
Reverse engineering of complex dynamical networks in the presence of
time-delayed interactions based on noisy time series
Wen-Xu Wang, Jie Ren, Ying-Cheng Lai, and Baowen Li 
 
Citation: Chaos 22, 033131 (2012); doi: 10.1063/1.4747708 
View online: http://dx.doi.org/10.1063/1.4747708 
View Table of Contents: http://chaos.aip.org/resource/1/CHAOEH/v22/i3 
Published by the American Institute of Physics. 
 
Related Articles
How synaptic weights determine stability of synchrony in networks of pulse-coupled excitatory and inhibitory
oscillators 
Chaos 22, 033143 (2012) 
Complex network classification using partially self-avoiding deterministic walks 
Chaos 22, 033139 (2012) 
The architecture of dynamic reservoir in the echo state network 
Chaos 22, 033127 (2012) 
Adaptive lag synchronization of chaotic Cohen-Grossberg neural networks with discrete delays 
Chaos 22, 033123 (2012) 
Isospectral compression and other useful isospectral transformations of dynamical networks 
Chaos 22, 033118 (2012) 
 
Additional information on Chaos
Journal Homepage: http://chaos.aip.org/ 
Journal Information: http://chaos.aip.org/about/about_the_journal 
Top downloads: http://chaos.aip.org/features/most_downloaded 
Information for Authors: http://chaos.aip.org/authors 

Downloaded 18 Sep 2012 to 129.219.51.205. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/about/rights_and_permissions

http://chaos.aip.org/?ver=pdfcov
http://aipadvances.aip.org?ver=pdfcov
http://chaos.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Wen-Xu Wang&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://chaos.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Jie Ren&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://chaos.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Ying-Cheng Lai&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://chaos.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Baowen Li&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://chaos.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4747708?ver=pdfcov
http://chaos.aip.org/resource/1/CHAOEH/v22/i3?ver=pdfcov
http://www.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4749794?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4737515?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4746765?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4745212?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4739253?ver=pdfcov
http://chaos.aip.org/?ver=pdfcov
http://chaos.aip.org/about/about_the_journal?ver=pdfcov
http://chaos.aip.org/features/most_downloaded?ver=pdfcov
http://chaos.aip.org/authors?ver=pdfcov


Reverse engineering of complex dynamical networks in the presence
of time-delayed interactions based on noisy time series

Wen-Xu Wang,1,2 Jie Ren,3,4,6 Ying-Cheng Lai,2,5 and Baowen Li3,4

1Department of Systems Science, School of Management and Center for Complexity Research,
Beijing Normal University, Beijing 100875, China
2School of Electrical, Computer and Energy Engineering, Arizona State University,
Tempe, Arizona 85287, USA
3NUS Graduate School for Integrative Sciences and Engineering, Singapore 117456, Republic of Singapore
4Department of Physics and Centre for Computational Science and Engineering,
National University of Singapore, Singapore 117546, Republic of Singapore
5Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
6Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

(Received 10 November 2011; accepted 9 August 2012; published online 24 August 2012)

Reverse engineering of complex dynamical networks is important for a variety of fields where

uncovering the full topology of unknown networks and estimating parameters characterizing the

network structure and dynamical processes are of interest. We consider complex oscillator networks

with time-delayed interactions in a noisy environment, and develop an effective method to infer the

full topology of the network and evaluate the amount of time delay based solely on noise-

contaminated time series. In particular, we develop an analytic theory establishing that the dynamical

correlation matrix, which can be constructed purely from time series, can be manipulated to yield both

the network topology and the amount of time delay simultaneously. Extensive numerical support is

provided to validate the method. While our method provides a viable solution to the network inverse

problem, significant difficulties, limitations, and challenges still remain, and these are discussed

thoroughly. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4747708]

