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Recent studies have suggested the necessity to incorporate traffic dynamics into the process of

epidemic spreading on complex networks, as the former provides support for the latter in many

real-world situations. While there are results on the asymptotic scope of the spreading dynamics,

the issue of how fast an epidemic outbreak can occur remains outstanding. We observe numerically

that the density of the infected nodes exhibits an exponential increase with time initially, rendering

definable a characteristic time for the outbreak. We then derive a formula for scale-free networks,

which relates this time to parameters characterizing the traffic dynamics and the network structure

such as packet-generation rate and betweenness distribution. The validity of the formula is tested

numerically. Our study indicates that increasing the average degree and/or inducing traffic

congestion can slow down the spreading process significantly. VC 2012 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4772967]

A spreading process cannot occur on a complex network

without a backbone traffic dynamics that transports cer-

tain physical quantity across the network. For example, a

computer virus may become widespread through email

exchanges, and a disease/virus can spread globally

through air transportation. A complete understanding of

epidemic spreading dynamics thus requires incorpora-

tion of some kind of traffic dynamics into the spreading

process. This has been a topic of several recent studies,

where the focus has been on the asymptotic extent of the

spreading dynamics, e.g., the fraction of infected nodes

after the process terminates. The aim of our work is to

address the issue of timing associated with traffic-driven

epidemic spreading dynamics. In particular, we incorpo-

rate a shortest-path-based type of traffic dynamics into

the standard two-state epidemic spreading model. We

find that the density of the infected nodes exhibits an ex-

ponential increase with time in the early stage, rendering

definable a characteristic time for the spreading process.

Numerical results and theoretical reasoning indicate that

this time depends on various parameters characterizing

the traffic dynamics and network structure, such as

packet-generation rate, spreading rate, and betweenness

distribution of the network. For example, large-scale out-

breaks occur more quickly as the packet-generation rate

and the spreading rate increase. A somewhat counterin-

tuitive finding is that an increase in the average connec-

tivity tends to slow down the spreading process. Our

study of how epidemic propagates among nodes of differ-

ent degrees indicates that large-degree nodes are infected

first, followed by a progressive spreading over small-

degree nodes. In addition, we find that the emergence of

traffic congestion can slow down the epidemic outbreak

significantly, providing insights into developing effective

strategies to prevent large-scale epidemic outbreaks on

complex networks.

I. INTRODUCTION

The outbreaks of diseases in the human society or viruses

in networked technological systems are an issue of paramount

importance. The past decade has witnessed a great deal of

effort in understanding the dynamical process of epidemic

spreading on complex networks.1–10 In most early theoretical

models, the propagation of virus from one node to another is

tacitly assumed to be a reaction process, that is, an infected

node can affect any of the nodes in its neighborhood with a

fixed probability at each time step. This picture, however,

may be idealized. In many real-world situations, even when

there is a link connecting two neighboring nodes, propagation

of infection will not occur unless there is a kind of traffic dy-

namics on the network that can physically transport the virus

from one node to another. For example, a computer virus can

spread over the Internet but only through some transportation

process such as email exchanges. Without such a physical pro-

cess of data transmission, even if there is a path linking two

computers, the virus will not propagate from one computer to

another. Potentially fast spreading of infectious diseases

among different regions is another example, which can be

accelerated tremendously by air travel. To gain a more com-

plete and physical understanding of the dynamical process of

epidemic spreading on complex networks, some sort of under-

lying traffic dynamics must be taken into account.

In a recent work, Meloni et al. introduced a modeling

approach to this problem by incorporating traffic dynamics
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in epidemic spreading.11 Specifically, they combined the

classical susceptible-infected-susceptible (SIS) model12 with

a class of transport dynamics where contagion is carried and

propagated by packets traveling across the network. The

probability that the epidemic spreads from infected to sus-

ceptible nodes depends on the traffic flow. A susceptible

node is more likely to be infected if it receives more packets

from infected neighbors. Their main result was that the epi-

demic threshold tends to decrease as the traffic flow is inten-

sified. Subsequently, the issue was investigated of how local-

routing-based traffic dynamics affects epidemic spreading,13

with the finding that the spreading dynamics can be sup-

pressed by routing control in the sense that the epidemic

threshold can be maximized by optimizing some key param-

eter characterizing the routing process. In these works,

the quantity of interest was the final scope of the epidemics

in terms of, for instance, the asymptotic fraction of the

infected nodes in the equilibrium state. To our knowledge,

the important issue of how long it takes for epidemic out-

break to occur in traffic-driven spreading dynamics has not

been considered.

