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Switching dynamics among saddles in a network of nonlinear oscillators can be exploited for

information encoding and processing (hence computing), but stable attractors in the system can

terminate the switching behavior. An effective control strategy is presented to sustain switching

dynamics in networks of pulse-coupled oscillators. The support for the switching behavior is a set

of saddles, or unstable invariant sets in the phase space. We thus identify saddles with a common

property, localize the system in the vicinity of them, and then guide the system from one metastable

state to another to generate desired switching dynamics. We demonstrate that the control method

successfully generates persistent switching trajectories and prevents the system from entering sta-

ble attractors. In addition, there exists correspondence between the network structure and the

switching dynamics, providing fundamental insights on the development of a computing paradigm

based on the switching dynamics. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4930840]

Exploiting nonlinear dynamical systems for applications

in information science and technology has been a fasci-

nating area of research. The paradigm of associative

memory pioneered by Hopfield is one example. Another

example is chaos-based computing that makes use of a

large number of different dynamical “states” inherent to

the system for encoding and processing information.

Recently, heteroclinic switching dynamics in networks of

nonlinear oscillators have been proposed as a potential

class of devices for information encoding, with significant

implications to biological systems. In particular, a large

number of saddles (or unstable attractors) can emerge,

which constitute the backbone for dynamical switching.

Information encoding can be achieved by making the sys-

tem visit the neighborhoods of these saddles and switch

among them from time to time. Many combinations of

saddles offer a rich variety of possible switching patterns.

However, the appearance of stable attractors can termi-

nate heteroclinic switching dynamics. Without control,

there is a high probability that the system, starting from

a random initial condition, will approach a stable attrac-

tor. Utilizing networks of pulse-coupled oscillators as

prototypes of a class of systems, we develop an effective

localization control strategy to govern the system from

one saddle to another without ever falling into the basin

of any stable attractor. Our key idea lies in making use of

a class of saddles with common local properties, which

provide a platform to execute the localization control to

direct the network dynamics to switch from one saddle to

another. As a result, the natural trajectories that link these

saddles are not needed to be discovered as the localization

control substitutes them. We uncover correspondence

between the network structure (e.g., various loop struc-

tures) and switching dynamics, allowing the global

switching dynamics to be harnessed through certain col-

lective behaviors emerging among subsets (or groups) of

oscillators.

I. INTRODUCTION

Exploiting nonlinear dynamical behaviors for informa-

tion processing and computing has a long history (see, for

example, Refs. 1–12). The celebrated Hopfield associative

memory devices, a class of artificial neural networks, make

use of nonlinear response functions to store and retrieve in-

formation.1–3 The fundamental tasks involved in computing

such as information storage, communication, and processing

can all be accomplished by exploiting the flexibility of non-

linear dynamical systems—the paradigm of chaos comput-

ing.4–7 Especially, chaotic systems have extremely complex

dynamical behaviors, but it is exactly this complexity that

makes available a large number of different dynamical

“states” that can be used for encoding information. In addi-

tion to human designed or engineered systems, nonlinearity

has also been exploited in natural systems for information

processing. For example, in systems biology,13 the Hills

function, a nonlinear response function, is generic and funda-

mental to various gene regulatory networks.

A nonlinear system can exhibit a rich variety of dynami-

cal invariant sets14 such as attractors and non-attracting cha-

otic sets responsible for transient chaos.15,16 A common type

of simple invariant sets is saddles (more generally unstable
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periodic orbits). In fact, a chaotic invariant set has an infinite

number of embedded unstable periodic orbits.14 A trajectory

starting from a random initial condition visits the neighbor-

hoods of these orbits from time to time—a kind of switching

behavior that is the base for practical applications such as

chaos control.17–19 In the past few years, there has been a

great deal of effort in investigating switching dynamics

among saddles in nonlinear networks from the perspective of

information encoding.20–28 For switching dynamics among
saddles, the system typically spends long time in the vicinity

of a saddle, while the switching from one saddle to another

occurs relatively fast. Due to the large number of combina-

tions of saddles available, this approach has been deemed to

be potentially useful for computation.

A dynamical approach to realizing switching is through

heteroclinic connections, each joining together two different

saddles, which corresponds to the unstable manifold of the

starting saddle and the stable manifold of the terminal saddle.

The resulting dynamics is effectively a type of heteroclinic
switching dynamics. To realize heteroclinic switching, it is

necessary to manipulate the saddles and their unstable mani-

folds. One approach to generating the heteroclinic switching

dynamics is based on the principle of winnerless competition,

where many metastable states such as saddles and trajectories

connecting them are used to model sequential switching dy-

namics observed in some neural systems.20 In this regard, the

saddles with one-dimensional unstable manifolds have been

used to generate switching dynamics.29,30 When the unstable

manifolds are high-dimensional, a trajectory starting from one

saddle can approach multiple saddles, making it difficult to

generate the desired switching dynamics, i.e., any single

switching sequence of saddles where switching between two

successive saddles is explicitly determined.

Besides the approach of winnerless competition, sys-

tems with symmetries have also been exploited for realizing

heteroclinic switching dynamics. In such a system, multiple

saddles could be connected cyclically, leading to stable het-

eroclinic cycles.31 In a globally pulse-coupled oscillator net-

work with delayed excitatory coupling, heteroclinic

switchings can occur, where the saddles are actually unstable

attractors.32–34 These saddles form a complicated network of

states in the phase space, and symmetry-breaking inhomoge-

neities can effectively induce heteroclinic switchings.24,25

When the networks are not globally connected, stable attrac-

tors can become dominant, which prevent the natural occur-

rence of heteroclinic switching dynamics.

Previous methods focused on generating switching dy-

namics through direct establishment of heteroclinic connec-

tions that are intrinsically present. In order to generate many

switching patterns, a large number of saddles are required,

which usually occur in large networks. However, as the net-

work size increases, the task becomes extremely difficult

because the number of conditions associated with the hetero-

clinic connections, as well as the number of distinct network

structures and the dimensionality of the unstable manifolds of

the saddle, increases rapidly. In addition, to realize switching

dynamics, it is desirable that the system dynamics be simple,

e.g., exhibiting saddles only, but chaotic dynamics can often

emerge in large networks.35 For these reasons, previous effort

was mainly devoted to switching dynamics in globally

coupled networks or small networks. In addition, the correla-

tion between network structure (or topology) and heteroclinic

switching dynamics has not been well understood.

In this paper, we focus on the local dynamics of saddles

and develop a control framework to generate desired switch-

ing dynamics to guide the system from one saddle to another.

In this way, the difficult problem of establishing heteroclinic

connections among saddles is avoided. We address this issue

using networks of pulse-coupled oscillators, a paradigm for

diverse natural systems such as neural networks, cardiac

pacemaker cells, and flashing fireflies.36–45 Despite the sim-

plicity of the individual oscillator dynamics, such a network

(even of large size) exhibits a large number of interconnected

saddles, or a “network” of saddles, and simultaneously a

large number of stable attractors. To achieve efficient

switching dynamics, the system’s approaching any stable

attractor should be avoided. We develop an effective

approach to manipulating switching dynamics, taking

advantage of the properties of the saddles and their local dy-

namical behaviors. Specifically, we find a type of saddles

with prescribed properties that are directly related to the net-

work structure. That is, by selecting the appropriate network

structure, the system can potentially exhibit the desired

switching dynamics. We articulate an effective localization

strategy to restrict the state of the system to the neighbor-

hoods of the saddles only so as to avoid being attracted to-

ward any of the stable attractors. Our results yield a better

understanding of the correspondence between network struc-

ture and switching dynamics, and it can be useful for the

design of information processing and computing devices

based on harnessing unstable saddle dynamics in coupled os-

cillator networks.