Time-delayed interactions are common in complex systems

arising from various fields of science and engineering. Con-

sider, for example, a coupled oscillator network in a physi-

cal environment where noise is present. Time delay can

typically occur in the node-to-node interactions. Now sup-

pose that no prior knowledge about the nodal dynamics and

the network topology is available but only a set of noise-

contaminated time series can be obtained through measure-

ments. The question is whether it is possible to deduce the

full topology of the network and to estimate the amount of

average time delay using the time series only. This issue

belongs to the recently emerged subfield of research in com-

plex systems: reverse engineering of complex networks (or

the inverse problem). While a number of methods address

the network inverse problem have appeared, to our knowl-

edge, the issue of time-delayed interactions has not been

considered. Here we present an effective method to infer

the full network topology and, at the same time, to estimate

the amount of average time delay in the network. In partic-

ular, we develop a physical theory to obtain a formula relat-

ing the network topology and time delay to the dynamical

correlation matrix, which can be constructed purely from

time series. We then show how information about the time

delay encrypted in the dynamical correlation matrix can be

separated from that of network topology, allowing both to

be inferred in a computationally extremely efficient man-

ner. We present numerical examples from both model and

real-world complex networks to demonstrate the working

of our method. Difficulties, limitations, and challenges are

also discussed. Reverse-engineering of complex dynamical

systems has potential applications in many disciplines, and

our work represents a small step forward in this extremely

challenging area.

I. INTRODUCTION

An outstanding and challenging problem in network sci-

ence and engineering is to infer or uncover the topology and

other basic characteristics of complex networks based on

measured time series only. This reverse-engineering or

inverse problem finds applications in a number of fields such

as biomedical and technological-social sciences where com-

plex networked systems are ubiquitous. In defense, the prob-

lem of identifying various adversarial networks based on

observations is also of paramount importance. Despite previ-

ous effort in revealing the connection between network

structures and dynamics,1–5 how to infer the full topology of

a complex network from dynamical behaviors is still an

interesting problem, especially when knowledge about the

nodal dynamics is not available.

Recent years have witnessed the emergence of a number

of methods to address various aspects of the inverse problem,

which include gene regulatory network inference using sin-

gular value decomposition and robust regression,6 spike clas-

sification methods for measuring interactions among neurons

from spike trains,7 symbolically reverse engineering of

coupled ordinary differential equations,8 approaches based

on response dynamics of specific oscillators,9,10 L1 norm in

optimization theory,11 noise-induced scaling laws,12 the

interplay between dynamical correlation and network
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structure in the presence of noise,13 random phase reset-

ting,14 inner composition alignment,15 and compressive-

sensing based method.16 Despite these efforts, the issue of

time delay in the context of network reverse engineering has

not been addressed. The purpose of this article is to present a

theory and a purely data-driven method to uncover the net-

work topology and to estimate the time delay at the same

time, assuming there is uniform or nearly uniform time delay

in the node-to-node interactions and the networked system is

in a physical environment where noise is present.

Time delay is fundamental in natural systems, due to the

finite propagation speed of physical signals. In addition to

numerous examples in physics, situations where time delay

is important include the latency times of neuronal excitations

in neuroscience and finite reaction times of chemicals in

chemistry. In coupled oscillator networks, the effects of time

delay on dynamics under various given network topologies

have been studied extensively.17–21 In our case, however, the

network connections, the amount of the time delay, and other

properties of the network are unknown a priori, and our goal

is to predict these by using noisy time series only. Our gen-

eral point of view is that information about the network to-

pology and time delay has been encoded in the time series

from various nodes in the network. The objective of solving

the inverse problem is to decode such information from time

series. Our idea is that, if the networked system is in a physi-

cal environment so that the measured time series are conta-

minated by noise, it is possible to accomplish the task of

decoding in a natural way. In particular, we construct a dy-

namical correlation matrix from all available time series, the

elements of which are the average products of the deviations

of all pairwise time series from a mean value. We shall show

analytically that information about the network structure and

time delay can be decoded through this matrix. In fact, as we

will show in developing our theory, information about the

network topology can be separated from the time delay

through a generalized inverse operation of the dynamical

correlation matrix, enabling a complete prediction of the

underlying networked system.

To provide numerical support for our theory, we exploit

three representative dynamical processes on homogeneous

and heterogeneous model complex networks and on a num-

ber of real-world networks as well. We find that the presence

of time delay results in a deviation in the distribution of the

diagonal elements of the dynamical correlation matrix from

a power law, which can be used as a preliminary criterion to

determine whether there is a significant time delay in the

underlying networked system. Computations reveal high

accuracies in the prediction of both network topology and

time delay for all combinations of dynamical processes and

network models studied.

It should be emphasized that, at this stage, our theory and

method apply to complex oscillator networks only, which gen-

erate continuous time series. Another key assumption that

makes theoretical analysis viable is that the time delay is uni-

form or nearly uniform for all interactions on the network.