In this paper, we address the issue of outbreak time asso-

ciated with traffic-driven epidemics on complex networks.

We employ a model where the transport of packages is exe-

cuted along the shortest paths in the network. A characteris-

tic time s is introduced based on numerical observations,

which is the time it takes for a certain large fraction of nodes

to be infected. To be concrete, we focus on scale-free net-

works14 and derive a theoretical formula of s. The formula

indicates that, in the absence of traffic congestion, large-

scale outbreak can occur faster as the traffic flow is intensi-

fied. However, quite counter-intuitively, as the average

connectivity of the network is increased, s becomes larger so

that the occurrence of outbreak will be slower. The onset of

traffic congestion will decrease the speed of epidemic

outbreak.

In Sec. II, we describe the traffic-driven epidemic

model. In Sec. III, we present numerical results and a theo-

retical derivation of the characteristic time s. A brief conclu-

sion is presented in Sec. IV.

II. MODEL

In order to study the dynamical evolution of traffic-

driven epidemic outbreaks, we consider the standard

susceptible-infected (SI) model12 of epidemic spreading. In a

network of size N, at each time step, kN new packets are

generated with randomly chosen sources and destinations,

and each node can deliver at most C packets toward their

destinations. Packets are forwarded according to various

routing algorithms.15–19 To be concrete, we use the shortest-

path routing protocol.20,21 The queue length of each agent is

assumed to be unlimited. The first-in-first-out principle

applies to the queue. Each newly generated packet is placed

at the end of the queue of its source node. Once a packet

reaches its destination, it is removed from the system.

Nodes can be in two discrete states, either susceptible or

infected. Initially, we set one randomly selected node to be

infected and all other nodes to be susceptible. The infection

spreads in the network through packet exchanges. A suscep-

tible node has probability b being infected each time when it

receives a packet from an infected neighbor.

III. RESULTS

We use scale-free networks with the power-law degree

distribution:14 PðkÞ ¼ 2m2k�3, where m is the minimum

node degree and the average connectivity of the network is

hki ¼ 2m. The network size is fixed to be N¼ 2000.

We first consider the scenario that the node delivery

capacity is infinite, C!1. In this case, traffic congestion

does not occur in the network. Let S(t) and I(t) be the numbers

of susceptible and infected nodes at time t, respectively. Fig-

ures 1(a)–1(c) show the density of the infected nodes

i(t)¼ I(t)/N with time t for different values of the spreading

probability b, the packet-generation rate k, and the average

connectivity hki, respectively. It can be seen that i(t) increases

more quickly for larger values of b and k but surprisingly for

smaller values of hki. Considering that, in the absence of traf-

fic dynamics, increasing the average connectivity can acceler-

ate epidemic spreading,22 the result in Fig. 1(c) appears to be

counterintuitive. The insets of Figs. 1(a)–1(c) indicate an

FIG. 1. Density of infected nodes i(t) as a function of time t for (a) different values of the spreading rate b, (b) different values of the packet-generation rate k,

and (c) different values of the average connectivity hki. For (a), k ¼ 2 and hki ¼ 10; For (b), b ¼ 0:005 and hki ¼ 10; For (c), b ¼ 0:005 and k ¼ 2. The insets

show the evolution of i(t) in the early times.
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initial exponential increasing phase in the density of the

infected nodes with time, from which a characteristic time

for the outbreak can be meaningfully defined. In the follow-

ing, we provide a physical theory to understand how the

spreading probability, the packet-generation rate and the

average connectivity affect the exponentially growing

behavior.