In Sec. II, we describe a type of saddles with common

properties, and then design network structure accordingly. In

Sec. III, we present our localization control method to gener-

ate desired saddle switching dynamics, bypassing the stable

attractors. In Sec. IV, we demonstrate the effectiveness of

our method using numerical examples. In Sec. V, we present

conclusions.

II. SADDLE PROPERTIES AND NETWORK
STRUCTURE

A. Network of excitatory pulse-coupled oscillators

A widely used model for a network of pulse-coupled

oscillators was introduced by Mirollo and Strogatz37 to

understand the synchronous flashing behaviors of fireflies.

This is essentially a model of integrate-and-fire oscillators in

computational neuroscience.33 In a network of pulse-coupled

oscillators, the state of the ith oscillator is described by a

phase-like variable /iðtÞ 2 ð�1; 1�. The free evolution, i.e.,

the dynamics without interactions, is given by

d/i=dt ¼ Ii; (1)

where Ii is phase velocity of oscillator i, chosen to be unity

(Ii ¼ 1). When /iðtÞ reaches the threshold 1, oscillator i fires

and its phase /iðtÞ is reset to zero. This process is called

103109-2 Zou et al. Chaos 25, 103109 (2015)
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firing or spiking, during which a pulse is generated. After a

delayed time s, oscillators with incoming links from oscilla-

tor i will receive the pulse. For example, when oscillator j
receives a pulse from oscillator i at time t, a phase jump in

oscillator j is induced as follows:

/þj ðtÞ ¼ minfU�1½Uð/jðtÞÞ þ ej;i�; 1g; (2)

where /þj ðtÞ is the phase of oscillator j just after the pulse

and ej;i denotes the coupling strength from oscillator i to j.
The coupling strength is normalized as ej;i ¼ e=kj, and kj is

the in-degree of j, i.e., the number of incoming links. In other

words, the total strength of the incoming links for an oscilla-

tor j is
P

i ej;i ¼ e. Generally, the directed connections cannot

have the same strength, because the in-degree determines the

individual connection strengths. Throughout this paper, we

consider excitatory coupling with ej;i > 0. A possible choice

for Uð/Þ is37

Uð/Þ ¼ b�1ln½1þ ðeb � 1Þ/�; (3)

with a positive parameter b.

B. Properties of saddles

The two events associated with pulses, i.e., generation

(denoted by S) and receipt of pulses (denoted by R), can be

used to describe the properties of saddles. Pulses are indexed

based on their origin. For example, S(i) indicates when a

pulse is generated by oscillator i, and R(i) denotes the receipt

of a pulse from oscillator i. When multiple oscillators have

the same event, the notations are similar. For example, S(i, j)
indicates that oscillators i and j generate pulses at the same

time, and R(i, j) denotes the receipt of pulses from these two

oscillators. Time durations in which no event occurs are

denoted by the minus sign “�.”

In terms of the event sequences, we find a large number

of saddles sharing the following common dynamical proper-

ties. Several oscillators reach the threshold simultaneously
during the free evolution, i.e., simultaneously active firing,

while other oscillators fire due to the arrival of supra-threshold

pulses, the so-called passive firing.46 For the latter case, an os-

cillator with phase / fires immediately when receiving a

supra-threshold pulse with strength e0, i.e., Uð/Þ þ e0 � 1.

These saddles are in fact unstable attractors, which are locally

unstable but with a positive measure of the basins of attrac-

tion32–34,47,48 and hence are a type of Milnor attractors.49

A typical event structure of a saddle (an unstable attrac-

tor) is exemplified as

Rð1; 2ÞSð3; 4; 6Þ � Rð3; 4; 6ÞSð5Þ � Rð5Þ � Sð1; 2Þ; (4)

which specifies a sequence of events during one period for a

saddle in a globally connected network of 6 oscillators. The

events and the detailed evolution of the system are listed in

Table I. In this example, the first three events are arrivals of

pulses started by notation R. The last event is that oscillators 1

and 2 become simultaneously active firing S(1, 2). These two

oscillators receive sub-threshold pulses and reach the threshold

during free evolution. The saddles of structure (4) have the

additional property, that is, the time difference between two

successive arrivals of pulses, such as the second and the third

events in Table I, is s ¼ 0:1. This property arises50 because of

the absence of passive firings for the last arrival of the pulses

(denoted as R(5) in this example) before the simultaneously

active firing S(1, 2). There also exist saddles where some pas-

sive firings are caused by R(5). In such cases, the time differ-

ence between two successive arrivals of pulses is smaller than

s, depending on the phases of the oscillators. This induces

great difficulty to manipulate or control the corresponding sad-

dles. We thus focus only on the cases where there is no passive

firing induced by the last event of the arrival of pulses before

simultaneously active firing occurs.

C. Rare saddle connections in sparse networks

The saddles of similar structure (4) form the backbone

of the switching dynamics. Since the saddles are unstable

attractors, it is possible to directly investigate the connec-

tions among them. Numerical verification of the nature of

the unstable attractor can be found in Refs. 33 and 46. Two

unstable attractors can form a heteroclinic connection in the

sense that nearby points for one unstable attractor can lead to

another unstable attractor.47,51 To this end, we measure the

fraction fhc of initial conditions leading to unstable attractors

forming heteroclinic connections. Such an initial condition

first leads to an unstable attractor, but points in its neighbor-

hood can lead to the other unstable attractors. We also mea-

sure the fraction fst of initial conditions that lead to stable

attractors. For a network of size N with m directed links, the

density q is defined as q ¼ m=½NðN � 1Þ�, where each

directed link is placed between two oscillators randomly

selected from the network. A globally coupled network with-

out self-links has the maximum number of links NðN � 1Þ.
Figure 1 shows fhc and fst versus the density q. We see

that fhc approaches zero quickly when q is decreased, and the

basins of the stable attractors dominate the phase space. This

means that the connections among saddles become rare, due

to the emergence of the stable attractors with increased

sparsity.

TABLE I. For a system of six globally coupled oscillators, typical events for

a saddle with the simultaneously active firing S(1, 2). The phases are

recorded just after the occurrence of an event. Immediately after the first

event, oscillators 3, 4, and 6 fire passively, and their phases are reset to zero:

Rð1; 2ÞSð3; 4; 6Þ. After the delayed time s ¼ 0:1, the pulses from these three

oscillators are received, causing oscillator 5 to fire passively: Rð3; 4; 6ÞSð5Þ.
The parameters are s ¼ 0:1; e ¼ 0:1, and b ¼ 1.5.

k Event Time t

Phases of oscillators

1 2 3 4 5 6

1 Rð1; 2ÞSð3; 4; 6Þ 20.06 0.11 0.11 0.0 0.0 0.89 0.0

2 Rð3; 4; 6ÞSð5Þ 20.16 0.25 0.25 0.12 0.12 0.0 0.12

3 R(5) 20.26 0.37 0.37 0.23 0.23 0.1 0.23

4 S(1, 2) 20.88 0.0 0.0 0.86 0.86 0.72 0.86

5 Rð1; 2ÞSð3; 4; 6Þ 20.98 0.11 0.11 0.0 0.0 0.89 0.0

6 Rð3; 4; 6ÞSð5Þ 21.08 0.25 0.25 0.12 0.12 0.0 0.12

7 R(5) 21.18 0.37 0.37 0.23 0.23 0.1 0.23

8 S(1, 2) 21.80 0.0 0.0 0.86 0.86 0.72 0.86
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D. Networks with group structures

Except the difficulty from rare saddle connections in

generating switching dynamics, one needs to identify the

type of networks that can generate saddles with simultane-

ously active firing. The topological criterion that the firing

sequences require can be met by classification of oscillators

into groups, where each group of oscillators receive the same

set of incoming links, with no excitatory couplings within

the group so as to exclude self-links. The network structure

is schematically shown in Fig. 2(a). In this type of networks,

a group of oscillators can sustain simultaneous firings

through the receipts of either no pulse or pulses of the same

strength, once they have been reset to the same phase.