Needless to say, this assumption is not realistic for real-world

situations where the time delays associated with node-to-node

interactions on the network are likely to be random and follow

some sort of statistical distribution. However, insofar as the

distribution is narrow, our theory is approximately valid for

estimating the average time delay on the network. At the pres-

ent, we are unable to extend our theory to situations where the

time-delay distributions are broad. We suspect that, in more

general situations, some drastically different approach may be

needed, warranting further effort in this direction.

In Sec. II, we develop our theory, which leads to a com-

putationally extremely efficient, completely data-driven

method to uncover the network topology and to estimate the

time delay. In Sec. III, we present results from extensive nu-

merical computations to verify our theory and validate the

corresponding method. In Sec. IV, we consider a variant of

the oscillator network model and demonstrate that a theory

can be developed which leads essentially the same method to

address the oscillator-network inverse problem. Conclusion

and discussion of the limitations of our theory and method

are presented in Sec. V.

II. THEORY AND PREDICTION METHOD

We present our theory and method by considering a net-

work of N coupled oscillators. Each oscillator, when

decoupled, satisfies _~x i ¼ Fi½~xi�, where ~xi denotes the

d-dimensional state variable of node i. The dynamics of the

whole time-delayed system in a noisy environment can be

described as

_~x iðtÞ ¼ Fi½~xiðtÞ� � c
XN

j¼1

LijH½~xjðt� sÞ� þ~giðtÞ; (1)

where c is the coupling strength, H denotes the coupling func-

tion, and Lij is the element of the Laplacian matrix character-

izing the topology of the underlying network, which satisfies

Lij ¼ �1 if j connects to i (otherwise 0) for i 6¼ j, and Lii ¼ ki,

where ki is the degree of node i. The quantity s denotes the

uniform time delay on the network, and~gi is a d-dimensional

stochastic process representing noise on node i. For conven-

ience, in the following we use the upper arrow sign to denote

the d-dimensional state variable. The standard procedure of

linearization1,17 can be carried out by letting ~xi ¼ �xi þ~ni,

where �xi is the counterpart of xi in the absence of noise. The

d-dimensional dynamical process governing the fluctuations

associated with the dynamical process on the ith oscillator is

governed by the following variational equation:

_~niðtÞ ¼ DFi �~niðtÞ � c
XN

j¼1

LijDH �~njðt� sÞ þ~giðtÞ; (2)

where DFi and DH denote the d � d Jacobian matrices of

the intrinsic dynamics Fi and the coupling function H,

respectively. Decomposing Eq. (2) in terms of the eigenmo-

des, we obtain

_~�aðtÞ ¼
X

b

DFab �~�bðtÞ � ckaDH �~�aðt� sÞ þ~faðtÞ; (3)

where instead of the index i,j running on the real space of

networks, the indices a and b run in the eigenspace. The var-

ious quantities in Eq. (3) are given by
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~�a ¼
X

i

wai
~ni;

~fa ¼
X

i

wai~gi;

DFab ¼
X

i

waiDFiwbi;

where waj denotes the ath normalized eigenvector of the

Laplacian matrix, and ka are the corresponding eigenvalues

that satisfy 0 ¼ k0 < k1 � � � � � kN�1. Under the approxi-

mation DFi � DF so that

DFab ¼ DFdab;

Eq. (3) can be reduced to

_~�aðtÞ ¼ DF �~�aðtÞ � ckaDH �~�aðt� sÞ þ~faðtÞ: (4)

From the covariance of Gaussian noise

h~giðtÞ~gT
j ðt0Þi ¼ r2Iddijdðt� t0Þ;

with Id being the d-dimensional identity matrix and r2 the

noise strength, we obtain

h~faðtÞ~f
T

bðt0Þi ¼ r2Iddabdðt� t0Þ; (5)

indicating that the stochastic process mapped into the eigen-

space still represents Gaussian noise. Assuming small time

delay, we can apply the first-order approximation

~�aðt� sÞ ¼~�aðtÞ � s _~�aðtÞ; (6)

which yields

ðId � cskaDHÞ _~�aðtÞ ¼ �ðckaDH� DFÞ~�aðtÞ þ~faðtÞ: (7)

Letting

B � ðId � cskaDHÞ�1;

