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We present a novel class of nonlinear dynamical systems—a hybrid of relativistic quantum and

classical systems and demonstrate that multistability is ubiquitous. A representative setting is coupled

systems of a topological insulator and an insulating ferromagnet, where the former possesses an

insulating bulk with topologically protected, dissipationless, and conducting surface electronic states

governed by the relativistic quantum Dirac Hamiltonian and the latter is described by the nonlinear

classical evolution of its magnetization vector. The interactions between the two are essentially the

spin transfer torque from the topological insulator to the ferromagnet and the local proximity induced

exchange coupling in the opposite direction. The hybrid system exhibits a rich variety of nonlinear

dynamical phenomena besides multistability such as bifurcations, chaos, and phase synchronization.

The degree of multistability can be controlled by an external voltage. In the case of two coexisting

states, the system is effectively binary, opening a door to exploitation for developing spintronic

memory devices. Because of the dissipationless and spin-momentum locking nature of the surface

currents of the topological insulator, little power is needed for generating a significant current, mak-

ing the system appealing for potential applications in next generation of low power memory devices.

Published by AIP Publishing. https://doi.org/10.1063/1.4998244

Topological quantum materials are a frontier area in con-

densed matter physics and material sciences. A represen-

tative class of such materials is topological insulators,

which have an insulating bulk but possess dissipationless

conducting electronic states on the surface. For a three-

dimensional topological insulator (3D TI), such as Bi2Se3,

the surface states have a topological origin with a perfect

spin-momentum locking, effectively eliminating backscat-

tering from non-magnetic impurities and generating elec-

tronic “highways” with highly efficient transport. The

surface states can generally be described by a two-

dimensional Dirac Hamiltonian in relativistic quantum

mechanics. When a piece of insulating, ferromagnetic

material is placed on top of a topological insulator, two

things can happen. First, there is a spin-transfer torque

from the spin-polarized surface current of the topological

insulator to the ferromagnet, modulating its magnetization

and making it evolve dynamically. Second, the ferromag-

net generates an exchange coupling to the Hamiltonian of

the topological insulator, reducing its quantum transmis-

sion from unity and rendering it time dependent. Due to

these two distinct types of interactions in the opposite

directions, the coupled system of topological insulator and

ferromagnet constitutes a novel class of nonlinear dynami-

cal systems—a hybrid type of systems where a relativistic

quantum description of the surface states of the 3D TI and

a classical modeling of the ferromagnet based on the LLG

(Landau-Lifshitz-Gilbert) equation are necessary. The

hybrid dynamical system can exhibit a rich variety of non-

linear dynamical phenomena and has potential applica-

tions in spintronics. Here, we review some recent results in

the study of such systems, focusing on multistability. In

particular, we demonstrate that multistability can emerge

in open parameter regions and is therefore ubiquitous in

the hybrid relativistic quantum/classical systems. The

degree of multistability as characterized by the ratio of the

basin volumes of the multiple coexisting states can be

externally controlled (e.g., by systematically varying the

driving frequency of the external voltage). The controlled

multistability is effectively switchable binary states that

can be exploited for developing spintronic memory. For

example, in spintronics, the multiple stable states of the

magnetization are essential for realizing efficient switching

and information storage (e.g., magnetoresistive random-

access memory—MRAM, with a read-out mechanism

based on the giant magnetoresistance effect). MRAM is

widely considered to be the next generation of the univer-

sal memory after the current FLASH memory devices. A

key challenge of the current MRAM technology lies in its

significant power consumption necessary for writing or

changing the direction of the magnetization. The spin-

transfer torque based magnetic tunnel junction configura-

tion has been developed for power-efficient MRAMs. For

this type of applications, the coupled TI-ferromagnet sys-

tem represents a paradigmatic setting where only

extremely low driving power is needed for high perfor-

mance because of the dissipationless nature of the spin-

polarized surface currents of the TI.

I. INTRODUCTION

The demands for ever increasing processing speed and

diminishing power consumption have resulted in thea)Electronic mail: Ying-Cheng.Lai@asu.edu
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conceptualization and the emergence of physical systems

that involve topological quantum states. Such a system can

appear in a hybrid form: one component effectively obeying

quantum mechanics on a relatively large length scale

(� lm), while another governed by classical or semiclassical

equations of motion, with interactions of distinct physical

origin in opposite directions. The topological states based

quantum component acts as an electronic highway, where

electrons can sustain a dissipationless, spin-polarized current

under a small electrical driving field. The dynamics of the

classical component can be nonlinear, leading to a novel

class of nonlinear dynamical systems. We believe such sys-

tems represent a new paradigm for research on nonlinear

dynamics. The purpose of this mini-review article is to intro-

duce a class of coupled topological quantum/classical hybrid

systems and discuss the dynamical behaviors with a special

focus on the issue of multistability. Significant potential

applications will also be articulated.