We then consider the event properties of saddles in net-

works with groups. Generally, one group of oscillators

become simultaneously active firing, while other groups fire

passively. It is thus useful to regard each group of oscillators

as one unit. Suppose there are Ng number of groups, where

the ith group is represented by Gi. A general event structure

for the unstable attractors in terms of groups is given by

RðG1ÞSðGiÞ � RðGiÞSðGmÞ � � � � � RðGkÞ � SðG1Þ; (5)

where oscillators in the group G1 fire simultaneously and

actively, i.e., SðG1Þ. The time difference between two suc-

cessive arrivals of pulses is s. Such event property in terms

of groups facilitates analysis of the system’s approaching a

certain saddle through the establishment of the correspond-

ing event structure.

The unstable nature of the saddle with simultaneously

active firing in networks with groups can be reasoned, as fol-

lows. For a saddle, we first add small instantaneous perturba-

tions on the phase variables just after the resetting of the

reference oscillator, which introduces an initial phase differ-

ence for the originally simultaneously active firing oscilla-

tors. Here, the magnitude of the perturbations should be

small enough, as the goal here is to explore the local

dynamic behavior of the saddle. We show in the following

that the phase difference grows as time goes by. Consider

two active firing oscillators, i and j, which receive pulses of

the same strength, as they are in the same group. Suppose

that they receive a pulse of strength e0 at time t.
Infinitesimally prior to this event, the phase difference is

D/i;jðtÞ ¼ /iðtÞ � /jðtÞ. Immediately after the arrival of the

pulse, the phase difference becomes

D/þi;jðtÞ ¼ U�1½Uð/iðtÞÞ þ e0� � U�1ðUð/jðtÞÞ þ e0Þ: (6)

Substituting the expressions of U and U�1 into Eq. (6), we

obtain

D/þi;jðtÞ ¼ expðe0bÞð/iðtÞ � /jðtÞÞ: (7)

Here, the saddles are of period one, i.e., each oscillator fires

once and its pulse is received during one period, giving rise

to the event structure (5). Thus, each oscillator receives all

the pulses generated by its incoming neighboring oscillators

during one period, with the total strength e. The arrival of

each pulse causes the phase difference to increase according

to Eq. (7). We thus have

D/þi;jðtnþ1Þ ¼ expðebÞD/þi;jðtnÞ; (8)

where D/þi;jðtnÞ is the phase difference between oscillators i and

j immediately after the nth resetting of the reference oscillator 1

at time tn. We see that the phase difference increases, giving

rise to the unstable dynamics within the active firing group.

FIG. 1. The effect of density of links q on the connections among saddles.

Here, fhc is the fraction of initial conditions leading to unstable attractors

forming heteroclinic connections, and fst is the fraction of initial conditions

leading to stable attractors. When density q decreases, the saddles connec-

tions become rare with fhc approaching zero, due to the dominance of basins

of the stable attractors with fst close to unity. The data points are obtained by

averaging over 100 random initial conditions. Other parameters are

N ¼ 30; b ¼ 1:5; e ¼ 0:2, and s ¼ 0:03.

FIG. 2. Schematic illustration of network structure and switching dynamics.

(a) Representation of a network structure, in which oscillators are divided

into groups. Oscillators in the same group receive the same incoming excita-

tory coupling denoted by the directed links. (b) Generation of switching dy-

namics using localization control method that drives the state of the system

to local regions of the saddles.
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E. Dynamics in networks with symmetrical group
structures

There are two types of symmetries at the group level.

First, oscillators within the same group receive the same set

of excitatory incoming links. Second, all oscillators are iden-

tical with the same phase velocities Ii ¼ 1. The existence of

symmetry, together with the delayed excitatory connections,

can induce various interesting dynamic behaviors, among

which the emergence of unstable attractors is intriguing

because such an “attractor” is in fact a saddle but with a

remote basin of attraction. Stable attractors with surrounding

basins of attraction can also arise.

The phase space can be divided into two parts, i.e., the

basins of stable attractors and unstable attractors, where the

density of links plays an important role in determining

the whole basin size of each type of attractors. The basins of

the unstable attractors can dominate the phase space for

globally connected networks.32 In other cases, the basins of

the stable attractors can be dominant, as shown in Fig. 1, ren-

dering necessary application of control to generate switching

dynamics. The appearance of stable attractors can terminate

the switching dynamics. In Section III, we articulate our con-

trol strategy to prevent termination of switching dynamics.

III. CONTROLLED GENERATION OF SWITCHING
DYNAMICS

For saddles of structures (5), oscillators in each group

are identical and exhibit the same phase. In order to generate

switching dynamics, it is necessary to break such symmetry

by slightly modifying the phase velocities Ii for

i ¼ 1; 2;…;N. This can be done, for any oscillator i, by

changing its parameter as Ii ¼ 1þ di. Hence, we term di as

symmetry-breaking parameter, which is given by

di ¼ D � Ai: (9)

Here, Ai is randomly and uniformly chosen from the interval

½�0:5; 0:5�, and D is the magnitude of the symmetry-

breaking parameters. In order to split the simultaneously

active firing of a group, we require that at least two oscilla-

tors in that group have different phase velocities. Otherwise,

the system will stay on an unstable attractor indefinitely.

For small symmetry-breaking parameters, the original

saddles of structure (5) become metastable states. It is

insightful to analyze the effect of symmetry-breaking param-

eters on the event structure. In absence of symmetry break-

ing, a group with two oscillators, e.g., i and j, becomes

simultaneously active firing—S(i, j), and oscillators in other

groups fire passively. After applying the symmetry breaking

parameters, the event S(i, j) will be split into multiple active

firings at slightly different times, such as SðiÞ � SðjÞ for

di > dj. The dynamics of the passively firing groups are

unaffected by the slight variation in phase velocities. The

event property of the metastable state is then composed of

one active firing group and other passive firing groups.

An obstacle to achieve switching dynamics is that stable

attractors can become dominant in networks that are not

globally connected. It is extremely difficult to directly

establish the heteroclinic connections among the saddles,

particularly for large networks with various structures. In

this regard, a previous method of realization of heteroclinic

switchings in globally connected network24 cannot be

applied here, as it relies on the dominance of the unstable

attractors.

A. Localization control method

We present a localization control method to overcome

the above difficulties by harnessing the dynamics within the

local regions of the metastable states. When localization con-

trol is applied, the system approaches a predefined metasta-

ble state spontaneously; then it spends some time in the

metastable state, and before it leaves the metastable state,

another localization control is applied, making the system

approach another metastable state. Figure 2(b) provides a

schematic illustration of this process.

