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One of the most challenging problems in network science is to accurately detect communities at

distinct hierarchical scales. Most existing methods are based on structural analysis and manipulation,

which are NP-hard. We articulate an alternative, dynamical evolution-based approach to the prob-

lem. The basic principle is to computationally implement a nonlinear dynamical process on all nodes

in the network with a general coupling scheme, creating a networked dynamical system. Under a

proper system setting and with an adjustable control parameter, the community structure of the net-

work would “come out” or emerge naturally from the dynamical evolution of the system. As the con-

trol parameter is systematically varied, the community hierarchies at different scales can be revealed.

As a concrete example of this general principle, we exploit clustered synchronization as a dynamical

mechanism through which the hierarchical community structure can be uncovered. In particular, for

quite arbitrary choices of the nonlinear nodal dynamics and coupling scheme, decreasing the cou-

pling parameter from the global synchronization regime, in which the dynamical states of all nodes

are perfectly synchronized, can lead to a weaker type of synchronization organized as clusters. We

demonstrate the existence of optimal choices of the coupling parameter for which the synchroniza-

tion clusters encode accurate information about the hierarchical community structure of the network.

We test and validate our method using a standard class of benchmark modular networks with two

distinct hierarchies of communities and a number of empirical networks arising from the real world.

Our method is computationally extremely efficient, eliminating completely the NP-hard difficulty

associated with previous methods. The basic principle of exploiting dynamical evolution to uncover

hidden community organizations at different scales represents a “game-change” type of approach to

addressing the problem of community detection in complex networks. Published by AIP Publishing.
https://doi.org/10.1063/1.5025646

A ubiquitous feature of complex networks in the real

world is a modular or a community structure, where nodes

are organized into sparsely linked groups with dense con-

nections within each group. The problem of detecting the

modular structure without knowledge such as the number

of communities is an non-deterministic polynomial hard

(NP-hard) problem. Most existing methods of community

detection rely on network structure analysis and manipu-

lation. Our work is motivated by the interplay between the

network structure and dynamics. In spite of the large body

of literature on the effect of the network structure on col-

lective dynamics, studies in the opposite direction, i.e., how

network dynamics reveal the network structure, are rela-

tively rare. Our idea is then to exploit network evolution

dynamics to solve the challenging problem of hierarchical

community detection. We demonstrate that it is indeed

feasible to achieve accurate detection of communities in

complex networks through clustered synchronization

dynamics. Given a network whose modular structure is to

be deciphered, we implement nonlinear oscillatory nodal

dynamics and systematically vary the coupling parameter.

We show that for proper values of the coupling parameter,

synchronous clusters at different scales emerge, which nat-

urally reveal the hierarchical community structure of the

network. That is, by tuning the coupling parameter, one

can obtain the hierarchical community structure at differ-

ent scales through simple observation of the network syn-

chronization dynamics. The emergence and evolution of

clustered synchronization can be analyzed by the standard

method of master stability function (MSF). The analysis

reveals the existence of distinct parameter intervals in

which the synchronous clusters correspond exactly to the

community structure at a particular scale. Combining

information from all the parameter intervals provides an

accurate picture of the hierarchical community structure

of the network. We validate the dynamical evolution based

approach using a benchmark network with adjustable

intra- and inter-community linkage and test it on a numbera)Electronic mail: csm1981@mail.ustc.edu.cn
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of real world networks. Our work represents a “game-

change” type of principle to address the problem of net-

work community detection.

I. INTRODUCTION

It is common for complex networks in the real world to

possess a modular or a community structure, where distinct

groups of nodes emerge with the characteristic that the links

within any individual group (community) are dense, whereas

inter-group linkage is sparse.1 Given a network, the number

of possible communities is often not known a priori and,

even if known, their sizes are typically different. Under such

circumstances, to determine whether there are indeed com-

munities and, for each and every node, the community that it

belongs to is an computationally extremely challenging

problem, making the detection of communities an NP-hard

problem.2,3 Since the community structure represents a fun-

damental organization of the network at the system level, to

accurately detect communities is critical to understanding

the functions, collective dynamics, and vulnerabilities of the

underlying network, as well as to articulation of control strat-

egies. The community detection problem is thus of great

importance to a number of disciplines in which complex net-

works arise, such as biological, social, and computer scien-

ces, and has been an active area of research in modern

network science and engineering.

Most existing methods of detecting communities are

based on network structure analysis and manipulation. The

seminal work in this area is the Girvan-Newman algorithm,1

which exploits the betweenness centrality4 to identify the

inter-community links and then removes them, so that the

end result is a number of isolated communities. The compu-

tation overload of this method is, however, quite high, limit-

ing its practical usage to small networks.5 Another intuitive

method is based on the idea of minimum cut,6 where the net-

work is divided into a number of groups of approximately

equal size with the goal of seeking the optimal division so as

to minimize the number of links among the groups. The

methodology finds applications in parallel computing to bal-

ance load to minimize communication between a large num-

ber of Central Processing Unit (CPU) nodes. A widely used

method is modularity maximization,5,7–12 which identifies

communities by varying the division of a network into

groups and seeking the one that maximizes modularity (a

measure characterizing the “quality” of a division) through

procedures such as greedy algorithm, spectral optimization,

and simulated annealing. A recent method is hierarchical

clustering13 based on the idea that nodes belonging to the

same community share similar characteristics, which can be

quantitatively determined through some properly defined

similarity measure. Another approach is the generative

model based statistical inference methods.14–23 It can also

occur that a subset of nodes can appear in different commu-

nities, which is particularly common in social networks

where an individual can appear in different friendship or

social groups, leading to overlapping communities. The

method based on cliques, subnetworks in which all nodes are

fully connected with all other nodes, can be used to detect

communities and to find the hidden overlapping community

structure.24–26 The fundamental issue of the detectability of

the community structure has also been addressed.27–30 The

principle and methodology of community detection have one

particularly important application in network science: find-

ing missing links and identifying false links from data.31,32

In this paper, we propose a novel, “game-change” type

principle to address the network community detection prob-

lem. Differing drastically from the previous approaches that

broadly treat community detection as a structural optimiza-

tion problem, we ask whether the modular structure of a net-

work can “come out” naturally or emerge automatically as a

consequence of the nonlinear dynamical evolution of the sys-

tem. More specifically, given a network, we assume certain

nodal dynamical processes and regard the whole network as

a system of coupled nonlinear elements that evolve continu-

ously with time. Generically, a coupled nonlinear dynamical

network can exhibit a rich variety of collective dynamics,

and our goal is to identify one that naturally reveals the hier-

archical community structure of the network. For this pur-

pose, it is necessary to have a control parameter, the tuning

of which can lead to distinct dynamical states of the network.