The practical motivations for studying the class of topo-

logical quantum/classical hybrid systems are as follows. The

tremendous advances of information technology relied on

the development of hardwares. Before 2003, the clock speed

of the CPU increases exponentially as predicted by Moore’s

law and Dennard scaling.1 As we approach the end of

Moore’s law, mobile Internet rises, which requires more

power efficient and reliable hardwares. Mobile Internet con-

nects every user into the network and provides enormous

data, leading to the emergence of today’s most rapidly grow-

ing technology—artificial intelligence (AI).2–4 The orders of

magnitude increases in abilities to collect, store, and analyze

information require new physical principles, designs, and

methods—“more is different.”5 In the technological develop-

ment, quantum mechanics has become increasingly relevant

and critical. In general, when the device size approaches the

scale of about 10 nm, quantum effects become important. In

the current mesoscopic era, a hybrid systems description

incorporating classical and quantum effects is essential. For

example, quantum corrections such as energy quantizations

and anisotropic mass are necessary in the fabrication of

CMOS,6 the elementary building block of CPU and GPU. In

terms of memory devices, the magnetic tunnel junction

(MTJ) based spin-transfer torque random access memory

(STTRAM)7,8 is becoming a promising complement to solid

state drives, whose core is a tunnel junction design with mul-

tilayer stacks, where a layer of ferromagnetic materials with

a fixed magnetization is used to polarize the spin of the

injected current. As a fully quantum phenomenon, the spin

polarized current tunnels through a barrier to drive the mag-

netization in the magnetically soft ferromagnetic layer—the

so-called free layer for information storage.

The basic principles of STTRAM was proposed about

two decades ago in the context of spintronics before the dis-

covery of topological insulators (TIs).9–11 In addition, a

current-induced spin-orbit torque mechanism12 was proposed

as an alternative way to harness the magnetization of con-

ducting magnetic or magnetically doped materials with large

spin-orbit coupling. With the advance of 3D TIs, much more

efficient operations are anticipated with giant spin-orbit tor-

que and spin-transfer torque. Particularly, in comparison

with the conventional spin-orbit torque settings in heavy

metals with a strong Rashba type of spin-orbit coupling,13–16

the spin density in 3D topological insulator based systems

can be enhanced substantially by the factor �hvF=aR � 1,

where vF is the Fermi velocity in the TI and aR is the strength

of the Rashba spin-orbit coupling in two-dimensional elec-

tron gas (2DEG) systems.17 The two-layer stack configura-

tions of TI/ferromagnet18–20 or TI/anti-ferromagnet21,22 have

recently been articulated, which allow for the magnetization

of the depositing magnetic materials to be controlled and the

transport of spin-polarized states on the surface of the 3D

TIs to be modulated.

To be concrete, in this paper, we consider the

ferromagnet-TI configuration and focus on the dynamics of

the magnetization in the insulating ferromagnet and the two

orthogonal current components on the surface of the TI: one

along and another perpendicular to the direction of an exter-

nally applied electrical field. A schematic illustration of the

system is presented in Fig. 1(a), where a rectangular shape of

the ferromagnet is deposited on the top of a TI. For the ferro-

magnet, the dynamical variable is the magnetization vector

M, whose evolution is governed by the classical Landau-

Lifshitz-Gilbert (LLG) equation,23 which is nonlinear. The

TI, as will be described in Sec. II, hosts massless spin-1/2

quasiparticles in the low-energy regime (�meV) on its sur-

face and generates spin polarized surface currents when a

weak electrical field is applied.9–11 In fact, the surface states

of the TI are described by the Dirac Hamiltonian, rendering

it effectively relativistic quantum. Physically, the interac-

tions between TI and ferromagnet can be described, as fol-

lows. The robust spin polarized current on the surface of the

TI generates24 a strong spin-transfer torque25 to the ferro-

magnet, inducing a change in its magnetization vector. The

ferromagnet, in turn, generates a proximity induced

exchange field in the TI. As a result, there is an exchange

coupling term in the surface Dirac Hamiltonian of the TI,

FIG. 1. Schematic illustration of a representative relativistic quantum/classi-

cal hybrid system, the physical interactions, and the dynamical evolution of

the states. (a) A coupled ferromagnet and topological insulator (TI) system,

where the ferromagnet is deposited on the top of the TI. (b) The physical

interactions: spin-transfer torque (from TI to ferromagnet) and exchange

coupling (from ferromagnet to TI). The dynamical evolution of the ferro-

magnet is described by the classical, nonlinear LLG equation, and the dissi-

pationless, spin-polarized surface states of the TI are determined by the

Dirac Hamiltonian. Refer to Secs. II and III for the meanings of the mathe-

matical notations and equations.
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which modulates the quantum transmission and leads to a

change in the surface current. The two-way interactions

between the ferromagnet and TI are schematically illustrated

in Fig. 1(b), where the whole coupled system is of a hybrid

type: effectively relativistic quantum TI and classical ferro-

magnet. The interactions render time dependent dynamical

variables in both TI and ferromagnet: the surface current for

the former and the magnetization vector for the latter. Due to

the intrinsic and externally spin-transfer torque induced non-

linearity of the LLG equation, the whole configuration repre-

sents a nonlinear dynamical system, in which a rich variety

of phenomena such as bifurcations, chaos, synchronization,

and multistability can arise.26

Following the theme of the Focus Issue, in this paper,

we focus on the emergence, evolution, and control of multi-

stability. When a small external voltage with both a dc and

ac component is applied to the TI, a robust spin-polarized

surface current rises, as shown in Fig. 1(a). In certain open

parameter regions, the magnetization can exhibit two coex-

isting stable states (attractors) with distinct magnetic orienta-

tions, each having a basin of attraction. As the phase space

for the magnetization is a spherical surface, the basin areas

of the two attractors are well defined. (This is different from

typical dissipative nonlinear dynamical systems in which the

basin of attraction of an attractor has an infinite phase space

volume.27) As an external parameter, e.g., the frequency of

the ac voltage, is varied, the relative basin areas of the two

attractors can be continuously modulated. In fact, as the

parameter is changed systematically, both birth and death of

multistability can be demonstrated, rendering feasible

manipulation or control of multistability. While some of

these results have appeared recently,26 here we focus on

those that have not been published.