A scale-free network is heterogeneous, rendering neces-

sary consideration of the effect of degree heterogeneity on

the dynamical evolution. We define the density of infected

nodes of degree k as ikðtÞ ¼ IkðtÞ=Nk, where Nk and IkðtÞ are

the numbers of nodes and of infected nodes within each

degree class k, respectively. According to the heterogeneous

mean-field theory,2,11,22 we can write the reaction-rate equa-

tion for the epidemic dynamics as

dikðtÞ
dt
¼ bkNbk

alg½1� ikðtÞ�HðtÞ; (1)

where the right-hand side takes into account the probability

that a node with k links belongs to the susceptible class rep-

resented by [1� ikðtÞ] and can become infected via packets

traveling from the infected nodes. The latter process is

determined by the spreading probability b, the number of

packets kNbk
alg that a node of degree k receives at each time

step, and the probability HðtÞ that a packet travels through

a link pointing to an infected node. In the case of uncorre-

lated networks, HðtÞ is independent of the degree and is

given by11

HðtÞ ¼
P

k bk
algPðkÞikðtÞP

k bk
algPðkÞ

; (2)

where bk
alg is the algorithmic betweenness,23 which denotes

the number of packets passing through a node for a given

routing protocol and packet-generation rate k ¼ 1=N. In the

case of shortest-path routing, the algorithmic betweenness is

equal to the topological betweenness. In the initial spreading

stage, terms of order Oði2Þ can be ignored so that Eq. (1) can

be simplified as

dikðtÞ
dt
¼ bkNbk

algHðtÞ: (3)

Substituting Eq. (2) into Eq. (3), we obtain

dHðtÞ
dt
¼

bkNhb2
algiHðtÞ
hbalgi

; (4)

where hbalgi ¼
P

k bk
algPðkÞ and hb2

algi ¼
P

k ðbk
algÞ

2PðkÞ.
From Eq. (4), we obtain

HðtÞ ¼ Hð0Þe1=s; (5)

where

s ¼ hbalgi
bkNhb2

algi
: (6)

Substituting Eq. (5) into Eq. (3), we get

ikðtÞ ¼ ikð0Þ þ
Hð0Þbk

alghbalgi
hb2

algi
ðet=s � 1Þ: (7)

Using the uniform initial condition ikð0Þ ¼ ið0Þ, we can

rewrite Eq. (7) as

ikðtÞ ¼ ið0Þ
bk

alghbalgi
hb2

algi
ðet=s � 1Þ þ 1

" #
: (8)

Substituting Eq. (8) into iðtÞ ¼ RkPðkÞikðtÞ, we obtain

iðtÞ ¼ ið0Þ hbalgi2

hb2
algi
ðet=s � 1Þ þ 1

" #
; (9)

which indicates that initially, the density of infected nodes

increases exponentially over time. Because of the exponen-

tially growing behavior, a time characterizing the epidemic

break can be properly defined, which is s, where a larger

value of s signifies slower growth. From Eq. (6), one can see

that s is directly proportional to the ratio of the first to the

second moment of the algorithmic betweenness distribution

and is inversely proportional to the spreading probability and

the packet-generation rate. The exponentially growing

behavior is true for the small values of bkNhbalgi, i.e.,

bkNhbalgi � 1.

Validity of our physical analysis can be established by

comparing the numerically calculated dependence of s on

the spreading probability b, the packet-generation rate k and

the average connectivity hki with the theoretical predictions.

From Fig. 2, one can see that the theoretical predictions

agree with numerical results qualitatively. In Eq. (1), the

algorithmic betweenness bk
alg is assumed to be the same for

nodes in the same degree class k. However, bk
alg actually fluc-

tuates for different nodes with the same degree, leading to

deviation between numerical and theoretical values. As the

average connectivity hki increases, the difference of the

algorithmic betweenness among nodes in the same degree

class reduces, yielding better agreement between numerical

observations and theoretical predictions [see Fig. 2(c)].