The scenario that we seek to establish is that, as the control

parameter is tuned systematically, the system would exhibit

distinct collective dynamics on different scales, thereby

“automatically” revealing the hierarchical organization of the

network into communities at distinct scales. For a coupled net-

worked system, a natural choice of the control parameter is

the coupling strength between any nodal pair. The advantage

of this dynamical approach to community detection lies in the

ease with computational implementation: for a given network,

one simply implements certain dynamical processes and mon-

itors the collective dynamics as the control parameter is varied

and, for some optimal value of the parameter, the community

structure would manifest itself naturally and unambiguously

in the collective dynamical state of the system.

A candidate of collective dynamics that can naturally

reveal the community structure is synchronization, a phe-

nomenon that has been studied extensively in the complex

network literature.33–48 There were previous works demon-

strating that synchronization can reveal the topological

scales in complex networks.49–54 Of particular relevance to

our work are the studies of synchronization in complex mod-

ular networks44–48 and the phenomenon of clustered syn-

chronization.55–62 For example, studies on the effects of the

modular structure on network synchronizability revealed that

a significant imbalance between the intra-modular and inter-

modular links can be detrimental to synchronization,44,45 and

network symmetries play a fundamental role in the emer-

gence of clustered synchronization.57 In spite of the vast

literatures on network synchronization, to our knowledge,

there has been no previous work on exploiting the emergence

and evolution of clustered synchronization for detecting the

hierarchical community structure.

The main accomplishments of this paper are described

as follows: Given a network, we impose an identical chaotic

dynamical process on each node, and so, a global synchroni-

zation manifold is well defined. As the coupling parameter is
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reduced from the global synchronization regime, the system

evolves into distinguishable states of clustered synchroniza-

tion. Unlike global synchronization in which all eigenmodes

must be stable with respect to perturbations transverse to the

synchronization manifold, in a state of clustered synchroni-

zation, there are unstable eigenmodes. In this case, the state

vector of the system is dominantly characterized by the

linear combination of the eigenvectors associated with the

divergent eigenmodes. We argue that these eigenmodes

reflect the partition of the network into communities and, as

the number of unstable eigenmodes is increased, the commu-

nity structure at increasingly smaller scales emerges. Using

synthetic and real networks, we demonstrate that their hierar-

chical community structures can be gradually but efficiently

unfolded through clustered synchronization. By tuning the

coupling parameter to control the number of divergent

eigenmodes, we can accurately modulate the degree of syn-

chronization to identify the communities belonging to differ-

ent hierarchies of the network through the emergent clusters

of locally synchronized nodes. Computationally, evolving

the underlying coupled networked dynamical system and

identifying the various clusters of local synchronization as

the coupling parameter is varied adiabatically (i.e., the rate

of change of the parameter should be much smaller than the

rate of change of a typical dynamical variable of the system),

the community structure of the network can be automatically

revealed. Comparing with the previous, structure manipula-

tion based methods on community detection, our dynamical

evolution based approach is computationally efficient and

can readily scale to large networks, completely overcoming

the difficulty of NP-hardness.

II. THEORETICAL METHODS

The collective dynamics of a network of coupled nonlin-

ear oscillators are determined by (1) the network structure as

characterized by the Laplacian matrix L and (2) the nodal

dynamical system. For synchronous dynamics, the standard

theoretical framework is the master stability function

(MSF).63,64 Briefly, the MSF is the largest transverse

Lyapunov exponent that controls the stability of the global

synchronization state (manifold) with respect to perturba-

tions transverse to the manifold. In general, the MSF

depends on the form of the nodal dynamical system and a

generalized coupling parameter e. If there exists an interval

of e in which the MSF is negative, global synchronization

can occur in this parameter interval. The generalized cou-

pling parameter e is related to the original coupling parame-

ter r of the network through the eigenvalues of its Laplacian

matrix: e ¼ rk. If the network size is N, there are N distinct

eigenvalues of the Laplacian matrix (including the trivial

one): 0 ¼ k1 < k2… < kN . For the network system, e can

then take on (N� 1) nontrivial values: rk2;…; rkN . Only

when all these (N� 1) values fall within the interval in which

the MSF is negative, global synchronization is stable and

physically realizable. As the value of the original coupling

parameter is decreased, the discrete set of e values begin to

move out of the stable synchronization interval through its

lower bound (towards left), making the (N� 1) transverse

subspaces corresponding to the eigenmodes lose stability

one after another and inducing desynchronization. The exis-

tence of a finite lower bound of the stable synchronization

interval is thus key to our community detection method. A

previous work demonstrated that such a lower bound indeed

exists for typical nonlinear oscillators.64 Because of the flexi-

bility in the nodal dynamical system for community detec-

tion, we choose the ones where the lower bound is finite

and not arbitrarily close to zero, such as the classic chaotic

R€ossler65 and Lorenz66 oscillators.