In Sec. II, we provide a concise introduction to the

basics of TIs and the Dirac Hamiltonian with a focus on the

physical pictures of the emergence of strong, spin-polarized

surface states. In Sec. III, we describe the mechanism of spin

transfer torque and the rules of the dynamical evolution of

the TI-ferromagnet coupled system in terms of the LLG

equation and the quantum transmission of the TI. In Sec. IV,

we present results of multistability, followed by a discussion

of potential applications in Sec. V.

II. TOPOLOGICAL INSULATORS

One of the most remarkable breakthroughs in condensed

matter physics in the last decade is the theoretical predic-

tion9,28,29 and the subsequent experimental realization30–32

of TIs.10,11,33 TIs are one emergent phase of the material that

has a bulk band gap so its interior is an insulator but with

gapless surface states within the bulk band gap. The surface

states are protected by the time-reversal symmetry and there-

fore are robust against backscattering from impurities, which

are practically appealing to developing dissipationless or

low-power electronics. Moreover, the surface states possess

a perfect spin-momentum locking, in which the spin orienta-

tion and the direction of the momentum are invariant during

the propagation.

TIs are representative of topologically protected phases

of matter,34,35 one theme of last year’s Nobel prize.36 The

prediction and experimental realization of TIs benefited from

the well-known quantum Hall effect,37 also a topological

quantum order. The topological phases of matter not only are

of fundamental importance but also have potential applica-

tions in electronics and spintronics.38 According to the bulk-

edge correspondence in topological field theory, gapless

edge states exist at the boundary between two materials with

different bulk, topologically invariant numbers.10 The edge

states are protected by the topological properties of the bulk

band structures and thus are extremely robust against local

perturbations. Depending on the detailed system setting,

there are remarkable properties associated with the edge

states such as perfect conductance, uni-directional transpor-

tation, and spin-momentum coupling.9–11

We learned from elementary physics that a perpendicular

magnetic field applied to a conductor subject to a longitudinal

electrical field will induce a transverse voltage—the classic

Hall effect.39 In 1980, it was discovered that, for a 2DEG at

low temperatures, under a strong magnetic field, the Hall con-

ductivity is quantized exactly at the integer multiple of the

fundamental conductivity e2/h, where e is the electronic

charge and h is the Planck constant. This is the integer quan-

tum Hall effect (usually referred to as QHE).37 Different from

the classical Hall effect, the quantized Hall conductivity is

fundamentally a quantum phenomenon occurring at the mac-

roscopic scale.40 Soon after, new states of matter such as the

fractional quantum Hall effect (FQHE),41–44 quantum anoma-

lous Hall effect (QAHE),35 and the quantum spin Hall effect

(QSHE)45–48 were discovered. Besides their fundamental sig-

nificance, such discoveries have led to an unprecedented way

to understand and explore the phases of matter through a con-

nection of two seemingly unrelated fields: condensed matter

physics and topology.

Heuristically, QHE can be understood in terms of the

Landau levels—energy levels formed due to a strong mag-

netic field. Classically, an electron will precess under such a

field. Quantum mechanically, only the orbits whose circum-

ference is an integer multiple of 2p can emerge (constructive

interference), leading to the Landau levels. QHE can be

understood as a result of the Fermi level’s crossing through

various Landau levels49 as, e.g., the strength of the external

magnetic field is increased.

At a deeper level, the robustness of the quantized con-

ductivity in QHE can be understood as a topological effect.

To understand the concept of topology in physical systems,

we consider a two-dimensional closed surface characterized

by a Gaussian curvature. According to the Gauss-Bonnet the-

orem, the number of holes associated with a compact surface

without a boundary can be written as a closed surface

integral

4pð1� gÞ ¼ �ðGaussian curvatureÞ � da;

where we have g¼ 0 for a spherical surface and g¼ 1 for a

donut surface (a two-dimensional torus). Different types of

geometrical surfaces can thus be characterized by a single

number. This idea has been extended to physics with a

proper definition of geometry in terms of the quantum eigen-

states, where a generalized Gauss-Bonnet formula by Chern
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applies. In particular, consider the band structure of a 2D

conductor or a 2DEG. Let jumðkÞi be the Bloch wavefunc-

tion associated with the mth band. The underlying Berry con-

nection is

Am ¼ ihumðkÞjrkjumðkÞi: (1)

