time, the time is
typically too short for the reservoir to be “aware” of the behaviors of
the other oscillators due to the weak coupling, leading to the failure
to detect phase coherence.
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