For an undirected network of N coupled chaotic oscilla-

tors, the Laplacian matrix is given by L¼D�A, where A is

the network adjacency matrix and D is a diagonal matrix of

degree (diag(k1; k2;…; kNÞ). Let fv1; v2;…; vNg be the set of

eigenvectors associated with the set of N eigenvalues: 0 ¼ k1

< k2 < … < kN . Each individual oscillator’s dynamics can

be described by an n-dimensional state vector xi (xi ¼ ½xi;1;
xi;2;…; xi;n�T) governed by the equation _xi ¼ FðxiÞ. The

dynamics of the network of N such coupled oscillators are

governed by

_xi ¼ FðxiÞ � r
XN

j¼1

lijHðxjÞ; for i ¼ 1;…;N; (1)

where lij denote the elements of L and H(xj) is the coupling

function. Due to the constraint of the elements of the

Laplacian matrix:
PN

j¼1 li;j ¼ 0, a global synchronization

state s exists for t!1: x1 ¼ x2 ¼… ¼ xN � s. Let dxi

¼ xi � s be a small variation in the ith oscillator’s state from

the synchronization manifold. We have

d _xi ¼ DFðsÞ � dxi � rDHðsÞ �
XN

j¼1

lijdxj; for i ¼ 1;…;N:

(2)

Letting dx � ½dx1; dx2;…; dxN�, we can rewrite Eq. (2) as

d _x ¼ DFðsÞ � dx� rDHðsÞ � dx � LT : (3)

To diagonalize Eq. (3), we set the variations as the linear

combination of the eigenvectors of L: dxT ¼ O � nT , where

n ¼ ½n1; n2;…; nN� are the coefficients of the linear combina-

tion and O is the eigenvector matrix. We have

_n ¼ DFðsÞ � n� rDHðsÞ � n � K; (4)

where K � diagðk1; k2;…; kNÞ. Since k1 ¼ 0, the equation
_n ¼ DFðsÞ � n describes the dynamics within the synchroni-

zation manifold. The remaining (N� 1) eigenmodes are

decoupled, which are governed by

_ni ¼ DFðsÞ � rkiDHðsÞ½ � � ni; for i ¼ 2; 3;…;N: (5)

The (N� 1) equations in Eq. (5) determine the transverse sta-

bilities of the N� 1 eigenmodes, with MSF being the maxi-

mum Lyapunov exponent associated with Eq. (5).

The eigenvalues and the associated eigenvectors of

the Laplacian matrix are closely related to the hierarchical

community structure of the network.49,67 Near the global
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synchronization regime, the values of the elements of v2

associated with oscillators in the same community are simi-

lar,68 leading to the emergence of clustering of oscillators.

When the network contains two distinct communities only,

the eigenvector v2 can be used as a criterion for detecting the

communities. For a hierarchical network with m (� 2) com-

munities, the first m� 1 non-trivial eigenvalues of the

Laplacian matrix are much smaller than the rest, forming a

gap between km and kmþ1, as shown in Fig. 1. In general,

information about the partition of the communities in multi-

level hierarchies is encoded in the eigenvectors.

To make the eigenmodes corresponding to the first m
eigenvalues transversely unstable while keeping the rest sta-

ble, we can modulate the coupling parameter as

rm ¼
1

2

e1

km
þ e1

kmþ1

� �
; m ¼ 2; 3;…;N � 1; (6)

where e1 denotes the lower boundary of the global synchro-

nization region in terms of the generalized coupling parame-

ter. To guarantee that the remaining (N�m) eigenmodes are

transversely stable, we impose the following restriction on

the coupling parameter:

rmkN � e2; m ¼ 2; 3;…;N � 1; (7)

where e2 is the upper boundary of the global synchronization

region. For a variety of classic nonlinear oscillators, it is com-

mon to have64 e2 ¼1, and so, Eq. (7) would hold trivially.

We preserve the eigenvectors associated with the first m
eigenvalues, which contain information about the commu-

nity division. Since the variation of an individual oscillator

is a linear combination of the eigenvectors, its elements of

the state vector are correlated with the eigenvectors. When

the system evolves towards clustered synchronization, the

trajectories of the oscillators in the same communities

approach each other, but those of the oscillators belonging to

different communities diverge. The community structure of

the network can then be faithfully detected by monitoring

the clustering behavior of oscillators through their state vec-

tors. As we have demonstrated, even the hierarchical com-

munity structure can be revealed by controlling the coupling

parameter with respect to the occurrence of clustered syn-

chronization at different levels.

III. RESULTS

We demonstrate the effectiveness of our nonlinear

dynamical evolution based approach to detecting hierarchi-

cal communities by using a class of synthetic, benchmark

networks with the flexibility of generating a wide spectrum

of community structures,49 as well as a number of empirical

networks.

A. Benchmark hierarchical community network

We use the synthesized network model49 that has been

the standard testbed in the field. A benchmark network con-

sists of 16 non-overlapping communities and 256 nodes in

total, which are uniformly distributed among the communi-

ties. The 16 communities represent the first hierarchical level,

which are uniformly aggregated into four non-overlapping,

larger communities that constitute the second hierarchical

level. Some key structural information of the individual com-

munities at two levels is listed in Tables I and II, respectively.

For each node, the numbers of edges at the first and second

levels are denoted as z1 and z2, respectively, while the number

of edges within its own smallest community is zin. The edge

numbers are constrained by the relation z1 þ z2 þ zin ¼ 18.

Different choices of the values of ðz1; z2Þ lead to networks

with varying modularity. For convenience, we use the nota-

tion ðzi; z2Þ to denote a particular modular network. For

example, the modularity associated with the first hierarchical

FIG. 1. Spectral characteristics of a benchmark network with two hierarchi-

cal levels of communities. The network has N¼ 256 nodes equally distrib-

uted among 16 communities that constitute the first hierarchical level, which

belong to four larger communities at the second level, each containing four

smaller communities at the first level. For each node, the numbers of edges

within the first and second levels are 14 and 3, respectively, henceforth the

notation (14, 3) to name the network. Shown are the eigenvalues of the

Laplacian matrix in an ascending order: 0 ¼ k1 < k2… < k256. There exist

two gaps in the eigenvalue ordering: one between k4 and k5 and the other

between k16 and k17, corresponding to the two hierarchies in the community

structure of the network.