The Berry phase is given by

UB ¼
þ

Am � dl ¼ �ðr � AmÞ � ds; (2)

where Fm ¼ r� Am is the Berry curvature. The total Berry

flux associated with the mth band in the Brillouin zone is

nm ¼
1

2p

ð ð
d2k � Fm; (3)

which is the Chern number.10,34 Let N be the number of

occupied bands. The total Chern number is

n ¼
XN

m¼1

nm: (4)

It was proved34 that the Hall conductivity is given by

rxy ¼ n
e2

h
: (5)

As the magnetic field strength is increased, the integer Chern

number increases, one at a time, leading to a series of pla-

teaus in the conductivity plot. The Chern number is a topo-

logical invariant: it cannot change when the underlying

Hamiltonian varies smoothly.34 This leads to robust quanti-

zation of the Hall conductance. Due to its topological nature

and the time-reversal symmetry breaking, dissipationless

chiral edge conducting channels emerge at the interface

between the integer quantum Hall state and vacuum, which

appears to be promising for developing low-power electron-

ics but with the requirement of a strong external magnetic

field. Nevertheless, the topological ideas developed in the

context of QHE turned out to have a far-reaching impact on

pursuing distinct topological phases of matter.

The QSHE represents a preliminary manifestation of TIs

with a time reversal symmetry, as a 2D TI, essentially a

quantum spin Hall state, was predicted in the CdTe-HgTe-

CdTe quantum well system9 and experimentally realized.30

Both CdTe and HgTe have a zinc blende crystal structure

and have minimum band gaps about the C point. The origins

of the conduction and valance bands are s and p atomic orbi-

tals. Compared with CdTe, HgTe can support an inverted

band structure about the C point, i.e., CdTe has an s-type

conduction band and a p-type valance band, while HgTe has

a p-type conduction band and an s-type valance band.

Mathematically, the inversion is equivalent to a change in

the sign of the effective mass. The difference is in fact a

result of the strong spin-orbit coupling in HgTe, which can

reduce the band gap and even invert the bandstructure

through orbital splitting. (In experiments, the band gap can

be widened by increasing the size of the quantum confine-

ment.) Intuitively, a CdTe-HgTe-CdTe quantum well can be

thought as making a replacement of the layers of Cd atoms

by Hg. When the HgTe layer is thin, the properties of CdTe

is dominant and the quantum well is in the normal regime.

As one increases the thickness of the HgTe layer, eventually

the configuration of the conduction and valance bands will

become similar to that of HgTe so the quantum well is in the

inverted regime. The interface joining the two materials with

the inverted configuration acts as a domain wall and can

potentially harbor novel electronic states described by a dis-

tinct Hamiltonian.

In general, regardless of the material parameters, the

Hamiltonian can be written in the momentum space as

H ¼ Hðkx; ky;�i@zÞ, where z stands for the stacking direction

so kz is not a good quantum number. Integrating this

Hamiltonian within several dominant z base states, one can

arrive at an effective Hamiltonian for the 2D TI, which is

characterized by kx and ky. Edge states can be obtained by

imposing periodic boundary conditions along one direction

and open boundary conditions in another. The inverted band

structure, i.e., the basis, and the time-reversal symmetry

guarantee the gaplessness of the edge state while the detailed

form of the open boundary plays a secondary role only. For a

pedagogical review of 2D Tis, see Ref. 50.

Parallel to the study of 2D TIs, there were efforts in

uncovering 3D TIs, for which Bi1–xSbx was theoretically pro-

posed to be a candidate.28,46 The prediction was confirmed

experimentally shortly after.31 However, since Bi1– xSbx is an

alloy with random substitutional disorders, its surface states

are quite complicated, rendering difficulty in a description

based on an effective model. The attention was then turned to

find 3D TIs in stoichiometric crystals with simple surface

states, leading to the discovery29,32 of Bi2Se3. In particular, it

was experimentally observed32 that there is a single Dirac

cone on the surface of Bi2Se3. A low-energy effective model

was then proposed29 for Bi2Se3 as a 3D TI, in which spin-

orbit coupling was identified as the mechanism to invert the

bands in Bi2Se3 and the four most relevant bands about the C
point were used to construct an effective bulk Hamiltonian. A

generic form of the Hamiltonian was written down in the

space constituting the four bases up to the order of Oðk2Þ,
constrained by a number of symmetries: the time-reversal, the

inversion, and the three-fold rotational symmetries. The

parameter associated with each term was determined by fitting

the dispersion relation with the ab initio computational results.

The surface states can be obtained by imposing constraints

along one direction, which mathematically entails replacing kz

by �i@z while keeping the states along the other two direc-

tions oscillatory. The effective surface Hamiltonian can be

calculated by projecting the bulk Hamiltonian onto the surface

states. At present, Bi2Se3 is one of the most commonly studied

3D TIs, which possesses gapless Dirac surface states protected

by the time-reversal symmetry and a bulk band gap up to

0.3 eV (equivalent to 3000 K—far higher than the room

temperature).

