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Nonlinear dynamical systems in reality are often under environmental influences that are

time-dependent. To assess whether such a system can perform as desired or as designed and is

sustainable requires forecasting its future states and attractors based solely on time series. We

propose a viable solution to this challenging problem by resorting to the compressive-sensing

paradigm. In particular, we demonstrate that, for a dynamical system whose equations are

unknown, a series expansion in both dynamical and time variables allows the forecasting problem

to be formulated and solved in the framework of compressive sensing using only a few

measurements. We expect our method to be useful in addressing issues of significant current

concern such as the sustainability of various natural and man-made systems. VC 2012 American
Institute of Physics. [http://dx.doi.org/10.1063/1.4740057]

Nonlinear dynamical systems with one or a few parame-

ters varying slowly with time are of considerable interest

in many areas of science and engineering. In such a sys-

tem, the attractors in the future can be characteristically

different from those at the present. To predict the possi-

ble future attractors based on available information at

the present is thus a well-defined and meaningful prob-

lem, which is challenging especially when the system

equations are not known but only time-series measure-

ments are available. Here, we extend our recently devel-

oped, compressive-sensing based method for predicting

catastrophic bifurcations in stationary dynamical systems

to time-varying systems. We demonstrate that this frame-

work allows us to reconstruct the system equations and

time dependence of parameters based on limited meas-

urements so that the future attractors of the system can

be predicted through computation.

I. INTRODUCTION

A dynamical system in the physical world is constantly

subject to random disturbance or adiabatic perturbation.

Broadly speaking, there are two types of perturbations: sto-

chastic or deterministic. Stochastic disturbances (or noise)

can typically be described by random processes and they do

not alter the intrinsic structure of the underlying equations of

the system. Deterministic perturbations, however, can cause

the system equations or parameters to vary with time. Sup-

pose the perturbations are adiabatic, i.e., Ti, the time scale of

the intrinsic dynamics of the system is much smaller than Te,

that of the external perturbation. In this case, some

“asymptotic states” or “attractors” of the system can still be

approximately defined in a time scale that is much larger

than Ti but smaller than Te. When the dynamics in such a

time interval is examined, the attractor of the system will

depend on time. Often, one is interested in forecasting the

“future” asymptotic states of the system. Take the climate

system as an example. The system is under random distur-

bances, but adiabatic perturbations are also present, such as

CO2 injected into the atmosphere by human activities, the

level of which tends to increase with time. The time scale for

appreciable increase in the CO2 level to occur (e.g., months

or years) is much larger than the intrinsic time scales of the

system (e.g., days). The climate system is thus an adiabati-

cally time-varying, nonlinear dynamical system. It is of tre-

mendous interest to forecast what the future attractors of the

system might be in order to determine whether it will behave

as desired or sustainably. The issue of sustainability is, of

course, critical to many other natural and man-made systems

as well. To be able to forecast the future states of such sys-

tems is essential to assessing their sustainability.

In this paper, we address the following question: given a

nonlinear dynamical system whose equations or parameters

vary adiabatically with time, but otherwise are completely

unknown, can one predict, based solely on measured time se-

ries, the future asymptotic attractors of the system? To state

the problem in a formal way, we consider time-varying dy-

namical systems, mathematically described by

dx=dt ¼ F½x; pðtÞ�; (1)

where x is the dynamical variable of the system in the

d-dimensional phase space and pðtÞ ¼ ½p1ðtÞ;…; pKðtÞ�
denotes K independent, time-varying parameters of the sys-

tem. We assume, however, that both forms of F and p(t)

are unknown but at time tM, the end of the time interval

during which measurements are taken, time series x(t) for

tM � TM � t � tM are available, where TM denotes the mea-

surement time window. Our idea is to predict the precise

mathematical forms of F and p(t) based on the available

time series at tM so that the evolution and the likely attractors
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of the system for t > tM can be computationally assessed and

anticipated. We shall establish that this can be accomplished

by using the compressive-sensing algorithm1,2 that has

recently been applied to predicting catastrophic bifurcations

in time-independent dynamical systems.3 The predicted form

of F and p(t) at time tM would contain errors that in general

will increase with time. In addition, for t > tM, new perturba-

tions can occur to the system so that the forms of F and p(t)

may be further changed. It is thus necessary to execute the

prediction algorithm frequently using time series available at

the time. In particular, the system could be monitored at all

times so that time series can be collected, and predictions

should be carried out at ti’s, where … > ti > … > tMþ2

> tMþ1 > tM. For any ti, the prediction algorithm is to be

performed based on available time series in a suitable win-

dow prior to ti.