TABLE I. Average degree hki and clustering coefficient C of each commu-

nity at the first hierarchical level for the benchmark system.

Community hki C

1 13.75 0.907

2 13.75 0.907

3 13.75 0.906

4 13.88 0.915

5 13.75 0.907

6 13.88 0.915

7 13.75 0.906

8 13.88 0.916

9 13.88 0.915

10 13.88 0.915

11 13.62 0.898

12 13.88 0.916

13 13.62 0.900

14 14.00 0.923

15 13.62 0.900

16 13.88 0.915
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level can be adjusted by varying z1 and z2, which ranges

approximately from the value of 0.77 [(15, 2) network] to

0.54 [(11, 6) network]. Because of the constraint in the edge

numbers, for the networks with different modularity values at

the first level, their modularity associated with the second

hierarchical level assumes the identical value of 0.66. As a

concrete example to gain insight into the underlying mecha-

nism of our dynamical evolution based community detection

framework, we consider a (14,3) network. Figure 1 shows the

eigenvalues of the Laplacian matrix L in an ascending order,

where it can be seen that the first 16 eigenvalues are much

smaller than the rest, with a distinct gap between the two

groups, indicating the emergence of 16 communities at the

first hierarchical level. Another distinct gap exists between

the fourth and fifth eigenvalues, suggesting the existence of

four larger communities at the second hierarchical level.

We demonstrate that the hierarchical community struc-

ture can manifest itself as synchronized clusters in the dynam-

ical evolution of the system. Given a network of known

topology, we impose a nonlinear dynamical process that is

identical for all nodes and decrease the coupling parameter

from the regime of global synchronization, in which all nodes

exhibit completely identical dynamical evolution. Convenient

choices of the nodal dynamics are the classic chaotic

R€ossler65 and Lorenz66 oscillators, with both being three-

dimensional, where the former is defined by the velocity field

F ¼ ½�ðyþ zÞ; xþ 0:2y; 0:2þ zðx� 9Þ�T and the latter is

described by F ¼ ½10ðy� xÞ; xð28� zÞ � y; xy� ð8=3Þz�T .

We assume a simple linear coupling scheme in which the

node-to-node interactions occur only through the first compo-

nent of the nodal dynamical variable, i.e., the coupling vector

is HðxÞ ¼ ½x; 0; 0�T .

We carry out a synchronization analysis for the (14,3)

network, whose eigenvalue spectrum is displayed in Fig. 1.

For nodal dynamics of the chaotic R€ossler type, the synchroni-

zation region is [e1; e2] ¼ [0.2, 5], where e ¼ rk is a general-

ized coupling parameter (r is the original coupling parameter

and k denotes an eigenvalue “variable” that takes on the spe-

cific eigenvalues of the Laplacian matrix, which are ordered

as 0 ¼ k1 < k2… < kN). To present results in correspondence

to the eigenvalue spectrum in Fig. 1, we specify the coupling

parameter r in terms of an integer parameter m, where for any

specific value of m, the first m� 1 nontrivial eigenmodes, i.e.,

from k2 to km, of the Laplacian matrix are unstable with

respect to perturbations transverse to the synchronization

manifold, while the remaining (N�m) eigenmodes are stable.

In the parameter region of interest, global synchronization is

thus not possible. For certain specific values of m, e.g., m¼ 4

and m¼ 16, the networked system exhibits distinct clusters of

synchronous nodes.

To characterize clustered synchronization more accu-

rately, we define the following order parameter for a given

value of m:

rLðmÞ ¼
ð1=NÞ

XN

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � �xÞ2 þ ðyi � �yÞ2 þ ðzi � �zÞ2

q

ð1=MÞ
X
ði;jÞ2E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xjÞ2 þ ðyi � yjÞ2 þ ðzi � zjÞ2

q ;

(8)

where N and M are the number of nodes and the number of

synchronous clusters, respectively. According to Eq. (6), the

quantity m affects the value of rm, which indirectly deter-

mines the value of rLðmÞ through synchronization. In Eq.

(8), the numerator measures the extent of global synchroni-

zation, while the denominator quantifies the degree of clus-

tered synchronization. Note that for a given community

network, the ratio M
N is independent of m and affects the val-

ues of rLðmÞ equally for different values of m. The value of

M can be estimated using the optimal synchronization error

matrices. Figure 2 shows the absolute difference jrLðm
þ1Þ � rLðmÞj as a function of m for m ¼ 1;…;N � 1. There

are two peaks: one at m¼ 4 and the other at m¼ 16, indicat-

ing that for the (14,3) network, simultaneous optimization of

clustered synchronization and community partition occurs at

two hierarchical levels. (More examples are provided in

Appendix A.)

To visualize clustered synchronization, we use the pair-

wise Euclidean distance between the state vectors of any

nodal pair, which is the synchronization error. We first test

the R€ossler nodal dynamics with the initial values of the

dynamical variables chosen randomly from the interval ½0; 1�.
The evolution time is set (rather arbitrarily) to T¼ 100, which

contains approximately two dozen of oscillating cycles of the

chaotic R€ossler oscillator. For each value of the coupling

parameter, we construct an N�N synchronization error

TABLE II. Average degree hki and clustering coefficient C of each commu-

nity at the second hierarchical level for the benchmark system.

Community hki C

1 16.59 0.641

2 16.78 0.631

3 16.72 0.637

4 16.75 0.634

FIG. 2. Absolute differences in the order parameter values as a function of

m. For the (14,3) network, the order parameter versus m exhibits two peaks:

one at m¼ 4 and the other at m¼ 16, signifying optimal clustered synchroni-

zation and community partition at the two corresponding hierarchical levels.