Our localization control method aims to rearrange the

phases to force the system to achieve a particular metastable

state of structure (5). The basic idea is to establish the spe-

cific events, where one group fires actively and others fire

passively. For example, the arrival of pulses from some

oscillators can directly induce passive firings of some other

oscillators. This implies that there exist directed links from

former oscillators to later oscillators, and former oscillators

fire earlier than later oscillators. We thus place one group

before another group if there are directed links from the for-

mer to the latter. To initiate localization control, we select

one group as the group at the first level, which is also used to

be the active firing group for the metastable state. The groups

with incoming links from the first group are regarded as the

groups at the second level. This process can be repeated to

generate ordered levels of groups, until all groups have been

selected.

The organization of groups into different levels is deter-

mined by the first level group and the connections among the

groups. The metastable states of structure (5) imply that the

passive firing groups are reachable from the active firing

group through the directed links. In order to ensure that any

group can serve as an active firing group for metastable

states, we focus on the networks that are strongly connected

in terms of groups; i.e., each group is reachable from every

other group through the directed links. The resulting group

levels depend on the choice of the first level group. For

example, the groups in globally coupled networks can be

organized into two levels: the first level group and all other

groups in the second level.

According to the level structures of groups, the initial

phase of an oscillator i is written as

/i ¼ 1� ðLei � 1Þc; (10)

where Lei denotes the oscillator i’s level number and all

oscillators in the same group have the same level number.

The level number is n for oscillators in groups at the nth

level. The parameter c describes the phase difference

between the oscillators from the groups at two successive

levels.
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How to choose the parameter c? The goal is to set up the

event structure (5). After the firing of the groups at one level,

the pulses will be received after delayed time s. In order to

induce passive firing for the oscillators in the groups at the

next higher level, the these oscillators should not fire before

the arrival of pulses from the current level group. To keep

such order, it is required c > s. We then consider the effect

of c on oscillators in the first level group, which are used to

set up the events of active firings. For larger value of c, their

phases are larger at the arrival of pulses coming from their

neighboring oscillators, which is not good as the phases

should be sufficiently small to avoid passive firings. Thus,

the value of c should be as small as possible. If c is not small,

the initial transients are going to be longer and even they

may render the system in a different state than intended to

be. Throughout this paper, c ¼ 1:001s is used.

We then consider the evolution of the system with the

initial phase chosen according to Eq. (10). The oscillators in

the first level group have phase ¼ 1, which fire actively im-

mediately. The phase of an oscillator i in the second level

groups is 1� c, due to the fact that the phase difference for

the two successive groups is c. After a free evolution with

time duration s, the pulses with strength e0 from the first level

group are received. The phase of oscillator i will gain the

amount s: / ¼ 1� cþ s ¼ 1� 0:001s. The passive firing of

the oscillator i requires Uð/Þ þ e0 � 1. Under the condition

Uð/Þ þ e0 > /þ e0 > 1, the oscillator i becomes passive fir-

ing, which requires e0 > 0:001s. This condition can readily

be met when s is small. The system will then gradually settle

into the corresponding passive firing pattern enforced by the

group order and form the event structure that one group fires

actively while others groups fire passively. If this event

structure can sustain for the current parameter setting, the

chosen initial condition will lead to the metastable states

with the first level group as the active firing group. An im-

portant issue is then in what parameter region do metastable

states of structure (5) exist. This issue will be addressed in

Sec. IV.

To generate switching between metastable states, it is

necessary to apply localization control again to ensure that

the system, after leaving the neighborhood of a metastable

state, will not approach any stable attractor. The issue of tim-

ing, i.e., when to apply the control, is important. It is infeasi-

ble to address this issue for each individual metastable state.

An alternative approach is to examine the leaving process

for a number of metastable states, and to identify common

dynamic behavior.

We find that the active firing group and the passive fir-

ing groups show different dynamic behavior when system

leaves any metastable state. This property can be used to

introduce the localization control. Specifically, we define the
maximum phase difference for group g as

D/g ¼ maxi;j2g½minðj/i � /jj; 1� j/i � /jjÞ�: (11)

The maximum phase difference for the active firing

group grows as expðebÞ [see Eq. (7)]. Then, we consider the

evolution of the maximum phase differences for passive fir-

ing groups under the small symmetry-breaking parameters.

When a group of oscillators begin to fire passively, the maxi-

mum phase difference for this group is zero. Symmetry

breaking on Ii can then introduce non-zero maximum phase

difference for these passive firing groups, which can increase

according to Eq. (6) temporarily at the arrivals of pulses, but

becomes zero again due to the passive firing when the phases

of all corresponding oscillators are simultaneously reset to

zero. Thus, the maximum phase differences of passive firing

groups are small, typically on the order of the magnitude of

the symmetry-breaking parameters. As a result, the maxi-

mum phase difference for the active firing group reaches a

relatively large value first, leading to a simple criterion to

apply localization control

D/ga
> dc > D/go

; (12)

where ga denotes the group whose maximum phase differ-

ence becomes larger than dc first, and go denotes all other

groups. To be concrete, we fix dc ¼ 0.001.

Once condition (12) is met, we apply the localization

control, which is equivalent to selecting a group as the first

level group with respect to the current metastable state.

Various rules can be used to select the first level group. An

intuitive rule is based on selecting the “winner,” where an

oscillator (or a group) with the largest phase velocity (or the

largest average phase velocity) is chosen. For the current

metastable state, we first select an oscillator with the largest

phase velocity in the active firing group, i.e., the group with

the maximum phase difference larger than dc. The chosen os-

cillator is effectively the leading oscillator, as this oscillator

will fire before other oscillators in the same group after

application of localization control. Next, we choose one

group with the largest average phase velocity from the

groups with incoming links from the leading oscillator and

designate this group as the first level group. Finally, we

apply control to rearrange the phase of the system according

to Eq. (10) by using the chosen first level group. The process

is called localization control with winner-based rule.

B. Simulation of system with localization control

One advantage of pulse-coupled oscillators is that they

can be simulated accurately and efficiently using the event

driven approach,33 where the arrival of the pulse and oscilla-

tor’s approaching its threshold are determined. To incorpo-

rate localization control into the simulation process, we

monitor the maximum phase difference for each group right

after every event (e.g., arrival of pulse or firing). We apply

the control as soon as the system meets the condition (12).

Let /iðtÞ represent the phase of oscillator i at time t. Control

can be computationally implemented, in the following steps:

(i) Locate the next firing time for the system due to the

free evolution. The evolution of the phase for oscilla-

tor i is /iðt0Þ ¼ /iðtÞ þ ðt0 � tÞIi, with time t0 > t. The

firing time for oscillator i is tfi ¼ ½1� /iðtÞ�=Ii þ t.
The next firing time for the system is given by

tf ¼ miniðtfi Þ.
(ii) Compare tf with the next arrival time of pulses ta. If tf

< ta, proceed to step (iii); otherwise go to step (iv).
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(iii) The next event is reaching of the threshold for some

oscillators. Update the phase as /i ¼ /iðtÞ þ Iiðtf � tÞ
and update the time to t ¼ tf. Record the pulse when

any oscillator reaches the threshold, reset its phase to

zero, and go to step (v).

(iv) The next event is the arrival of pulses at time ta.

Update the phase due to the free evolution:

/i ¼ /iðtÞ þ Iiðta � tÞ, and set the time to be t ¼ ta.