There is large literature on forecasting nonlinear dynamical

systems.3–10 A conventional approach is to approximate a non-

linear system by a large collection of linear equations in differ-

ent regions of the phase space to reconstruct the Jacobian

matrices on a proper grid5,6,8 or fit ordinary differential equa-

tions to chaotic data.7 Approaches based on chaotic synchroni-

zation9 or genetic algorithms10 to system-parameter estimation

were also investigated. In most existing works, short-term pre-

dictions of a dynamical system can be achieved by employing

the classical delay-coordinate embedding paradigm.11,12 For

nonstationary systems, the method of over-embedding was

introduced13 in which the time-varying parameters were treated

as independent dynamical variables so that the essential aspects

of determinism of the underlying system could be restored. In

spite of the previous works, prediction of time-varying dynami-

cal system remains to be a challenging issue. As we shall

describe, besides being applicable to time-varying dynamical

systems, the principle of our method is drastically different

from those of previous ones because we aim to predict globally,

in long term, the exact forms of both system equations and pa-

rameter functions based on time series that are presently

available.

The basic strategy upon which our method is based is com-

pressive sensing,1,2 which has been exploited widely in all

kinds of signal-processing problems in different fields of sci-

ence and engineering. Recently compressive sensing has been

applied to predicting catastrophic bifurcations in stationary dy-

namical systems.3 The purpose of this paper is to extend the

methodology to predicting time-varying dynamical systems.

In Sec. II, we describe our compressive-sensing based

method for predicting the parameters and equations of time-

varying dynamical systems. In Sec. III, we demonstrate our

method through numerical examples. A brief conclusion is

presented in Sec. IV. In Appendix, we describe a general so-

lution of compressive sensing.

II. METHOD

The problem of compressive sensing can be described as

the reconstruction of a sparse vector �x 2 RN from linear

measurements �y in the form: �y ¼ A�x, where �y 2 RM and A is

a M � N matrix. Accurate reconstruction can be achieved by

solving the following convex optimization problem1,2

mink�xk1 subject to A�x ¼ �y; (2)

where k�xk1 ¼
PN

i¼1 j�xij is the L1 norm of vector �x. A general

solution procedure of compressive sensing problems is

described in Appendix. An extremely attractive feature of

compressive sensing is that the number of measurements can

be much less than the number of components of the unknown

signal: M� N.

Our goal is to formulate the problem of predicting time-

varying dynamical systems in the framework of compressive

sensing. To accomplish this, we expand all components of

the time-dependent vector field F[x, p(t)] in Eq. (1) into a

power series in terms of both dynamical variables x and time

t. The ith component F½x; pðtÞ�i of the vector field can be

written as

Xn

l1;���;lm¼1

½ðaiÞl1;…;lm
xl1

1 � � � xlm
m �
Xv

w¼0

ðbiÞwtw�

�
Xn

l1;…;lm¼1

Xv

w¼0

ðciÞl1;…;lm;wxl1
1 � � � xlm

m � tw; (3)

where xk (k ¼ 1;…;m) is the kth component of the dynami-

cal variable and ci is the ith component of the coefficient

vector to be determined [vector �x in Eq. (2)]. We assume

that the time evolution of each term can be approximated by

the power series expansion in time, i.e.,
Pv

w¼0 ðbiÞwtw. The

power-series expansion allows us to cast Eq. (1) into the

standard form of compressive sensing, namely, Eq. (2) (see

Ref. 3 for details). In principle, if every combined scalar

coefficient ðciÞl1;…;lm;w associated with the corresponding

term in Eq. (3) can be determined from time series for

t � tM, the vector-field component ½Fðx; pðtÞÞ�i becomes

known. Repeating the procedure for all components, the

entire vector field for t > tM can be found.