The inset shows changes in the order parameters as a function of m.
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matrix for all possible nodal pairs, averaging over 100 statisti-

cal realizations of the dynamical trajectory. Figure 3 shows,

for 18 different values of the coupling parameter as repre-

sented by m, the pairwise synchronization error matrices,

where the error values are distinguished by different colors. It

is striking that as the value of m is increased from two to 19,

synchronized clusters with a hierarchical community structure

are gradually unfolded by the matrix representation. For the

values of the coupling strength corresponding to m¼ 4 and

m¼ 16, both the number and the size of synchronous clusters

are in complete agreement with the community structures of

the network at the two levels. Particularly, for m � 4, there

are four synchronous clusters that correspond exactly to the

four large communities at the second hierarchical level, due

to the transversely unstable eigenmodes associated with k2,

k3, and k4. In this case, there is no synchronization over the

scale of this modular hierarchy, making it possible to discern

the communities at the corresponding scale. Equivalently, the

community structure at this scale is encoded faithfully in the

eigenvectors associated with these eigenmodes. However, at a

smaller scale, the nodal dynamics are synchronized, due to

the transverse stability of the vast majority of eigenmodes. As

the value of m is increased from 4 to 16, starting from m¼ 5,

the eigenmodes lose transverse stability sequentially, leading

to a gradual deterioration of the original synchrony within

each larger community. That is, the corresponding eigenvec-

tors begin to reveal the community structure at a smaller

scale. For m¼ 16, all 15 nontrivial eigenmodes (from m¼ 2

to m¼ 16) have become unstable, and the smaller modular

structure at the first hierarchy of 16 communities emerges

unambiguously. For m � 17, additional eigenmodes become

transversely unstable, revealing more detailed and refined

structures within each of the 16 communities.

To better visualize the emergence of local synchronous

clusters as a result of the hierarchical community structure of

the network, we generate polar dendrogram plots of the

agglomerative hierarchical trees for m¼ 4, 16, and 19, as

shown in Fig. 4(a). A dendrogram is a tree diagram to illus-

trate and distinguish the clusters with a hierarchical structure

based on certain distance metrics. In our case, the Euclidean

synchronization error is a natural choice of the distance met-

ric, and the clusters are drawn based on the values of the

error. As shown in Fig. 4(a), for m¼ 4, four distinct clusters

at the second hierarchical level exist, where the synchroniza-

tion errors within any single cluster are significantly smaller

than the inter-cluster errors. For m¼ 16, clusters in the first

hierarchy can be distinguished, as shown in Fig. 4(b), where

the existence of two hierarchies can be ascertained. In fact,

this is the optimal value of m for which the hierarchical com-

munity structure can be best unraveled and visualized. For

m¼ 19, the hierarchical structure (especially those at the first

level) begins to deteriorate, as the synchronization state is

restricted to within some (not all) communities at the first

hierarchical level, as shown in Fig. 4(c), where some of the

16 small synchronous clusters appear to be connected. These

results thus demonstrate, in a visually intuitive manner, how

the network dynamical state evolves to reveal the hierarchi-

cal community based on local or clustered synchronization.

In the particular case of coupled chaotic R€ossler oscillators,

global synchronization occurs in a finite interval of the gen-

eralized coupling parameter.63,64 As m is increased from

one, the values of the generalized coupling parameter

FIG. 3. Emergence of the hierarchical community structure through synchronization. The benchmark network has the structure of (14,3), with its eigenvalue

spectrum shown in Fig. 1. The nodal dynamical system is that of a chaotic R€ossler oscillator. The coupling parameter is continuously decreased so that, starting

from m¼ 2, the nontrivial eigenmodes lose their transverse stability one after another. Shown is the synchronization error matrix constructed from all the pair-

wise distances between the nodal dynamical variables, where the distances are color coded. For each panel, the integer value of m corresponds to the case

where the ðm� 1Þ nontrivial eigenmodes (from two to m) are transversely unstable. For m � 4, the synchronization states reflect correctly the four large com-

munities at the second hierarchical level. As m is increased from 4 to 16 (corresponding to the continuous decrease in the actual value of the coupling parame-

ter), the degree of inter-community synchronization at the first hierarchical level of 16 communities is gradually weakened, revealing the community structure

at the smaller scale. Insofar as m � 16, there is local synchronization within each of the 16 communities. For m � 17, synchronization at the small scale begins

to deteriorate, revealing more refined structures within each such community.
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associated with the eigenmodes move out of the interval

through the left (lower) boundary one after another, render-

ing unstable global synchronization but leading to the emer-

gence of clustered synchronization which, for a proper value

of m, can reveal the intrinsic hierarchical community struc-

ture of the network.

The emergence of clustered synchronization and its

power in revealing the underlying hierarchical community

structure of the network do not depend on the specific nodal

dynamical system, insofar it generates nonlinear oscillatory

behaviors with a finite lower bound of the interval in the gen-

eralized coupling parameter in which all nontrivial eigenmo-

des are transversely stable so that the whole network is

globally synchronizable.63,64 In this case, “pushing” the gen-

eralized coupling parameter associated with the originally

transversely stable eigenmodes out of the interval through

the lower bound leads to desynchronization at the global

scale but to optimal clustered synchronization reflecting

accurately the community structure. To test the generality

and robustness of this principle, we perform computations

using a different oscillator system, the classic chaotic Lorenz

system,66 and choose the original coupling parameter r in a

somewhat arbitrary manner. Figure 5 shows, for the bench-

mark network (14, 3), the synchronization error matrices for

r¼ 4, 3, 2 and 1, respectively. We obtain essentially the

same results as for the R€ossler oscillator (Fig. 3): as the cou-

pling parameter is decreased, global synchronization is

replaced by clustered synchronization reflecting accurately

the hierarchical community structure.