The widely used Hamiltonian for the surface states of an

ideal 3D TI is

H ¼ �hvFðr� kÞ � ẑ; (6)

where vF is the Fermi velocity of the surface states

(vF � 6:2� 105m=s for Bi2Se3), and r ¼ ðrx; ry; rzÞ are the
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Pauli matrices describing the spin of the surface electron.29

An elementary calculation shows that the dispersion relation

of this surface Hamiltonian indeed has the structure of a

Dirac cone. In proximity to a ferromagnet with a magnetiza-

tion m, an extra term m � r in the Hamiltonian (6) will be

induced. Due to the breaking of the time reversal symmetry

by the exchange field, gap opening for the surface states will

occur and backward scatterings will no longer be forbidden.

The proximity induced exchange field will thus modulate the

charge transport behaviors of the surface states and the

underlying spin density by disturbing the spin texture, which

in turn can be a driving source of the nonlinear dynamic

magnetization in the adjacent ferromagnetic cap layer

through a spin-transfer torque.

III. SPIN-TRANSFER TORQUE

Spin-transfer torque25 is a major subject of research in

spintronics,51 a field aiming to understand and exploit the

spin degree of freedom of electrons beyond the conventional

charge degree of freedom. Intuitively, spin-transfer torque is

nothing but the exchange interaction between two magneti-

zation vectors. In particular, when two magnetization vectors

are brought close to each other, they tend to align or anti-

align with each other to evolve into a lower energy state. In

our coupled TI-ferromagnet system, one magnetization vec-

tor is the net contribution of the spin-polarized current on the

surface of the TI, and the other comes from the ferromagnet.

A setting to generate a spin-transfer torque is schematically

illustrated in Fig. 2. The basic physical picture can be

described, as follows. When a normal current flows near or

within a region in which a strong magnetization is present,

the spin associated with the current will be partially polar-

ized. This implies that, by the law of action and reaction, a

spin-polarized current will exert a torque on the magnetiza-

tion—the spin-transfer torque. Such a torque will induce

oscillations, inversion, and other dynamical behaviors of the

magnetization. The ability to manipulate magnetization is

critical to applications, especially in developing memory

devices.

Conventionally, a three-layer magnetic tunnel junction

(MTJ) is used to study spin-transfer torque,51–53 in which the

fixed layer is a ferromagnet with a permanent magnetization.

A schematic illustration of an MTJ is presented in Fig. 3.

When a normal current is injected into this layer, the spin

will be partially polarized due to the individual exchange

interaction between each single electron spin and the magne-

tization. As a result, there is randomness in the polarization

with no definite correlation between the direction of the elec-

tron spin and momentum. To separate the fixed from the free

layer, a thin insulating separation barrier is needed to form a

tunnel junction. The current will travel through the insulating

barrier via the mechanism of quantum tunneling, during

which the direction of spin will not be altered insofar as the

insulating barrier does not have any magnetic impurity.

After the tunneling, the spin-polarized current will exert a

spin-transfer torque on the magnetization in the free ferro-

magnetic layer, modifying the information stored. Readout

of the information, i.e., the direction of the magnetization,

can be realized by exploiting the giant magnetoresistance

effect.54–56

An issue with MTJ is that a very large current is needed

to reorient the magnetization, motivating the efforts to

explore alternative mechanisms with a lower energy require-

ment. One mechanism was discovered in ferromagnet/

heavy-metal bilayer heterostructures.14,57 The strong Rashba

spin-orbit coupling in many heavy metals can be exploited

through the mechanism of spin-orbit torque to generate spin-

polarized currents via the Edelstein effect, which are gener-

ally much stronger than the exchange interaction between

the fixed layer and current spin in the conventional MTJ.

Moreover, the current in the configuration needs no longer to

be restricted to the perpendicular direction, but can have any

orientation within the film plane. This new geometrical

degree of freedom enables unconventional strategies for

manipulating magnetization. For example, it was discov-

ered58 that the domain wall motions (essentially the

FIG. 2. Schematic illustration of spin-transfer torque. The large green arrow

indicates an electron flow under an external longitudinal voltage. The elec-

trons are spin polarized (e.g., the surface states of a 3D TI). As the electrons

pass through a region in which a magnetization vector is present (e.g., a fer-

romagnetic region), it exerts a torque on the magnetization, due to which the

spin polarization of the outgoing electrons is changed, henceforth the term

“spin-transfer torque.”

FIG. 3. Schematic illustration of a magnetic tunnel junction (MTJ). A typi-

cal MTJ consists of a fixed layer, a barrier and a free layer. An electrical cur-

rent is injected vertically into the fixed layer and comes out from the free

layer. The average spin of the current is polarized by the fixed layer, which

tunnels through the insulating barrier and drives the magnetization of the

free layer. This configuration can be used to modify and detect the magneti-

zation direction in the free layer through the giant magnetoresistance (GMR)

effect.
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dynamics of magnetization) in the covering magnetic free

layer have a sensitive dependence on the spatial distribution

of the current generated spin-orbit torque.

A disadvantage of the spin-orbit torque configuration is

that the heavy metals usually suffer from substantial scatter-

ings and the transportation mechanisms are complex. In

addition, for heavy metals, spin-orbit coupling is essentially

a higher-order effect. As a result, the currents are not per-

fectly polarized. These difficulties can be overcome by

exploiting TIs as a replacement for heavy metals.