A fundamental requirement in compressive sensing is

that the vector to be determined be sparse. For a dynamical

system whose vector field is given by a finite number of

power-series terms, such as the classical Lorenz14 or R€ossler

systems,15 this sparsity requirement can be readily satisfied

by assuming as many terms as possible in Eq. (3), since the

coefficients associated with most terms are zero. For systems

whose vector fields contain, e.g., trigonometric functions for

which the power-series expansions contain an infinite num-

ber of terms, some alternative expansion base, such as the

Fourier base, can be used to ensure the sparsity condition.3

To explain our method in an intuitive way, we consider

a special case where the number of components of the dy-

namical variables is m¼ 3 (x, y, and z), the order of the

power series is l1 þ l2 þ l3 � 2, and the maximum power of

time t in Eq. (3) is v¼ 1, i.e., we include only t0 and t1 terms.

Focusing on one dynamical variable, say x, the total number

of terms in the power-series expansion is 20, as specified in

Fig. 1(a). Let the measurements x(t), y(t), and z(t) be taken at

times t1; t2; …; tM, as shown in Fig. 1(b). The values of all

20 power-series terms at these time instants can then be

obtained, as shown in Fig. 1(c), where we divide all the

terms into two blocks according to the distinct powers of the

time variable t: t0 and t1. The matrix A in Eq. (2) thus
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consists of these two blocks. (In the general case where

higher powers of the time variable are involved, A would

contain a corresponding number of blocks.) The components

of vector �y in Eq. (2) are the first derivatives dx/dt evaluated

at t1; t2; …; tM, which can also be approximated by the

measured time series x(t) at these times. As shown in Fig.

1(c), Eq. (3) for this simple example can be written in the

form A�x ¼ �y, where both the matrix A and vector �y can be

determined straightforwardly from measured time series, and

the task is to solve for the coefficient vector (�x or c). In gen-

eral, we assume many terms in the power-series expansion

up to some high order n, and the total number of terms in Eq.

(3), N, will be quite large. As a result, �x is high-dimensional

but most of its components are zero, ensuring sparsity. How-

ever, the number of measurements, M, needs not be as large

as N. Another requirement of compressive sensing is the re-

stricted isometric property1,2 which can be guaranteed by

normalizing the matrix A and by using linear-programming

based signal-recovery algorithms. To determine the set of

power-series coefficients corresponding to a different dy-

namical variable, say y, we simply replace the measurement

vector by �y ¼ ½ _yðt1Þ; _yðt2Þ;…; _yðtMÞ�T . The matrix A, how-

ever, remains the same. We see that the problem of forecast-

ing time-varying nonlinear dynamical systems fits perfectly

into the compressive-sensing paradigm.

III. A NUMERICAL EXAMPLE

As a proof of principle, we take the classical Lorenz

chaotic system14 as an example by incorporating explicit

time dependence in a number of additional terms. The modi-

fied Lorenz system is given by

_x ¼ �10ðx� yÞ þ k1ðtÞy;
_y ¼ 28x� y� xzþ k2ðtÞz;
_z ¼ �ð8=3Þzþ xyþ ½k3ðtÞ þ k4ðtÞ�y;

(4)