B. Real networks

We test our synchronization based approach to commu-

nity detection on a number of real world networks and present

results for two of them: the American college football game

network (CFGN)1 and the southern women club network

(SWCN)69 (more examples are given in Appendix B). The

CFGN consists of 115 teams (nodes), which are uniformly

divided into 12 conferences (communities at the small scale)

and form the hierarchical community structure through

games, as shown in Fig. 6. The key structural information

about the individual communities of CFGN is listed in Table

III. The nodal dynamics are set to be the chaotic R€ossler type.

A systematic reduction in the value of the coupling parameter

is represented by a change in m (the number of nontrivial,

transversely unstable eigenmodes) from 2 to 13. The evolu-

tion time is T¼ 30. The synchronization error matrices for

these values of m are shown in Fig. 7. For m � 7, synchro-

nous clusters consisting of several conferences arise, indicat-

ing a high hierarchical level of the community structure. As

the value of m is increased from 8 to 13, synchronization

among the conferences is weakened. As a result, the synchro-

nous clusters are restricted to the first hierarchical level, i.e.,

the conference level. Because of the insufficient number of

games played within the “Independent” and “Sun Belt”

FIG. 4. Polar dendrograms of synchronous clusters reflecting the hierarchical community structure of the network. (a)–(c) Polar dendrograms generated from

synchronization errors as the distance metric for m¼ 4, 16, and 19, respectively. For m¼ 4, the dendrogram reveals 4 large communities. For m¼ 16, the two-

level hierarchy and 16 smaller communities are unfolded. For m¼ 19, the hierarchical community structure with the 16 small communities becomes deterio-

rated. (a) m ¼ 4, (b) m ¼ 16, and (c) m ¼ 19.

FIG. 5. Uncovering the hierarchical community structure via clustered

synchronization with the nodal dynamical system being the classic chaotic

Lorenz oscillator. For the benchmark network (14, 3), synchronization

error matrices for values of the original coupling parameter r¼ 4, 3, 2,

and 1, respectively. The simulation time is T¼ 100, which contains about

a few tens of cycles of oscillation. A decrease in the value r results in a

transition in the network dynamics from global to clustered synchroniza-

tion, revealing the two-level hierarchical community structure of the

network.
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conferences, the corresponding synchronous clusters are

largely absent. The polar dendrogram representations of the

synchronous clusters (and hence the hierarchical community

structure) as the agglomerative hierarchical trees for three val-

ues of m (2, 7, and 12) are shown in Fig. 8, from which 2, 7,

and 10 major clusters can be seen. More specifically, as

shown in Fig. 8(a), the CFGN is divided into two equivalent

communities, corresponding to teams from the east and west

areas, which constitute the highest hierarchical level. The two

large communities approximately split into four communities,

each corresponding to a single conference and other three

made up of conferences whose teams are geographically

close. Finally, the small communities associated with the con-

ferences can be detected reliably by partitioning the hierarchi-

cal tree into 10 major clusters, as shown in Fig. 8(c). Note

that teams in the same conferences form communities at the

first hierarchical level and geographically close conferences

form larger scale communities at higher hierarchical levels.

There is thus a good agreement between the hierarchical

structures unfolded by clustered synchronization and the orga-

nizing principle of the games.

Our second real-world example is an empirical bipartite

network, the southern women club network.69 The network

contains 18 women and 14 social events, and an edge exists

between a woman and an event if she attended the event, as

shown in Fig. 9(a). In an early work,69 general ethnographic

knowledge was used to assign the women to two groups,

consisting of women 1–9 and 10–18, respectively. For the

purpose of further demonstration of the generality with

respect to variations in the setting of the dynamical system,

we choose a slightly different parameter combination for the

chaotic R€ossler oscillator from that in Fig. 1, which is

described by F ¼ ½�ðyþ zÞ; xþ 0:2y; 0:2þ zðx� 12Þ�T , as

well as a different coupling function: HðxÞ ¼ ½x; y; z�T . For

these nodal dynamics and coupling settings, with respect to

the generalized coupling parameter, global synchronization

occurs in the region ½0:1;1�. We choose the coupling

strength corresponding to m¼ 2, as only two synchronizing

clusters are expected according to priori knowledge. The

synchronization error matrix is shown in Fig. 9(b), where

either the women or the event groups constitute two major

synchronous clusters as indicated by the diagonal blocks of

the matrix. Specifically, for the women group, the individu-

als 1–9 and 10–16 form two communities, but the individuals

17 and 18 are not included because they both were associated

with only two events. To better visualize clustered synchro-

nization, we adjust the nodal order in Fig. 9(c), where the

two major synchronous clusters including nodes from two

parts of the bipartite network are more distinct. We also

note, as in the early work,69 that the communities consisting

of nodes from both sides reflect the preferences of women

from different social groups.

IV. CONCLUSION AND DISCUSSION

In the past two decades, there has been tremendous

development in the investigation of the interplay between

complex network structures and dynamics. A well-studied

subject is how the network structure affects the collective

dynamics. There have been relatively few studies in the

opposite direction, i.e., on the problem of how dynamics

may be exploited to understand and reveal the network struc-

ture. Community detection is essentially a problem of net-

work structure analysis and manipulation. It is known as one

of the most difficult problems in network science because of

its NP-hard nature. Aiming to develop a drastically different

approach from those based on structure exploration in exist-

ing works, we seek to uncover hierarchical community struc-

tures through the evolution of collective dynamics. The

new twist in our work is that, with a choice of the collective

FIG. 6. Structure of the American college football game network as repre-

sented by the adjacency matrix. There are altogether 115 teams (115 nodes

in the network), which are divided into 12 conferences—separated by

lines. The names of the conferences are noted. Intra-conference games

are more frequent than the inter-conference ones, giving rise to a commu-

nity structure. Two anomalies are the “Independents” and “Sun Belt” con-

ferences, which have fewer intra-conference games. The conferences are

organized into a hierarchical structure because inter-conference teams

that are geographically close to one another are more likely to play in a

game.