Calculate the total strength of the received pulses for

each oscillator i and denote it as ei. If Uð/iÞ þ ei < 1,

the phase of oscillator i is /i ¼ U�1½Uð/iÞ þ ei�.
Otherwise, reset the phase of oscillator i to zero, so

that a pulse is generated at time ta, and then proceed

to step (v).

(v) Incorporation of the localization control. (a) Measure

the maximum phase difference of each group accord-

ing to Eq. (12). (b) If only one group has its maximum

phase difference larger than dc, the system meets the

condition (12). We then select a group as the first

level group by using the winner-based rule, and pre-

pare the initial condition according to Eq. (10). (c) Go

to step (i).

IV. CONTROL PERFORMANCE

The detailed construction of networks with groups is

given in the Appendix. Throughout this paper, we consider

two types of networks. For the first type, each oscillator

points to only one group. In this case, the choice of the first

level group is solely determined by the choice of the leading

oscillator. For the second type, each oscillator i has the same

in-degree ki, and each oscillator can point to multiple groups.

We avoid the case that multiple oscillators in a group point

to the same group, as the choice of different leading oscilla-

tors may affect the same group in this case. Thus, we have

ki � ðNg � 1Þ where Ng is the number of groups. One partic-

ular example is the globally connected networks in terms of

groups with ki ¼ Ng � 1. In such case, each group is con-

nected to all other groups.

A. Generating switching dynamics through
localization control: A detailed example

The network has N ¼ 30 oscillators, organized into 11

groups, where each oscillator in any group point to only one

group randomly selected from other groups. We set the mag-

nitude of symmetry-breaking parameters D ¼ 10�7.

We start simulating the system by randomly designating

a group as the first level group to initiate localization control.

Figure 3(a) shows a trajectory with switching dynamics

among three metastable states, with active firing group 5, 3,

and 6, respectively. The evolution of the maximum phase

differences for the three groups recorded just after the occur-

rence of every event is shown in Fig. 3(b), where we can see

that localization control is triggered when the maximum

phase difference for a group reaches the critical value

dc ¼ 0:001. Table II shows the detailed events and phases of

oscillators from two groups 5 and 3 near the moment when

the localization control is applied, inducing the first switch-

ing as shown in Fig. 3(a).

The groups selected by the leading oscillators form sub-

structures for the switching patterns. For the three groups

ð5; 3; and 6Þ, the leading oscillators and the directed connec-

tions among them are shown in Fig. 3(f). The three groups

actually form a loop, where the leading oscillator in a former

group points to the oscillators in a latter group. Accordingly,

the system generates a stationary switching pattern among

the three metastable states. Here, the loop structures at the

group level directly determine the stationary switching pat-

terns. In some cases, one may start with a group and visit a

chain of groups following the directed links. As each oscilla-

tor has outgoing links, one finally settles into a loop.

Accordingly, we observe a transient switching behavior

among some metastable states determined by the chain, and

finally reach the stationary switching pattern determined by

the loop. In this sense, the loop structures are more important

as they determine the stationary switching behaviors.

As the phases of the passive firing oscillators change

slowly near a metastable state, only the phases of the active

firing oscillators are relevant, which are in a low-

dimensional subspace with the dimension being the number

of the active firing oscillators. Then, the system sequentially

visits some low-dimensional subspaces and jumps among

these subspaces due to the localization control, as shown in

Figs. 3(c)–3(e). The maximum phase difference of a group is

/i � /j, where oscillator i (j) has the largest (smallest) phase

velocity Ii (Ij). Then, the critical condition for (12) is

/i � /j ¼ dc. For example, active firing group 5 has two

oscillators 13 and 14, with I13 > I14. The critical condition

for (12) becomes /13 � /14 ¼ dc, which is shown as the

green line in Fig. 3(c). Here, a part of the trajectory (1 to 53)

is plotted where each point represents the phases of oscilla-

tors 13 and 14 at the resetting of the reference oscillator 1.

Figures 3(d) and 3(e) show the low-dimensional subspace

dynamics for the second metastable state with active firing

group 3 and the third metastable state with active firing

group 6, respectively. Here, both of two groups 3 and 6 have

three oscillators. A different oscillator can become the lead-

ing oscillator under a different symmetry-breaking parame-

ters. Then, the system will leave the metastable state along a

different direction but will still be in the same subspace. We

thus plot the dynamics of metastable states in three dimen-

sional subspaces, although the critical condition depends on

the phases of two oscillators.

B. Residence time and detection of metastable states

The system can stay near a metastable state for relatively

long time until the condition (12) is met. Here, we analyze the

residence time Ts of a metastable state, defined as the number

of resettings of the reference oscillator between the start of

localization control and the time when condition (12) is met.

We choose two oscillators i and j in the active firing group

with largest and smallest phase velocities, respectively. Then,

the maximum phase difference for this group is just the phase

difference of oscillators i and j. The growth of the phase differ-

ence is due to two factors: local unstable dynamics and
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symmetry-breaking parameters. The former can make the phase

difference grow as expðebÞ. We consider the contribution from

the symmetry-breaking parameter di. The change in the phase

difference due to symmetry breaking is jdi � djjDt, where

Dt < 1 is the time duration for one resetting of the reference os-

cillator. The maximum change in the phase difference is

sc¼maxidi�minidi. We then have D/n
g¼D/n�1

g expðebÞþsc,

where D/n
g denotes the maximum phase difference for the

active firing group right after the nth resetting of the reference

oscillator, and D/0
g¼0 corresponds to the initiation of the

localization control (identical phase for each oscillator in the

same group). We have

D/n
g ¼

Xn�1

i¼1

exp i� ebð Þsc þ sc

¼ sc
1þ exp nebð Þ � exp ebð Þ

� �
exp ebð Þ � 1

: (13)

For D/n
g ¼ dc, the corresponding value of n is the residence

time Ts of the metastable state

Ts ¼
1

eb
ln

dc

sc
exp ebð Þ � 1
� �

þ 1

� �
: (14)

FIG. 3. Controlled generation of switching dynamics. The simulated pulse-coupled network has N ¼ 30 oscillators and 11 groups (parameters: D ¼ 10�7, dc

¼ 0.001, b ¼ 1.5, e ¼ 0:1; and s ¼ 0:03). (a) A switching pattern among three metastable states. The phases of all oscillators are plotted with respect to the nth

resetting of oscillator 1. (b) Time evolution of the maximum phase difference D/g for the three groups (3, 5, and 6) where they play the role of active firing

groups for the three metastable states, respectively. (c)–(e) Demonstration of switching dynamics in low-dimensional subspaces where the dynamics is such

that the phases of the active firing oscillators change fast, while those of the passive firing oscillators change slowly near the metastable states. Panel (c) shows

some trajectory points (/13;/14), with the green line indicating the critical condition (12) determined by /13 � /14 ¼ dc. Panels (d) and (e) show the slow sub-

space dynamics for the second and the third metastable states, respectively, and the two planes indicate the critical condition (12). The solid arrows indicate

the evolution direction of the system, and the dashed arrows denote the jumps between different subspaces under localization control. In panel (f), only the con-

nections among the three groups 3, 5, and 6 are shown. The plus sign denotes the oscillator with the largest phase velocity in the same group.