where k1ðtÞ ¼ �t2, k2ðtÞ ¼ 0:5t, k3ðtÞ ¼ t, and

k4ðtÞ ¼ �0:5t2. Suppose that the system equations are

unknown but only measured time series x(t), y(t), and z(t) in a

finite time interval are available. The number of dynamical

variables is m¼ 3 and we choose the orders of the power-

series expansions in the three variables according to

l1 þ l2 þ l3 � 3. The maximum power in the time depend-

ence is chosen to be v¼ 2 so that explicit time-dependent

terms t0, t1, and t2 are included. The total number of coeffi-

cients to be predicted is then ðvþ 1Þ
P3

i¼1ðiþ 1Þðiþ 2Þ=2

¼ 57. (Note that, using low-order power-series expansions in

both dynamical variables and time is solely for facilitating

explanation and presentation of results, while the forecasting

principle is the same for realistic dynamical systems where

much higher orders may be needed.) Figure 2 shows the pre-

dicted coefficient values versus the term index for all three

dynamical variables, where in each panel, solid triangles and

open circles denote predicted non-zero and zero coefficients,

respectively, and the red dashed dividing lines indicate the

terms associated with different powers of the time variable,

i.e., t0, t1, and t2 (from left to right). The meaning of these

results can be explained by using any one of the dynamical

variables. For example, for the x-component of the vector

field, our prediction algorithm gives only 3 nonzero coeffi-

cients. By identifying the corresponding values of the term

index, we read that they correspond to the two terms without

explicit time dependence: y, x, and the term that contains

explicit such dependence: t2y, respectively. A comparison of

the predicted nonzero coefficient values with the actual ones

in the original Eq. (4) indicates that the method works

remarkably well. Similar results have been found for y and z
components of the vector field, where we also find excellent

agreements between the predicted and the actual functions.

When the vector field F[x, p(t)] of the underlying dy-

namical system has been predicted, one can solve Eq. (1)

numerically to assess the state variables at any future time

and the asymptotic attractors. Figures 3(a) and 3(b) present

one example, where a forecasted time series calculated from

the predicted vector field is shown, together with the values

of the corresponding dynamical variable from the actual Lor-

enz system at a number of time instants. The two cases

FIG. 1. Illustration of our scheme to map the problem of predicting time-

varying nonlinear dynamical systems into the framework of compressive

sensing.
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FIG. 2. For the time-varying Lorenz

chaotic systems Eq. (4) with k1ðtÞ ¼ �t2,

k2ðtÞ ¼ 0:5t, k3ðtÞ ¼ t, and k4ðtÞ
¼ �0:5t2, predicted values of coefficients

of power-series terms versus the term

index for the x-, y-, and z-equations,

where solid triangles and open circles

denote nonzero and zero coefficients,

respectively. Note that, the number M of

data points used for prediction is about

50% of the total number N of unknown

coefficients in each power-series

expansion.
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shown are where the parameter functions kiðtÞ (i ¼ 1;…; 4)

are all zero and time-varying, respectively. Excellent agree-

ment is again obtained, indicating the power of our method

to predict the future states and attractors of time-varying dy-

namical systems. The interpretation and implication of Figs.

3(a) and 3(b) are the following. Note that t¼ 0 and t¼ 10

correspond to the beginning and end of the measurement

time window ½t1; tM�, respectively. For the original classical

Lorenz system without time-varying parameters, the asymp-

totic attractor is chaotic, as can be seen from Fig. 3(a). How-

ever, as external perturbations are turned on at t¼ 0, there

are four time-varying parameters in the system for t > 0. In

this case, the attractor becomes a fixed-point, as can be seen

from the behavior z! constant in Fig. 3(b). In both cases,
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0

10

20

30

40

50

time

z

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

time

z
(a)

Measurements
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Predicted time series
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FIG. 3. For the Lorenz system (4), pre-

dicted time series and measured values of

the dynamical variable z(t) for (a) time-

independent case where kiðtÞ ¼ 0

(i ¼ 1;…; 4) and (b) time-dependent case

where k1ðtÞ ¼ �0:01t2, k2ðtÞ ¼ 0:01t,
k3ðtÞ ¼ 0:01t, and k4ðtÞ ¼ �0:01t2. Red

circles denote the measurements used for

prediction, while the green dash and blue

solid lines represent the actual and pre-

dicted time series, respectively. In both

panels, t¼ 0 and t¼ 10 correspond to the

beginning and end of the measurement

window, i.e., t1 and tM , respectively.
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FIG. 4. For the time-varying Lorenz sys-

tem as in Fig. 2, (a) prediction errors Enz

as a function of the ratio M/N, and (b) ra-

tio Mt=N as a function of the ratio

Nnz=N, where N can be increased by

using power-series expansion to higher

order (e.g., up to 7). (c) With fixed num-

ber of measurement M, prediction errors

Enz as a function of the length of mea-

surement window. The error bars are

obtained from 20 independent realiza-

tions of the prediction algorithm. The

prediction errors Ez associated with non-

existent terms show similar behaviors.
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by using limited amount of measurements, namely, available

time series in the window ½t1; tM�, we obtain quite accurate

forecasting results. The result exemplified in Fig. 3(b) is

especially significant, as it indicates that the future state and

attractors of time-varying dynamical systems can be accu-

rately predicted with only limited data availability.