TABLE III. Average degree hki and clustering coefficient C of the 12 con-

ferences in the American football game network.

Community hki C

Atlantic Coast 8.0 1.00

Big East 7.0 1.00

Big Ten 8.0 0.75

Big Twelve 8.0 0.68

Conference USA 6.2 0.74

Independents 0.4 0.00

Mid-American 7.7 0.64

Mountain West 7.0 1.00

Pacific Ten 8.0 0.86

Southeastern 8.0 0.68

Sun Belt 2.9 0.83

Western athletic 6.0 0.86
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dynamics and under a suitable setting, the dynamical evolu-

tion would naturally give out or reveal the structured organi-

zation characteristics such as the hierarchical communities.

We demonstrate in this paper that this is indeed feasible

through a concrete type of collective dynamics: clustered

synchronization.

Implementing nonlinear oscillatory nodal dynamics on

the whole network and choosing the value of the coupling

FIG. 7. Detection of the community structure of the American college football game network through clustered synchronization. Shown are the synchroniza-

tion error matrices for the American football game network with the value of m ranging from 2 to 13. Nodes are plotted in the same order as in Fig. 6. As a

result, the conferences (communities) are placed in the same sequence as in the matrices. The matrices are scaled into different color maps for clear visualiza-

tion, where the blue and red colors indicate small and large synchronization errors, respectively. For m � 5, synchronous clusters consisting of several confer-

ences are apparent. As m is increased from 6 to 13, the degree of synchronization between different conferences weakens. There is a unique correspondence

between a conference and a synchronous cluster for most conferences (except two). The two exceptions are the “Independent” and “Sun Belt” conferences due

to the insufficient number of games played within each of them.

FIG. 8. Polar dendrograms of synchronous clusters for the community structure of the American college football game network. (a)–(c) Agglomerative hierar-

chical trees for m¼ 2, 7, and 12, respectively. The cluster trees are partitioned into 2, 7, and 10 major clusters in (a), (b), and (c), respectively. Different

markers of nodes indicate the conferences to which the nodes belong. Teams in the same conferences form communities at the first hierarchical level, and geo-

graphically close conferences form large scale communities at higher hierarchical levels. The hierarchical structures unfolded by clustered synchronization

reflect accurately the organizing principle of the games. (a) m ¼ 2, (b) m ¼ 7, and (c) m ¼ 12.

FIG. 9. Synchronization based detec-

tion of the community structure of the

southern women club network. (a)

The network structure as characterized

by the adjacency matrix. (b) and (c)

Synchronization error matrices in the

original and an adjusted nodal order,

respectively. The women and event

groups are organized into two major

synchronous clusters, as indicated by

diagonal blocks of nodes.
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parameter such that global synchronization is unstable but

local or clustered synchronization can occur, we show that

an accurate picture of the community structure of the net-

work can be obtained simply through identification of the

synchronous clusters. An appealing feature is that, for differ-

ent choices of the coupling parameter, the synchronous clus-

ters can form at different scales and are organized according

precisely to the hierarchical organization of the communi-

ties. Imagine that the coupling parameter is controlled by a

kind of “knob.” Our main result indicates that, by turning the
knob slowly, the hierarchical community structure at differ-
ent scales would come out automatically. More quantita-

tively, using the standard approach of master stability

function, we analyze the emergence of clustered synchroni-

zation as the coupling parameter is continuously decreased

from the regime of global synchronization. During this pro-

cess, there is discontinuous breaking of the network synchro-

nization state into clusters of increasingly reduced size,

forming synchronous clusters at smaller scales. Distinct sub-

intervals in the coupling parameter arise, in which the syn-

chronous clusters correspond exactly to the community

structure at a particular scale. Combining information from

all these parameter subintervals reveals accurately the hierar-

chical community structure of the network. We validate this

dynamical evolution based approach using a benchmark net-

work with adjustable intra- and inter-community linkage and

test it on a number of real world networks.

We remark that our dynamical evolution based approach

to community detection is quite different from the data based

network reconstruction problem or reverse engineering of

complex networks.70 For the reconstruction problem, the

structure of the network is unknown, and one is to use avail-

able data (often time series) to reconstruct the topology71–74

through a wide variety of approaches from physics, mathe-

matics, and signal processing.70 In our case, the network

topology is given, and we generate a computational model

by imposing certain type of dynamical process on the net-

work, with the goal of identifying the community structure at

different scales.

Finally, we discuss the potential to exploit clustered syn-

chronization for reconstructing the hidden metric space of

complex networks. In particular, we note that the community

structure of a network is a coarse representation of the rela-

tion among the nodes characterizing whether any two nodes

belong to the same community. While the hierarchical orga-

nization of communities provides certain topological infor-

mation about the nodal connection patterns, it does not

capture the finer details. For example, clustered synchroniza-

tion in the American football game network for a certain

value of the coupling parameter indicates only that geo-

graphically close nodes are more likely to be connected, as

shown in Fig. 7, where the geographical distances among the

locations of the teams are well correlated with the synchroni-

zation degree among the nodes. In this regard, there was a

previous work on navigability of complex networks75 in

which a spatial network (e.g., the Internet at the autonomous

system (AS) level) is embedded into a hyperbolic hidden

metric space with distances proportional to the degree of

similarities. In this sense, a wide variety of networks can be

regarded as being generated based on some kind of hidden

metric space. We speculate that the degree of synchroniza-

tion between a pair of nodes is indicative of the distance in

the corresponding hidden metric space. If this is indeed the

case, then clustered synchronization can be exploited for

constructing the hidden metrics space with applications in

network navigation, link prediction and recommendation.
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APPENDIX A: CLUSTERED SYNCHRONIZATION IN
SYNTHESIZED BENCHMARK NETWORKS