TABLE II. Detailed process of localization control for a switching between two metastable states with group 5 and group 3 as the active firing groups, respec-

tively. Here, group 5 contains two oscillators: 13 and 14; Group 3 contains three oscillators: 8, 9, and 10. Only the phases of these oscillators are shown, as

other oscillators fire passively and are not relevant to the switching. The phases and time t are shown just after the last event in the kth sequence of events, and

up to ten decimal digits are used to identify the difference of phases in the same group. Only the passive firings near the active firings are shown, while other

passive firings are neglected as “� � �.” The localization control is triggered just after the 3rd sequence of events, where the maximum phase difference of the

group 5 with oscillators 13 and 14 is about 0.00102 which is larger than dc ¼ 0:001. Group 3 with oscillators 8, 9, and 10 is selected as the first level group dur-

ing the localization control and becomes immediately firing, i.e., the 4th event.

k Sequence of events Time t

Phases of oscillators from group 5 and group 3

8 9 10 13 14

1 � � �Rð1; 2; 3; 4; 5; 6; 7; 28; 29; 30Þ � Sð13Þ � Sð14Þ � Rð13ÞSð8; 9; 10Þ 48.80055 0 0 0 0.030000002 0.029147909

2 � � �Rð1; 2; 3; 4; 5; 6; 7; 28; 29; 30Þ � Sð13Þ � Sð14Þ � Rð13ÞSð8; 9; 10Þ 49.73842 0 0 0 0.030000002 0.029009955

3 � � �Rð20; 21; 22; 23ÞSð18; 19; 26; 27Þ 49.76941 0.030990045 0.030990047 0.030990047 0.074295733 0.073267853

4 �Sð8; 9; 10Þ 49.76941 0 0 0 0.939939997 0.939939997

5 Rð8; 9; 10ÞSð11; 12; 15; 16; 17; 24; 25Þ 49.79941 0.0300000003 0.0300000024 0.0300000025 0.969939999 0.969939997

6 � � � Sð10Þ � Sð9Þ � Sð8Þ � Rð10ÞSð15; 16; 17Þ 50.73973 0.029999930 0.029999997 0.030000002 0.949243612 0.949243558

7 � � � Sð10Þ � Sð9Þ � Sð8Þ � Rð10ÞSð15; 16; 17Þ 51.68006 0.029999849 0.029999991 0.030000002 0.949243609 0.949243555
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We see that Ts can be adjusted by choosing appropriate

parameters such as e and b for fixed value of dc (e.g., dc

¼ 0.001). We have sc ¼ Dðmax Ai �min AiÞ from Eq. (9).

As Ai is randomly chosen from the interval ½�0:5; 0:5�, we

choose sc ¼ D. We can then adjust the parameters to realize

the desired residence time, for example, Ts � 49:3 for b ¼
1.5, e ¼ 0:1, dc ¼ 0.001, and D ¼ 10�7.

The saddle residence time Ts can be used to computa-

tionally detect the metastable states. We first locate a trajec-

tory of length L, where the mth trajectory point is the state of

the system immediately after the mth resetting of the refer-

ence oscillator 1 at time tm. For such a state, the phase of os-

cillator i is /iðtmÞ. The distance E between two trajectory

points, e.g., the mth and nth points with time tm and tn,

respectively, is defined as

E ¼
X

i

j/iðtmÞ � /iðtnÞj: (15)

This quantity can be used to locate the metastable states. In

particular, according to the property of metastable states, if

the system can stay near a tested state for at least Tm number

of resettings of the reference oscillator, i.e., with correspond-

ing distance E < Em, the tested state is regarded as a meta-

stable state. In practice, some successive points may satisfy

the above condition. In such a case, we choose the middle

point as the metastable state.

We address how to choose Tm and Em using the resi-

dence time Ts and the departure process of the system from a

metastable state. Because of the transient nature of the sys-

tem dynamics near a metastable state after application of

localization control, we choose

Tm ¼ 0:5� Ts; (16)

to make the algorithm robust.

The value of Em can be chosen as the critical distance

between the metastable state and the state immediately

before the maximum phase difference for a group exceeds

dc. Both active and passive firing oscillators contribute to

Em. We first consider the active firing oscillators. As the

maximum phase difference of this firing group grows expo-

nentially, the phase of the oscillator with the largest phase

velocity (leading oscillator) typically becomes much larger

than those of the other oscillators. The contribution to the

value of Em due to the leading oscillator is then about dc.

Suppose that there are Na active firing oscillators. Their con-

tribution is less than Nadc. We next analyze the contribution

from the passive firing oscillators. For them, only the phases

of the oscillators receiving pulses from the active firing oscil-

lators are affected, and these pulses will arrive within dc

time, because all oscillators in the active firing group will be

reset within this time window. The number of such affected

oscillators is smaller than N � Na, because not all oscillators

are connected to the active firing group. For each affected

passive firing oscillator, we have U�1½Uð/þ dcÞ þ e0�
�U�1½Uð/Þ þ e0� � dc for small values of e0. We can then

approximate the threshold distance as

Em ¼ Nadc þ ðN � NaÞdc ¼ Ndc: (17)

Numerically we find that Tm and Em so chosen can result in

reliable identification of the metastable states.

C. Controlled generation of switching dynamics in
networks of varying structures

We are interested in the performance of the localization

control method in various networks with groups. We thus

introduce a measure, fLC, to quantify how well the switching

between two successive metastable states is determined by

localization control, which is averaged over different net-

work realizations. Specifically,

fLC ¼
1

N1 � N2

XN1

i

XN2

j

fij; (18)

where N1 is the number of network realizations and for each

we test N2 number of trajectories with length of 1000 reset-

tings of the reference oscillator 1. Then, for the jth trajectory

of the network i, we calculate the fraction fij of switchings

between any two successive metastable states that are suc-

cessfully determined by the localization control method (The

detailed calculation is described later in this section.). For

each network, we use different phase velocity distributions.

For each trajectory, a randomly chosen group is used as the

first level group to initiate localization control. In this way,

many different switching patterns may be generated. We

then construct N1 different networks with given topological

parameters such as number of oscillators for one group or

the in-degree. The detailed construction can be found in the

Appendix. The case of fLC ¼ 1 indicates that the switching

dynamics is fully determined by the network structures when

localization control is applied.

We describe the detailed process to obtain fij for jth tra-

jectory in ith network, with length of 1000 resettings of the

reference oscillator 1. We first locate all metastable states.

We then obtain the event property of each group during one

resetting of the reference oscillator at a metastable state to

determine whether it has the event structure of one active fir-

ing group and other groups with passive firing. As the system

may switch on its own from one metastable to another state,

we determine whether the switching between two successive

metastable states is realized through localization control

using the winner-based rule. For a trajectory exhibiting m
metastable states, we test all ðm� 1Þ switchings between

two successive metastable states. The fraction of switchings

determined by the localization method is thus

fij ¼ n=ðm� 1Þ, where n denotes the number of switchings

correctly realized by the winner-based rule. In the cases of m
¼ 0 or 1, we let fij ¼ 0 because no switching occurs.

We calculate the dependence of fLC on the parameters

(s; e) for networks of N ¼ 30 oscillators, where each oscilla-

tor within a group points to only one group, and the number

of oscillators for each group is chosen from 2 to 4. The other

parameters are b ¼ 1.5 and dc ¼ 0.001, and di is randomly

and uniformly chosen from D½�0:5; 0:5� with D ¼ 10�7. The

residence time is calculated according to Eq. (14) with sc

¼D. Figure 4(a) shows the result fLC. We see a region in the

lower left corner of the (s; e) plane with fLC ¼ 1, indicating a
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correspondence between network structures and switching

dynamics under the localization control. In addition, the suc-

cess of localization control mainly depends on the parameter

s, whose effect is analyzed later in this section.