We now determine and characterize the prediction

errors. Two types of errors can be defined: one for non-zero

(existent) terms in the power-series expansion and another

for zero (non-existent) terms. For each existent term, a rela-

tive error can be defined, which is the ratio of the absolute

difference between the predicted and true values to the true

value. For non-existent terms the absolute errors are mean-

ingful. Taking the average of errors over all the correspond-

ing terms, we obtain Enz and Ez, the prediction error for

existent and non-existent terms, respectively. Figure 4(a)

shows, for the time-varying Lorenz system, Enz versus the

ratio of the number M of measurements to the total number

N of terms to be predicted. For all dynamical variables, we

observe that, as M exceeds a threshold value Mt, Enz

becomes effectively zero, where Mt can be defined quite

arbitrarily, e.g., the minimum number of measurements

required to achieve Enz ¼ 10�3. The data requirement for

accurate prediction can then be assessed by examining how

Mt depends on the sparsity of the coefficient vector to be

predicted, which can be defined as the ratio of the number

Nnz of the nonzero terms to the total number N of terms to

be predicted. Note that, N or the ratio Nnz=N can be

adjusted by varying the order of the assumed power series.

From Fig. 4(b), we see that, as Nnz=N is decreased (e.g., by

increasing N) so that the vector to be predicted becomes

more sparse, the ratio Mt=N also decreases. In particular,

for the smallest value of Nnz=N examined, where N¼ 357,

only about 5% of the data points are needed for accurate

prediction, despite the time-varying nature of the underlying

dynamical system. Figure 4(c) shows the prediction errors

with respect to different length of the measurement window

for a fixed number of data points. We see that, when the

length exceeds a certain (small) value so that the time series

extends to the whole attractor in the phase space, Enz

approaches zero rapidly.

Dynamical systems are often driven by time-periodic

forces, such as the classical Duffing system.16 In such a case,

it is necessary to explore alternative bases of expansion with

respect to the time variable other than power series to ensure

the sparsity condition. A realistic strategy to choose a suita-

ble expansion base is to make use of the basic physics under-

lying the dynamical system of interest. Insofar as an

appropriate base can be chosen so that the coefficient vector

to be predicted is sparse, the methodology proposed and ela-

borated in this paper is applicable.

IV. CONCLUSION

We have articulated a compressive-sensing based

approach to forecasting the state and attractors of time-

varying nonlinear dynamical systems. Our central idea is to

expand the vector field of the underlying system in both

dynamical and time variables in a suitable base to ensure

that the vector constituting the coefficients of all terms in

the expansion is sparse. The main achievement of this pa-

per is a demonstration that the future states and asymptotic

attractors of time-varying dynamical systems can be accu-

rately forecasted based on limited time series. Because of

the ubiquity of nonlinear dynamical systems and common

encounters with time-dependent external perturbations in

the real world, forecasting the future behavior of such sys-

tems is of significant value to science and engineering,

and beyond. Our work represents a step forward in this

direction.
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APPENDIX: SOLUTION OF COMPRESSIVE SENSING
METHOD

Generally, the problem of compressive sensing is

described by reconstructing a vector �x 2 RN from linear

measurements �y about �x in the form

�y ¼ A�x; (A1)

where �y 2 RM and A is a M � N matrix. By definition, the

number of measurements is much less than the size of the

unknown signal, i.e., M � N. Suppose that the original sig-

nal x, is sparse. Accurate recovery can be achieved by solv-

ing the following convex optimization problem1,2

mink�xk1 subject to A�x ¼ �y: (A2)

Here we explain the method used in this paper to solve the

convex optimization problem described by Eq. (A2). By

inducing a new variable vector u 2 RN , problem (A2) can

be recast into a linear-constraint minimization problem

min
XN

i¼1

ui subject to

�xi � ui � 0

��xi � ui � 0

A�x ¼ �y
:

8<
: (A3)

By defining z ¼ ½�xT ; uT �T , Eq. (A3) can be rewritten as

hc0; zi subject to

fiðzÞ � 0

f 0iðzÞ � 0

A0z ¼ �y
;

8<
: (A4)

where fiðzÞ ¼ hci; zi, f 0iðzÞ ¼ hc0i; zi, h:i denotes inner product

of two vectors, c0; ci; c
0
i 2 R2N , A0 is a M � 2N matrix,

ðc0Þj ¼ 0 for j � N, ðc0Þj ¼ 1 for j > N, ðciÞj ¼ 1 for j¼ i,

ðciÞj ¼ �1 for j ¼ N þ i, ðc0iÞj ¼ 1 for j¼ i, ðc0iÞj ¼ �1 for

j ¼ N þ i, and A0 ¼ ½0M�N;A�. To solve the linear constraint

minimization problem (A4), one can use the Karush-Kuhn-

Tucker conditions;1,2 that is, at the optimal point z	, there

exists vectors v	 2 RM, k	 2 RN , k0	 2 RN , k	; k0
	 
 0 such

that the following conditions are satisfied:
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c0þAT
0v	 þ

X
i

k	i ci þ
X

i

k0	i c0i ¼ 0;

k	i fiðz	Þ ¼ 0 ði ¼ 1; :::;NÞ;
k
0	
i f 0iðz	Þ ¼ 0 ði ¼ 1; :::;NÞ;

A0z	 ¼ �y;

fiðz	Þ � 0;

f 0iðz	Þ � 0:

(A5)

The solution procedure of problem (A5) is the classical New-

ton method in the valid solution set determined by the in-

equality constraints in Eq. (A5)

fk 
 0; k0 
 0; fiðzÞ � 0; f 0iðzÞ � 0g; (A6)

where a point ðz; v; k; k0Þ in this set is called as an interior

point. We define a residual vector for all the equality condi-

tions in Eq. (A5) as r ¼ ½rT
1 ; r

T
2 ; r

T
3 ; r

T
4 �

T
, where

r1 ¼ c0 þ AT
0vþ

X
i

kici þ
X

i

k0ic
0
i;

r2 ¼ �Kf ;

r3 ¼ �K0f 0;

r4 ¼ A0z� �y;

(A7)

f ¼ ½f1ðzÞ; f2ðzÞ; :::; fNðzÞ�T , f 0 ¼ ½f 01ðzÞ; f 02ðzÞ; :::; f 0NðzÞ�
T
, and

K, K0 are diagonal matrices with ðKÞii ¼ ki and ðK0Þii ¼ k0i,
respectively. To find the solution of (A5), we linearize the re-

sidual vector r using Taylor expansion about ðz; v; k; k0Þ,
which gives

rðzþ Dz; vþ Dv; kþ Dk; k0 þ Dk0Þ

¼ rðz; v; k; k0Þ þ Jðz; v; k; k0Þ

Dz

Dv

Dk

Dk0

0
BBB@

1
CCCA; (A8)

where J is the Jacobian matrix of r

J ¼
0 AT

0 CT C0T
�KC 0 �F 0

�K0C0 0 0 �F0

A0 0 0 0

0
BB@

1
CCA; (A9)

the N � 2N matrices C and C0 have ci and c0i as rows, respec-

tively, and F and F0 are diagonal with ðFÞii ¼ fiðzÞ and

ðF0Þii ¼ f 0iðzÞ. Thus, one can obtain the descent direction by

setting the left-hand side of Eq. (A8) to be zero, which gives

Dz
Dv
Dk
Dk0

0
BB@

1
CCA ¼ �J�1r: (A10)

With the descent direction, to solve (A5), one can update the

solution by z ¼ zþ sDz; v ¼ vþ sDv; k ¼ kþ sDk; k0 ¼ k0

þsDk0 with step length s. Here, s should guarantee that ðzþ
sDz; vþ sDv; kþ sDk; k0 þ sDk0Þ is an interior point of valid

solution set (A6). By iterating this procedure, the recon-

structed sparse signal �x can be obtained.
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