A � BðckaDH� DFÞ;

and following standard stochastic calculus,22 we get the

solution

~�aðtÞ ¼ e�At~�að0Þ þ
ðt

0

e�Aðt�t0ÞB~faðt0Þdt0: (8)

Since we are interested in the regime where oscillator states

are perturbed from the synchronized manifold by noise, it is

reasonable to assume that the state variables of the system

will not diverge. Thus, in the long time limit, the initial-

condition term can be neglected,13 which yields

Ah~�a~�T
a i þ h~�a~�

T
a iA ¼ r2BBT : (9)

The general solution of h~�a~�T
a i, a d � d covariance matrix

about the d-dimensional states of the ath oscillator in the

eigenspace, can be written as23

vecðh~�a~�T
a iÞ ¼ r2vecðBBTÞ=ðId 	 Aþ A	 IdÞ; (10)

where the operator vec(X) creates a column vector from a

matrix X by stacking the columns of X below one another.

It is difficult to apply the solution in Eq. (10) to general

networked systems with arbitrary (but unknown) coupling

functions. To obtain a practically useful formula, further

simplifications and approximations are needed. In the fol-

lowing, we assume one-dimensional state variable so that

DH¼ 1. The vector notation can then be dropped. Equation

(10) becomes

h�2
ai ¼

r2

2c

1

ð1� cskaÞðka � DF=cÞ : (11)

Returning to real variables from the eigenspace by inserting

ni ¼
X

a

wai�a;

into the correlation function Cij ¼ hninji in the real space

between any two nodes, we have

Cij ¼
XN�1

a¼1

waiwajh�2
ai;

and, consequently,

Cij ¼
r2

2c

XN�1

a¼1

waiwaj

ð1� cskaÞðka � DF=cÞ: (12)

Under the approximation that the term DF/c can be

neglected and the time delay s is small, Eq. (12) for the dy-

namical correlation can be expanded as

Cij �
r2

2c

XN�1

a¼1

1þ cska

ka
waiwaj ¼

r2

2c
½L† þ csIN�ij; (13)

wherein under the influence of noise of variance r2, the dy-

namical correlation matrix C is connected explicitly with the

time delay s and the structure information in terms of the

matrix

L† ¼
XN�1

a¼1

waiwaj=ka; (14)

which is the pseudo-inverse of the Laplacian matrix. Note

that the time delay has no effect on the cross-correlation ele-

ments except the auto-correlations due to the identity matrix.

Following Eq. (13), the diagonal elements Cii of the dynami-

cal correlation matrix can be obtained by expanding L† in

terms of the underlying network structural properties13

Cii �
r2

2c
½K�1 þK�1PK�1 þK�1PK�1PK�1�ii þ

r2s
2

� r2

2cki
1þ 1

hki

� �
þ r2s

2
; (15)
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where K ¼ diagðk1; � � � ; kNÞ is the degree matrix, P is the

adjacency matrix such that L ¼ K� P, and hki denotes the

average degree. We see that the fluctuations Cii at node i
depend both on its local structure ki and the time delay s. For

s ¼ 0, this result is consistent with the recently discovered

noise-induced scaling law,12 derived there by a power-

spectral analysis.

The off-diagonal elements of L contain complete infor-

mation about the network structure while its diagonal ele-

ments can be obtained from the off-diagonal ones. We thus

focus on the off-diagonal elements. For i 6¼ j, following

Eq. (12), we obtain the generalized inverse matrix C† as

C†
ij �

2c

r2

XN�1

a¼1

kað1� cskaÞwaiwaj ¼
2c

r2
½L� csL2�ij: (16)

Using the relation L¼K�P, we can cast Eq. (16) in the fol-

lowing form:

C†
ij ¼

2c

r2
½Lþ csðKPþ PK�K2 � P2Þ�ij: (17)

To the off-diagonal elements (i, j), the diagonal matrix K2

has no contributions and P2 contributes the value lij, the

number of two-step paths connecting i with j. If the network

has a high average degree, the contribution of lij can be

neglected. We thus have

r2

2c
C†

ij �
Lij þ csðki þ kjÞ; if i connects with j

0: otherwise
;

�
(18)

Equation (18) is one of our main results for time-series based

solution to the network inverse problem, which indicates that

the full topology of the network can be inferred through the

off-diagonal elements C†
ij of the dynamical correlation matrix

based solely on measured time series.