Mathematically, the Hamiltonian term describing the

Rashba spin-orbit coupling has the same form as the effec-

tive surface Hamiltonian of a 3D TI, i.e., �r� k. This is

basically the whole Hamiltonian for the surface states of 3D

TI under the low energy approximation. The presence of an

exchange field from the ferromagnetic cap layer will contrib-

ute a Zeeman term to the Hamiltonian. To see this explicitly,

we consider the surface Hamiltonian of a 3D TI in the pres-

ence of a magnetization

�hvFðr� kÞ � ẑ þm � r ¼ �hvF rx � ky þ
mx

�hvF

� ��

�ry � kx �
my

�hvF

� ��
þ mzrz;

where the mz term only induces a band gap due to the breaking

of the time-reversal symmetry for the surface states, as shown

in Fig. 4(a). The mx and my terms are equivalent to a shift in

the center of the Fermi surface, as shown in Fig. 4(b).

Consequently, the surface currents and the associated spin den-

sities flowing through the magnetization region will be modu-

lated. In addition, as the TI contains an insulating bulk with a

band gap much larger than the room temperature thermal fluc-

tuations, the only conducting modes are those associated with

the spin-polarized surface states. The coupled TI/ferromagnet

configuration has been experimentally realized.24 So far the

system provides the strongest spin-transfer torque source—two

to three orders of magnitude higher than that in heavy metals.

The magnetization dynamics of the ferromagnet depos-

ited on the 3D TI can be described by the classical LLG

equation,23 which captures the essential physical processes

such as procession and damping of the magnetization subject

to external torques. The LLG equation is

_n ¼ �D

�h
n� x̂ þ aGn� _n þ 1

�h
T; (7)

where the first term represents the procession along the easy

axis x̂ and D is the anisotropic energy of the ferromagnet.

The second term describes the Gilbert damping of strength

aG. The last term is the contribution from the external torque,

which is the spin-transfer torque

T ¼ hri �m ¼ nhri � n; (8)

where, for convenience, we use n ¼ jmj (the magnitude of

the magnetization) as a normalizing factor so that n ¼ m=n
becomes a unit vector.

IV. EMERGENCE, EVOLUTION, AND CONTROL OF
MULTISTABILITY

To study the nonlinear dynamics of the coupled TI-

ferromagnet system, we couple the transportation of current

on the surface of TI with the oscillatory dynamics of the

magnetization of the ferromagnet through the mechanisms of

spin-transfer torque and exchange coupling. The various

directions are defined in Fig. 1(a). The covering ferromag-

netic material is insulating so that the conducting current is

limited to the 2D surface of the TI: j ¼ ðjx; jy; 0Þ. In addition,

the width of the device in the y direction is assumed to be

large, while the system size in the x direction is on the order

of the coherent length so that the transport of the surface cur-

rent can be described as a scattering process under a square

magnetic potential. The typical time scale of the evolution of

the magnetization is nanoseconds, which is much slower

compared with the relaxation time of the surface current of

the TI. We can then use the adiabatic approximation when

modeling the dynamics of the surface electrons. Specifically,

we solve the time-independent Dirac equation with a con-

stant exchange coupling term at a given time and obtain the

transmission coefficient of surface electrons.59,60 The low-

FIG. 4. Surface states of topological insulators and the effect of magnetization. (a) Red and blue lines represent the linear dispersion relation of the surface

states of an ideal TI without a gap opening perturbation, with the slope �h�F. The two states have opposite spin polarizations. The presence of a perpendicular

magnetization vector mz leads to a gap opening of size proportional to 2mz, making the dispersion relation hyperbolic. (b) Magnetization vectors in the plane

of the TI, i.e., mx and my, will shift the central position of the Fermi surface in the wave vector space, inducing an asymmetry with respect to either ky¼ 0 or

kx¼ 0.
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energy effective surface state Hamiltonian of the TI under a

square magnetic potential is given by

H ¼ �hvFðr� kÞ � ẑ þm � rHðxÞHðL� xÞ: (9)

Compared with Eq. (6), the induced exchange field is

modeled by a step function HðxÞ in the space to ensure

that it only appears within the ferromagnetic region of

length L.

To calculate the transmission coefficient through the fer-

romagnetic region, we consider the wavefunctions before

entering inside and after exiting the ferromagnetic region,

and apply the boundary conditions at the interfaces of the

three regions. The result is59

t ¼ �4�h�F
~kx cos h

aðAþ ieihBÞ ; (10)

where

A ¼ a2 ie�ih�h�Fð~ky þ i~kxÞ � E� mz

h i

�a1 ie�ih�h�Fð~ky � i~kxÞ � E� mz

h i
;

B ¼ a2 ie�ihðE� mzÞ � �h�Fð~ky � i~kxÞ
h i

�a1 ie�ihðE� mzÞ � �h�Fð~ky þ i~kxÞ
h i

;

and

E ¼ �h�FkF;

kx ¼ kF cos h;

ky ¼ kF sin h;

�h�F
~kx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � m2

z � ð�h� ~kyÞ2
q

;

�h�F
~ky ¼ �h�Fky þ mx;

a ¼ eikFL cos h;

a1 ¼ eið~kxþmyÞL;

a2 ¼ eið�~kxþmyÞL:

In these expressions, E and kF are the Fermi energy and

Fermi wave vector of electrons outside the ferromagnetic

region, i.e., the linear dispersion region, and h is the incident

angle of the electron to the ferromagnetic region. Integrating

the transmission coefficient over the incident angle, we

get the current densities through the ferromagnetic region

along the x and y directions as

jx ¼ �
kF

2p
e2

�h
V

ðp
2

�p
2

dhjtj2 cos h;

jy ¼ �
kF

2p
e2

�h
V

ðp
2

�p
2

dhjtj2 sin h; (11)

from which the spin density of the electrons can be calcu-

lated as

hri ¼ � 1

e�F
j � ẑ ¼ 1

e�F
� ð�jy; jx; 0Þ ¼

jx

e�F
� g; (12)

where V ¼ Vdc þ Vac cos ðXtÞ is the driving voltage along

the x direction and g ¼ ðgx; 1; 0Þ. A surprising result is that

the voltage along the x direction will induce a current along

y direction, which is a signature of an anomalous Hall

effect.26 To understand the origin of this current deviation,

we examine the integrand of Eq. (11) in the absence of the

ferromagnet

jtj2 ¼ cos4h

cos4h cos2ðkxLÞ þ ð sin2h� 1Þ2 sin2ðkxLÞ
; (13)

which is an even function with respect to the incident angle,

leading to a zero jy after the integration. However, if the effect

of m is taken into account, the quantity jtj2 is no longer an

even function with respect of h, meaning that the y component

of the current contributed by the electrons with incident angles

h and �h do not have the same magnitudes, so a net y compo-

nent appears. The quantity jgxj ¼ jjy=jxj ¼ jrxy=rxxj is the

ratio of the Hall conductance to the channel conductance.60

Dynamical behaviors including chaos, phase synchroni-

zation, and multistability in the coupled TI-ferromagnet sys-

tem were reported in a previous work.26 Here, we present a

phenomenon on multistability that was not reported in the

previous work: continuous mutual switching of final state

through a sequence of multistability transitions. Specifically,

we focus on the behavior of the system versus the bifurcation

parameter Vdc=Vac for X=xF ¼ X=ðD=�hÞ ¼ 7:0, as shown in

Fig. 5(a). Since n is a directional vector of unit length, it con-

tains only two independent variables, e.g., nx and ny, which

we represent using the blue and red colors, respectively. We

fix other parameters as n=E ¼ 0:1, kFL¼ 100, and E2eVac=
ð2p�h3xF�

2
FÞ ¼ 100. Figure 5(a) shows that there are several

critical parameter values about which the system dynamics

change abruptly as reflected by the discontinuous behaviors

of the blue and red dots. A detailed investigation in a

previous work26 demonstrated that this is a signature of

multistability.

Because the whole phase space is the surface of a 3D

sphere, the relative strength of multistability can be charac-

terized by the volumes of basins of attraction of the coexist-

ing final states (attractors). For example, for the case of two

attractors, the ratio of the volumes of their basins of attrac-

tion indicates the relative weight of each state. Figures 5(b)

and 5(c) show, for X=xF ¼ 10:0, two representative basins

for Vdc=Vac ¼ 0:5179 and Vdc=Vac ¼ 0:5232, respectively,

which are calculated by covering the unit sphere with a

100� 100 grid of initial conditions and determining to which

attractor each initial condition leads to. For the two distinct

attractors, the values of the dynamical variable ny are differ-

ent: ny � 0 and ny � �1, where the sign of the driving volt-

age determines the sign of ny. From an applied standpoint,

the two stable states are effectively binary, which can be

detected through the GMR mechanism. To label the final

states, we color a small region on the sphere with the corre-

sponding value of ny in each final state and use Albers equal-

area conic projection to map the sphere to a plane, which is

area-preserving. As the dc driving voltage is increased

slightly, the basin of the blue state expands while that of the

red state shrinks. As can be seen from the bifurcation dia-

gram, when all the initial conditions lead to the blue state,
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we have ny � �1. If we continue to increase the dc driving

voltage from this point, ny will approach 0 eventually, indi-

cating that the red state is the sole attractor of the system.

During this process, there is a continuous transition of multi-

stability, where there is a single state (blue) at the beginning,

followed by the emergence and gradual increase of the basin

of the red state, and finally by the disappearance of the entire

basin of the blue state. From this point on, another transition

in the opposite order occurs, where the red state eventually

disappears and replaced by a blue state, and so on. This phe-

nomenon of continuous flipping of the final state through a

sequence of multistability transitions was not reported in the

previous work.26

Multistability in the coupled TI-ferromagnet system can

be controlled through parameter perturbations. There are two

approaches to altering the final magnetization state. We first

fix a particular value of the driving voltage and choose the ini-

tial conditions that lead to one of the two possible final states.