We also study the case where each oscillator can point to

more than one group. We use the in-degree ki, i.e., the number

of incoming links of an oscillator i, to quantify the network to-

pology. We consider the networks in which all oscillators

have the same in-degree. We calculate the dependence of fLC

on the parameters s and in-degree ki for relatively large

networks by fixing e ¼ 0:15. For example, we consider net-

works of N ¼ 100 oscillators divided into 50 groups, where

the in-degree ki varies from 4 to 49, corresponding to change

in the network structure from sparse to globally connected in

terms of groups. We find that our control method can sustain

the structure-dynamics correspondence for a variety of net-

work structures, as exemplified in Fig. 4(b).

To compare the results with control, we study switching

dynamics in networks of size 100 under the same parameter

setting as in Fig. 4(b) but without control. For a trajectory

starting from a random initial condition, we determine

whether the switching phenomena persist, i.e., there are at

least two metastable states. As no control is present, we use a

new measurement, the fraction of trajectories with switching

phenomena, fsw, which is obtained by averaging over 30 net-

work realizations and 100 trajectories. As shown in Fig. 4(c),

the fraction fsw is small, indicating that switching becomes

rare in absence of control. This is because the phase space is

dominated by the basins of the stable attractors when links are

removed from the configuration of globally connected net-

work. Without control, the system quickly approaches one of

the stable attractors, terminating the switching dynamics. We

also find that, for sparse networks, sustained switching behav-

ior is uncommon. In these cases, control is absolutely neces-

sary to generate any desired switching dynamics.

D. Correspondence between network structure and
switching dynamics

The results in Fig. 4 suggest that there exists a parameter

region in which a correspondence between the network

structure and switching dynamics exists, especially for rela-

tively small values of s and e. For the localization control,

groups are organized into different levels, which determine

the initial condition according to Eq. (10). Success of local-

ization control requires that the chosen initial condition can

lead to a metastable state, and the metastable state can be

sustained under the given parameters.

According to Fig. 4(b), the critical value of s for success-

ful localization control is smaller for networks with larger in-

degrees. Thus, we first study globally connected networks in

terms of groups. When applying the localization control, the

groups are organized into two levels with one group (denoted

by ga) in the first level and all other groups (denoted by go) in

the second level. For a metastable state, the first level group

fires actively, and the groups in the second level fire passively.

Figure 5 shows typical events associated with the evolution of

the system after applying control at time 0. We first consider

the active firing group ga and calculate the phase /3
af of an

active firing oscillator in group ga just after the 3rd event

RðgoÞ. Immediately preceding this event, the phase of the cho-

sen active firing oscillator is 2s, and all the pulses from its

neighboring oscillators are received. The phase /3
af just after

the 3rd event then becomes

/3
af ¼ Hð2s; eÞ; (19)

where

FIG. 4. Interplay between switching dynamics and network structures. (a)

The contour plot of the fraction fLC of switchings determined by the localiza-

tion control in the parameter plane ðs; eÞ, where networks are of size N ¼ 30

and each oscillator points to only one group of oscillators. The number of

oscillators in a group is from 2 to 4. (b) and (c) The switching dynamics for

networks of size N ¼ 100 and each group with two oscillators, where each

oscillator i has the same in-degree ki. (b) Contour plot of fLC in the parameter

plane ðs; In� degreeÞ for e ¼ 0:15. The dashed-dotted line indicates the

estimated critical line for the correspondence between structures and switch-

ings. (c) Switching dynamics for networks of 100 oscillators with the same

setup as in (b), but without control. Contour plot of fSW, the fraction of tra-

jectories with switching dynamics, shows that the switching behavior is

quite rare without control. The corresponding value for each parameter point

is averaged over 30 independent network realizations, each with 100 trajec-

tories containing 1000 resettings of oscillator 1. For each network, the

symmetry-breaking parameters are randomly chosen to realize various dis-

tinct switching patterns. Other parameters are b ¼ 1.5, dc ¼ 0.001, and

D ¼ 10�7.
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Hð/; e0Þ ¼ U�1½Uð/Þ þ e0� (20)

represents the response of an oscillator of phase / to a sub-

threshold pulse of strength e0, i.e., Uð/Þ þ e0 < 1. Just after

the 3rd event, an active firing oscillator needs a time duration

Dw to reach the threshold

Dw ¼ 1� Hð2s; eÞ: (21)

We then consider the passive firing groups denoted by go.

Each group has directed links from one oscillator in each

other group. The strength of each incoming link is

e=ðNg � 1Þ, where Ng denotes the number of groups. The

phase of a passive firing oscillator is reset at the 2nd event.

At the 3rd event, each passive firing oscillator receives

(Ng � 2) pulses with the strength

e3 ¼ e
Ng � 2

Ng � 1
¼ e 1� 1

Ng � 1

� �
: (22)

The phase /3
pf just after 3rd event is

/3
pf ¼ Hðs; e3Þ: (23)

After that, the passive firing oscillator undergoes free evolu-

tion of duration Dwþ s, and receives one pulse from ga, i.e.,

the 5th event. The strength of the pulse is

e5 ¼ e=ðNg � 1Þ: (24)

The phase of the chosen passive firing oscillator just before

the 5th event is Hðs; e3Þ þ Dwþ s. Then, the occurrence of

passive firing requires

UðHðs; e3Þ þ Dwþ sÞ þ e5 > 1: (25)

Equation (25) can be used to estimate the parameter region

in which there is a direct correspondence between the net-

work structure and the switching dynamics. As shown in Fig.

4(a), the dashed-dotted line indicates the critical line in the

(s; e) plane for Ng ¼ 15 and N ¼ 30. The dynamical behav-

iors associated with the parameter plane ðs; In–degreeÞ are

shown in Fig. 4(b), where the dashed-dotted curve is for Ng

¼ 50 and e ¼ 0:15.

Temporal distribution of the pulses for an oscillator can

affect its phase. If more pulses are received during the time

when the phase of the oscillator is small, the contribution of

these pulses to the phase will be smaller, because Hð/; e0Þ is

a monotonous function of / with a positive slope. As an

example, we consider networks of even size N which are

strongly connected in terms of groups. Each group has two

oscillators, so the number of groups is Ng ¼ N=2. A passive

firing oscillator receives pulses at the 3rd and the 5th events,

as shown in Fig. 5, whose strengths are e3 and e5, respec-

tively. As the number of groups is increased, e3 and e5

become larger and smaller, respectively, so the phase imme-

diately preceding the 5th event is smaller, leading to a

smaller critical s for localization control. This is because that

the right term of Eq. (25) is decreasing with respective to s.

The result is shown in Fig. 6, where the dashed-dotted line

indicates the critical line determined from Eq. (25).

For a sparse network, the groups can be organized with

the number of levels much larger than two. In such a case, a

passive firing oscillator can receive pulses from the groups

with the level number higher than 2, where the correspond-

ing phase is much larger than that in a globally coupled net-

work. As a result, the critical value of s for control is also

larger.

In the above analysis, we locate the parameter region in

which a correspondence between switching dynamics and

network structure exists. In such a case, a switching between

two successive metastable states is due to the directed links

between two specific groups, i.e., two active firing groups,

which are associated with the two metastable states, respec-

tively. When more groups are taken into account, a loop

structure can emerge, which can in turn induce a stationary

switching pattern, as shown in Fig. 3. Generally, the loops at

the group level cause stable switching patterns. The number

of different stable switching patterns determines the compu-

tational capacity of the system, which is then determined by

the number of loops. The number of loops tends to grow

quickly with the link density. The loop structures can then be

exploited to realize desired switching patterns.