Once L has been predicted, the time delay s can be esti-

mated, e.g., from Eq. (16). We obtain

s �
*
½L� r2

2c C†�ij
c½L2�ij

+
i 6¼j;Lij 6¼0;ðL2Þij 6¼0

; (19)

here the subscript in the average h�i covers all possible pairs

of i and j by excluding the diagonal elements in the matrices

L and L2, and all pairs with zero elements in the matrix L or

L2. Excluding zero elements can effectively reduce the esti-

mation error for s.

III. NUMERICAL RESULTS

The main theoretical results, Eqs. (18) and (19), are

derived under a number of assumptions and approximations.

To lend credence to their validity for complex oscillator net-

works, we apply the results to a number of model and real-

world networks in the presence of noise and uniform time

delay. For each network, we implement three dynamical

processes: (i) Consensus dynamics:24

_xiðtÞ ¼ c
XN

j¼1

Pij½xjðt� sÞ � xiðt� sÞ� þ gi;

(ii) R€ossler dynamics:25

_xi ¼ �yi � zi þ c
XN

j¼1

Pij½xjðt� sÞ � xiðt� sÞ� þ gi;

_yi ¼ xi þ 0:2yi þ c
XN

j¼1

Pijðyj � yiÞ;

_zi ¼ 0:2þ ziðxi � 9:0Þ þ c
XN

j¼1

Pijðzj � ziÞ;

8>>>>>>>>>><>>>>>>>>>>:
and (iii) Kuramoto phase dynamics:26

_hiðtÞ ¼ xi þ c
XN

j¼1

sin½hjðt� sÞ � hiðt� sÞ� þ gi;

where hi and xi are the phase and the natural frequency of

oscillator i, respectively.

Time series are collected from all nodes. The element of

the dynamical correlation matrix between two arbitrary

nodes i and j is calculated as

Cij ¼ h½xiðtÞ � �xðtÞ� � ½xjðtÞ � �xðtÞ�it;

where �xðtÞ ¼ ð1=NÞ
XN

i¼1
xiðtÞ and h�it denotes long-time

average. For the R€ossler dynamics, xiðtÞ stands for the x
component of the ith oscillator and, for the Kuramoto dy-

namics, xiðtÞ stands for the phase variable hiðtÞ of the ith
oscillator.

Figure 1 shows an example of the dependence of fluctu-

ations Cii on the time delay for three dynamical processes on

heterogeneous (scale-free) and homogeneous (random) net-

works. The results are in good agreement with the theoretical

prediction from Eq. (15), except a deviation for the case of

R€ossler dynamics, which is mainly caused by the simplifica-

tion of one-dimensional variable for obtaining Eq. (15), as

the R€ossler dynamics is intrinsically three-dimensional. Note

that, in the absence of time delay, the dependence of Cii on

the node degree ki can be described as a power law:12,13

Cii 
 k�1
i , regardless of the specific dynamical processes on

the network. For s 6¼ 0, deviation of Cii from the power-law

behavior can then be used to assess, preliminarily, whether

there is a significant time delay in the underlying networked

system: a more severe deviation suggests a larger value of

the time delay.

Having calculated the dynamical correlation matrix C, we

can infer the details of the network connections through Eq.

(18) via the generalized inverse of C. Figure 2 shows the distri-

bution of the off-diagonal elements of ½r2=ð2cÞ�C†. We observe

a bimodal behavior with two peaks: one centered at a negative

value which corresponds to existent links, and another centered

at zero which indicates non-existent links. Without time delay,

the hump in the distribution for the existent links should be cen-

tered at �1. In the presence of time delay, due to the contribu-

tion of the term csðki þ kjÞ � 2cshki, the center of the hump
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will shift toward zero. The larger the time delay, the more sig-

nificant the shift will be. For example, as shown in Fig. 2, the

amount of the shift in the negative peak is 2cshki ¼ 0:2. Since

c¼ 0.2 and hki ¼ 10 in the example, we obtain s ¼ 0:05,

which agrees with the pre-assumed value of the time delay very

well. To separate the two humps, a threshold is needed, where

all existent links in the network are identified by the elements in

C† that lie below the threshold. In particular, the subscript ij of

a chosen element below the threshold indicates a link between

nodes i and j. We set the threshold at the minimum value of the

fitted curve between two humps.