An interesting issue is how the epidemic dynamics

affects nodes with different degrees. This can be assessed by

measuring the average degree of the newly infected nodes as

a function of time t, which is defined as

hkinf ðtÞi ¼

X
k

k½IkðtÞ � Ikðt� 1Þ�

IðtÞ � Iðt� 1Þ : (10)

Figure 3 shows a decreasing behavior of hkinf ðtÞi with t, indi-

cating that the epidemic dynamics first infects the large-

degree nodes in the network, and the infection then spreads

over the network to progressively smaller-degree nodes in a

cascade-like manner. This behavior agrees with intuition, as

hub nodes tend to receive far more packets than an average

node in a scale-free network, and they are then significantly

more likely to be infected first. Packets carrying the infection

then spread to nodes with slightly smaller degrees, and so

on, until a large fraction of the entire network is infected.
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We now turn to the more realistic case where the node

delivering capacity is finite. The main difference from the

infinite-capacity case lies in the likelihood of the emergence of

traffic congestion in the network, which occurs when the

packet-generating rate exceeds a critical value kc.24 Due to the

complication associated with traffic congestion, our analysis for

the infinite-capacity (or congestion-free) case cannot be applied,

and we thus rely on numerical computation to explore the

behavior of the characteristic time s. Figure 4 shows the density

of the infected nodes i(t) as a function of time t for C¼ 10. For

comparison, we also include the case of C!1. The critical

value of kc is determined to be about 0.05, and we set k ¼ 1 >
kc so that traffic congestion can occur. Figure 4 demonstrates

that i(t) increases more slowly in the case of finite C than that

of infinite C, indicating that traffic congestion can suppress the

speed of epidemic spreading. The inset of Fig. 4 shows that, ini-

tially, the density of the infected nodes also increases exponen-

tially with time for the finite-capacity case so that a

characteristic outbreak time s can still be defined. Figure 5

shows s as a function of the packet-generation rate k for both

FIG. 3. Average degree hkinf ðtÞi of the newly infected nodes as a function of

time for different values of the average connectivity hki. The spreading and

packet-generation rates are b ¼ 0:02 and k ¼ 2, respectively.

FIG. 2. Comparison between numerical and theoretical values of the characteristic time s: (a) s versus the spreading probability b for k ¼ 2 and hki ¼ 10, (b)

s versus the packet-generation rate k for b ¼ 0:005 and hki ¼ 10, and (c) s versus the average connectivity hki for b ¼ 0:005 and k ¼ 2. The theoretical values

are calculated from Eq. (6).

FIG. 4. Density of infected nodes i(t) as a function of time t for C¼ 10 and

C!1. The average connectivity is hki ¼ 10, the spreading probability is

b ¼ 0:01 and the packet-generation rate is k ¼ 1. For C¼ 10, the critical

packet-generating rate is kc ’ 0:05. The inset shows the evolution of i(t) at

the initial stage of epidemic spreading.

FIG. 5. For the two cases where the capacity parameter C is infinite and finite

(C¼ 10), the characteristic time s as a function of the packet-generation rate k.

Other parameters are hki ¼ 10 and b ¼ 0:01. For C¼ 10, the critical packet-

generating rate is kc ’ 0:05. Line represents the theoretical prediction [Eq. (6)].
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cases. We observe that s scales inversely with k for infinite C,

as predicted by Eq. (6). For finite values of C, when free traffic

flow is guaranteed ðk < kcÞ; s essentially exhibits the same

behavior. However, for k > kc so that congestion can occur,

the value of s becomes larger, signifying a slowdown in the epi-

demic outbreak.

IV. CONCLUSION

We have investigated the issue of the characteristic time

associated with the outbreak of traffic-driven epidemic

spreading on scale-free networks. Using physical reasoning,

we have arrived at a formula relating the characteristic time

to parameters underlying both the traffic and spreading dy-

namics, and also the ratio of the first to the second moment

of the network betweenness distribution. It is found that

traffic-flow condition plays an important role in the outbreak

of epidemic spreading. Large-scale outbreak occurs more

quickly as the packet-generation rate associated with the traf-

fic dynamics is increased. However, an increase in the average

network connectivity and the emergence of traffic congestion

can slow down the epidemic outbreak, where the former

shortens the average traveling time of a packet and decreases

the number of packages passing through each node, resulting

in a decrease in the infection probability of each node. In the

presence of traffic jam, due to the fact that the number of

packets in the queue of a jammed node exceeds its delivery

capacity, the number of packets that can be forwarded is

reduced compared to the case of absence of congestion. In

this perspective, the emergence of congestion can effectively

slow down the process of epidemic spreading.
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