As an illustrative example, we study a network of N ¼ 9

oscillators, organized into 4 groups as shown in Fig. 7(a).

FIG. 5. Typical events associated with system evolution after applying the

localization control at time 0 for globally connected networks in terms of

groups. The first level group is ga, which becomes immediately firing

denoted by SðgaÞ. After a free evolution of time duration s, the pulses from

group ga are received, immediately making other groups (denoted by go) fire

passively with the event RðgaÞSðgoÞ. After that, a time duration of Dw is

needed for the firing of group ga. Due to symmetry breaking, the oscillators

in group ga fire at slightly different times. For simplicity, we denote these

firings as S0ðgaÞ.

FIG. 6. Estimated parameter region where switching is successfully con-

trolled by the localization method. Dependence of fLC on parameter s and

the number of groups Ng. The networks are globally connected in terms of

groups where each group receives links from all other groups, and each

group has two oscillators. Thus, the network size is N ¼ 2Ng. The dashed-

dotted line indicates the critical line for the correspondence between struc-

ture and switching dynamics. The value of fLC of each parameter point is

obtained through averaging over the results of 100 trajectories.
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There are various loops of length 2, 3, and 4 which is defined

as the number of involved groups. For all group pairs, there

are three loops, denoted as L2a; L2b, and L2c, respectively.

For loops of length 3, there are four loops: L3a; L3b; L3c, and

L3d. For the loops of length 4, for clarity only one loop L4a

(the one formed by the green links) is shown in Fig. 7(a). We

set the parameters to be D ¼ 10�7; s ¼ 0:05; e ¼ 0:1, and b
¼ 1.5, under which there exists one-to-one correspondence

between the switching dynamics and the network structure,

as Eq. (25) predicts. The correspondence between switching

patterns and the loop structures is shown in Figs. 7(b)–7(d),

where appropriately leading oscillators of the groups are

used to form loops. This can be realized by selecting the

required leading oscillator for a group g. Specifically, we can

assign maximum phase velocity among some randomly gen-

erated phase velocities to an oscillator to make it a leading

oscillator for a group. The loop L3a is formed if we choose

three leading oscillators denoted by the plus sign “þ”

for corresponding three groups, respectively, as shown in

Fig. 7(a). Accordingly, a switching pattern among the three

metastable states can be realized, as shown in Fig. 7(c),

where any of the involved three groups can be chosen as the

starting group to initiate localization control. In the similarly

way, we can realize the other three L3 types of switching

behaviors, each of which is the result of a loop induced by

different leading oscillators.

V. CONCLUSIONS

Unstable saddles represent a fundamental class of invar-

iant sets in nonlinear dynamical systems. For a high-

dimensional network system, saddles can appear in large

numbers. It is appealing, from the perspective of information

science and technology, to generate trajectories with multi-

ple metastable states and switchings among them. Without

control, a nonlinear system is typically not able to generate

such trajectories, due to the existence of stable attractors.

Controlled generation of switching dynamics among saddles

is thus of interest.

In this paper, utilizing networks of pulse-coupled oscil-

lators as a paradigm, we present an intuitive but feasible

approach to realizing switching dynamics for a wide variety

of network structures. A key is the existence of a class of

saddles with common event properties, enabling us to use

localization control to direct the whole network to switch

from one metastable state to another. As a result, establishing

direct heteroclinic connections among saddles is not neces-

sary, which is generally a difficult task for high dimensional

dynamical systems. We uncover a correspondence between

network structure and switching dynamics, which allows us

to harness the switching dynamics in phase space through

manipulating groups of oscillators. In particular, we can gen-

erate desired stationary switching dynamics through design-

ing the loop structures at the level of groups.

We remark that, while the starting point of our work is

the Mirollo-Strogatz model, our interest is in event-based dy-

namics where the resulting U(x) function is a transformation

from the original differential equation representation. In this

sense, our setting goes beyond that in the original Mirollo-

Strogatz model. We mention that certain one-dimensional

models, such as the leaky integrate-and-fire model and the H
neuron, can be transformed to the Millro-Strogatz model

through specific nonlinear transformation of variables. Our

strategy of controlled generation of desired switching dy-

namics can be straightforwardly applied to these models.

The inputs can be properly scaled to be small values and

added to the parameters. Thus, our method can be used to

process input information based on the input-driven switch-

ing dynamics. One advantage is that networks structures can

be readily designed to yield desired switching dynamics.

Besides, we can include more features into the method such

FIG. 7. Switching patterns and the loops of groups. For s ¼ 0:05; e ¼ 0:1,

and b ¼ 1.5, (a) a network with four groups ðg1; g2; g3; and g4Þ, where each

directed link represents excitatory coupling from the starting oscillator to a

group of oscillators. The groups can form loops denoted by the dashed

curved arrows. The notion L2a, for example, represents a loop of length 2

(two groups). (b)–(d) The corresponding stable switching patterns with loops

L2a; L3a, and L4a, where the length is from 2 to 4 at the group level, respec-

tively. The proper choice of the leading oscillators (denoted by symbol “þ”)

in the three groups leads to the loop L3a as shown in (a), which in turn is re-

sponsible for the switching pattern occurring among the three metastable

states shown in (c).
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as the hierarchical organization of networks, where a group

can contain several sub-groups. How to make the generation

of switching dynamics robust to noise is also a topic worth

further investigating.

The switching dynamics is realized through the network

structure and the control rule. Here, we consider one type of

“winner” rules where the oscillator with the largest phase ve-

locity is the most important. Some other rules are also possi-

ble, such as those depending on the specific values of the

phase velocities of the oscillators, which can increase the

computational capability to process inputs. Another open

issue is to change the ways of localization when the number

of saddles and accordingly the number of switching patterns

become much larger.
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APPENDIX: CONSTRUCTION OF NETWORKS WITH
GROUPS

We first organize oscillators into groups with the

requirement that each group has at least two oscillators. We

then put the directed links among the oscillators with the

requirement that oscillators within the same group receive

the same set of incoming links. There are three additional

requirements. The first is that each oscillator points to at least

one group. In this case, we can always select a group during

the localization control for any leading oscillator. The sec-

ond is that we avoid the case that multiple oscillators in a

group point to a same group, as the choice of different lead-

ing oscillators can lead to the same group in such a case. The

third is that the networks are strongly connected in terms of

groups; i.e., each group is reachable from every other group

through the directed links. This requirement is imposed to

ensure that any group can be used as the first level group.

Throughout this paper, we consider two types of net-

works. For the first type, each oscillator within a group

points to only one group. We place directed links from oscil-

lator i to all the oscillators in a randomly selected group g,

which does not contain oscillator i. For this type of networks,

the allowed maximum number of oscillators within a group

is Ng � 1, where Ng is the number of groups.

For the second type, each oscillator i has the same in-

degree ki and is allowed to point to multiple groups. As mul-

tiple oscillators in a group are not allowed to point to a same

group, the in-degree is ki � ðNg � 1Þ. For group g, we first

randomly select ki groups from other groups. Then for each

selected group, we randomly select an oscillator i in that

group and place directed links from i to all oscillators in the

group g. A particular example for this type of networks is

globally connected networks in terms of groups, where each

oscillator in a group receives links from one randomly cho-

sen oscillator from each other group. In such a case, the in-

degree ki for each oscillator i is ki ¼ Ng � 1.
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