Transition to the alternative final state can be triggered by

applying a perturbation, such as a voltage pulse. Figure 6

shows the approximate locations of the various multistability

regimes along the Vdc=Vac axis for different values of the driv-

ing frequency. For example, for X=xF ¼ 7:0, there are four

multistability regimes located approximately at the four points

on the line X=xF ¼ 7:0. We then examine the bifurcations for

different values of the driving frequency and mark the corre-

sponding transition points in Fig. 6. Since the transition points

depend on the initial condition used in calculating the bifurca-

tions, the results are only an approximate indicator of the mul-

tistability regimes of finite width. In spite of the uncertainties,

we obtain a linear behavior of the multistability regimes in the

parameter plane of the driving frequency and voltage. We

note that there are irregularities associated with the case of

X=xF ¼ 2:0. This is because, in this case, the multistability

regimes are too close to each other, rendering indistinguish-

able to certain extent the transition regimes.

The dependence of the multistability regimes on the

driving frequency suggests ease to control the final state. For

example, if multistability is undesired, we can choose a rela-

tively high value of the driving frequency, e.g., X=xF

¼ 10:0. In this case, the multistability regimes occupy only a

small part of the Vdc=Vac interval. That is, for most parameter

values, there is only a single final state in the system, regard-

less of the initial conditions. A proper dc voltage can then be

chosen to guarantee that the system approaches the desired

final state. If the task is to optimize the flexibility for the

FIG. 5. Bifurcations and multistability

in the coupled TI-ferromagnet system.

(a) A bifurcation diagram for X=xF

¼ 7:0, where the parameter ratio

Vdc=Vac is swept from –1.0 to 1.0. The

system exhibits rich dynamics. In sev-

eral parameter regimes, there are

abrupt changes in the final states. A

systematic computation with different

initial conditions reveals multistability.

(b) and (c) For X=xF ¼ 10:0, typical

examples of multistability. The phase

space of the normalized magnetization

n of the ferromagnet is the surface of a

unit sphere. All possible initial condi-

tions from the spherical surface are

distinguished by different colors. The

Albers equal-area conic projection is

used to map the initial conditions from

the spherical surface to a plane while

preserving the area of each final state.

The standard parallels of the Albers

projection are 2
9
p; 7

18
p. The basins of

two final states are shown.

FIG. 6. Dependence of multistability regimes on the driving voltage and fre-

quency. The blue circles indicate the approximate positions of the multi-

stability regimes in the parameter plane of driving voltage and frequency.

The positions are those at which discontinuous bifurcations occur with

respect to the driving frequency for the specific initial condition nðt ¼ 0Þ
¼ ð1; 0; 0Þ. The width of each regime depends on the condition. The red

dashed lines are included for eye guidance. For relatively small values of

X=xF (e.g., 2.0), there are more multistability regimes than those for higher

values of X=xF. The results indicate that the emergence and evolution of

multistability can be controlled by the driving frequency.
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system to switch between distinct final states, we can set a

relatively low value of the frequency, e.g., X=xF ¼ 2:0. In

this case, the system exhibits a large number of multistability

regimes. Switching between the final states can be readily

achieved by using a voltage pulse.

V. DISCUSSION

Multistability is a ubiquitous phenomenon in nonlinear

dynamical systems,61–72 and also in physical systems such

as driven nanowire73,74 and semiconductor superlattice.75

Indeed, it is common for a nonlinear system to exhibit mul-

tiple coexisting attractors, each with its own basin of attrac-

tion.61,62 The boundaries among the distinct basins can be

fractal61,62 or even riddled,76–87 and there is transient

chaos88 on the basin boundaries. In applications of nonlin-

ear dynamics, it is thus natural to anticipate multistability.

In a specific physical system, to understand the origin of

multistability can be beneficial to its prediction and control.

Alternatively, it may be possible to exploit multistability

for technological systems, such as the development of

memory devices.

The purposes of this mini-review article are twofold.

First, we introduce topologically protected phases of matter,

a frontier field in condensed matter physics and materials sci-

ence, to the nonlinear dynamics community. For this pur-

pose, we provide an elementary description of a number of

basic concepts such as Berry phase and Chern number in the

context of the celebrated QHE with an emphasis on the topo-

logical nature, and topological insulators with dissipation-

less, spin-momentum locking surface states that are a

remarkable source of the spin-transfer torque for nonlinear

dynamical magnetization. As a concrete example of a hybrid

topological quantum/classical system, we discuss the config-

uration of coupled TI and ferromagnet, where the former is a

relativistic quantum system and the latter is classical. The

physical interactions between the two types of systems are

discussed: the spin polarized electron flows on the surface of

the TI delivers a spin-transfer torque to the magnetization of

the ferromagnet, while the latter modifies the Dirac

Hamiltonian of the former through an exchange coupling.

The nonlinear dynamics of this hybrid system has been stud-

ied previously,26 including a brief account of multistability.

The second purpose is then to present results pertinent to

multistability, which were not reported in the previous

works. Through a detailed parameter space mapping of the

regions of multistability, we uncover the phenomenon of

alternating multistability, in which the final states of the sys-

tem emerge and disappear alternatively as some parameters

are continuously changed. For example, by changing the fre-

quency of the driving voltage, one can tune the percentage of

the multistability regimes in the parameter space. The phe-

nomenon provides a mechanism to harness multistability

through experimentally realizable means, such as the deliv-

ery of small voltage pulses to the TI.

The system of coupled TI-ferromagnet is a promising

prototype of the building blocks for the next generation of

universal memory device. The multistable states can poten-

tially be exploited for a binary state operation to store and

process information.
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