The synthesized benchmark networks have two hierar-

chical levels. The 16 communities represent the first hierar-

chical level, which are uniformly aggregated into four non-

overlapping, larger communities that constitute the second

hierarchical level. For each node, the numbers of edges at

the first and second levels are denoted as z1 and z2, respec-

tively, while the number of edges within its own smallest

community is zin. The edge numbers are constrained by the

relation z1 þ z2 þ zin ¼ 18. The modularity associated with

the first hierarchical level can be adjusted by varying z1 and

z2, which ranges approximately from the value of 0.77

[(15,2) network] to 0.54 [(11,6) network]. Because of the

FIG. 10. Absolute differences in the adjacent values of the order parameter

as a function of m for synthesized benchmark networks. Each network pos-

sesses two hierarchal levels of modularity, but at the first level, there is

diversity in the modularity among the five networks. A common feature in

the order parameter difference versus m is that two peaks arise, one at m¼ 4

and the other at m¼ 16, indicating two hierarchal levels. Associated with

each peak, clustered synchronization and community partition are optimized

simultaneously.

043119-10 Zhuo et al. Chaos 28, 043119 (2018)



constraint in the edge numbers, for those networks with a

different modularity value at the first level, their modularity

associated with the second hierarchical level assumes the

identical value of 0.66. Clustered synchronization in the syn-

thesized benchmark networks is characterized by the abso-

lute differences in the order parameters, as shown in Fig. 10.

Two peaks arise of the absolute differences: one at m¼ 4

and the other at m¼ 16, signifying optimal clustered syn-

chronization. In addition, when the modularity associated

with the first hierarchical level increases from 0.54 to 0.77,

clustered synchronization at m¼ 16 is enhanced.

APPENDIX B: APPLICATIONS TO REAL WORLD
NETWORKS

We test our dynamical evolution based method of com-

munity detection on four real world networks: coauthorship

network (CAN),76 dolphin social network (DSN),77 book pur-

chasing network (BPN),78 and Caenorhabditis elegans neural

network (CNN).79 All network data are available from Prof.

Newman’s homepage (http://www-personal.umich.edu/mejn/

netdata/). The networks and the detection results are described

as follows:

1. CAN

The network describes the coauthorship among scientists

working on network theory and experiment, with 379 nodes

(authors) and 914 edges (coauthorships). The network is

divided into at least 10 communities where the authors with the

largest community centrality are the leaders or senior research-

ers of the groups working in this area.76 By varying the value

of m, we obtain the synchronization error matrices of nodes in

different synchronous clusters used to partition the network

into distinct communities via the agglomerative hierarchical

tree. Note that we do not obtain the ground truth on the com-

munity structure of CAN. Instead, we compute the modularity

as in Ref. 80 to evaluate and validate our community detection

method. (The same approach is adopted for other three net-

works described below). Figure 11(a) shows the detected

network modularity as a function of m and c (community num-

ber). We see that, as m is increased, the network is divided into

more communities, corresponding to larger modularity values.

For the largest modularity value of 0.84 associated with m¼ 34

and c¼ 23, we present the synchronization error matrix and the

agglomerative hierarchical tree in Figs. 11(b) and 11(c), respec-

tively. These results indicate that our nonlinear dynamical evo-

lution based method is capable of revealing the community

structure in a robust and effective fashion.

2. DSN

The network characterizes the social ties between dol-

phin pairs established by direct observation over a period of

several years. The network has 62 nodes (dolphins) and 159

edges (ties). Dolphins are divided into two subgroups when a

key member of the population left.77 Figure 12(a) shows the

modularity as a function of m and c. As m is increased, the

network is divided into more communities, corresponding to

larger modularity values. The largest modularity value

Q¼ 0.40 occurs for m¼ 4 and c¼ 5. Figures 12(b) and 12(c)

present the synchronization error matrix and the agglomera-

tive hierarchical tree, respectively. Except for the community

with a single node, 4 smaller communities arise, which can

be aggregated approximately into 2 larger ones in correspon-

dence to the real observation.77

3. BPN

The network describes the co-purchasing of books by

the same buyers, which has 105 nodes (books) and 441 edges

(co-purchasing). The books are about the United States (US)

politics published around the time of the 2004 presidential

election and sold by the online bookseller Amazon.com.

Figure 13(a) shows the modularity value as a function of m
and c. As m is increased, the network is divided into more

communities, signifying larger modularity values. The larg-

est modularity value Q¼ 0.52 is achieved for m¼ 10 and

c¼ 4. Figures 13(b) and 13(c) present the synchronization

error matrix and the agglomerative hierarchical tree, respec-

tively, which indicates two larger and two smaller communi-

ties. Note that the emergence of two larger communities

corresponds well to the existence of two major political par-

ties for the US presidential election.

FIG. 11. Performance of the nonlinear dynamical evolution based method of community detection for the coauthorship network. (a) Modularity value as a

function of m and c, (b) synchronization error matrix associated with the largest modularity value that is achieved for m¼ 34 and c¼ 23, and (c) the polar den-

drogram corresponding to (b).
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4. CNN

The network tested is obtained with the nodes with one

core removed from the original neural network of C. elegans,

which has 282 nodes (neurons) and 2133 edges (neuronal

wiring). Comparing with the other three networks described

above, in the CNN, the nodes connect densely with each

other. Figure 14(a) shows the modularity value as a function

of m and c. In all cases, the modularity values are small, indi-

cating that the CNN lacks a clear community structure. The

largest modularity value Q¼ 0.34 occurs for m¼ 20 and

c¼ 15, and the corresponding synchronization error matrix

and agglomerative hierarchical tree are shown in Figs. 14(b)

and 14(c), respectively. At a higher hierarchical level, clus-

tered synchronization suggests that several larger communi-

ties may exist in the CNN.
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