It is noteworthy that the bimodal distribution in Fig. 2

will be affected by the node degree distribution and the time

delay. In particular, when the fluctuation of the degree distri-

bution is large, e.g., power-law distribution, and the time

delay is large, the gap between two humps may shrink and

even vanish, rendering the overlap of them. In this case, the

network structure and time delay might not be accurately

predicted due to the difficulty in separating two humps.

Details will be presented below with respect to different

degree distributions and time delays.

The performance of our prediction method can be char-

acterized by the success rate Se of the existent links, which is

defined as the ratio of the number of successfully predicted

existent links to the total number of existent ones. As shown

in Figs. 3(a)–3(c), our method yields high success rates for

different values of the time delay s, regardless of the nodal

dynamics and of the network structure.

After the network topology L is predicted, we can esti-

mate the time delay s through Eq. (19). As demonstrated in

Fig. 4, the predicted values of s are quite close to the real val-

ues for almost all dynamical processes and network structures

considered. The deviation of numerical results from theory in

the case of Kuramoto dynamics is attributed to the sinusoidal

coupling function, for which the linear coupling function

assumed in our theory is only a crude approximation.

We also test the applicability of our method for situa-

tions where the time delays on the network are not uniform.

In this case, we expect our method to give the average time

delay if it is not too large and if the statistical distribution of

the time delays is not broad. Specifically, we consider a ran-

dom network under consensus dynamics with time delays

randomly distributed within a certain range. The success rate

Se as a function of the average time delay s among all pairs

of nodes for different ranges of time delay is shown in Fig.

5(a). We obtain high success rate. Figure 5(b) shows the pre-

dicted average time delay s0 versus the original time delay s
for different ranges of time delay. The predicted s0 is in good

FIG. 1. Diagonal elements Cii of the dynamical correlation matrix as a function of node degree k for three dynamical processes with different values of the

time delay s on scale-free and random networks. Square, circle, triangle and reverse triangle denote s ¼ 0:01, 0.05, 0.07, and 0.09, respectively. The curves are

the theoretical prediction from Eq. (15). The sizes of model networks are 100 and the average degree is 10. The noise strength r2 is 0.1 and the coupling

strength c is 0.2.

FIG. 2. Example of the distribution of the values of elements of the general-

ized inverse C† of the dynamical correlation matrix C for consensus dynam-

ics associated with a scale-free network, where s ¼ 0:05. The bimodal

behavior is present for Kuramoto model and R€ossler dynamics as well.
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agreement with s. These results demonstrate that our

approach is applicable even under reasonably constrained,

inhomogeneous time delays on coupled oscillators networks.

IV. VARIANT OF COUPLED OSCILLATOR NETWORK
MODEL

While our theory and the prediction method are based

on the system model Eq. (1), a similar theory can be devel-

oped for variants of the model. For instance, one can con-

sider the following system:24

_xiðtÞ ¼ Fi½xiðtÞ� � c
XN

j¼1

Pij½xiðtÞ � xjðt� sÞ� þ giðtÞ; (20)

where the dynamics of each isolated oscillator i is described

by _xi ¼ FiðxiÞ. Again, we consider one-dimensional state

variable. The quantity Pij denotes the element of the adja-

cency matrix of the underlying network, c denotes coupling

strength, s is the time delay which occurs only for the state

information transmitted from its connected neighbors other

than the dynamics of itself, and gi denotes noise. We linea-

rize Eq. (20) by using xi ¼ �xi þ �i, where �xi is the counter-

part of x in the absence of noise. The dynamical equation

describing fluctuations becomes

_�iðtÞ ¼ ðDFi � ckiÞ � �iðtÞ þ c
XN

j¼1

Pij � �jðt� sÞ þ giðtÞ; (21)

where DFi denotes the derivative of function Fi with respect

to xi. Decomposing Eq. (21) in terms of the normal modes,

we have

_naðtÞ ¼
X

b

cDFab � nbðtÞ þ ckanaðt� sÞ þ faðtÞ; (22)

where na ¼
X

i
wai�i, fa ¼

X
i
waigi,cDFab ¼

X
i

waiðDFi � ckiÞwbi;

waj denotes the ath normalized eigenvector of the adjacency

matrix, and ka are the corresponding eigenvalues for

a ¼ 0; � � � ;N � 1. Using the approximation DFi � 0 and

ki � hki so that

FIG. 4. Predicted time delay s0 from Eq. (19) versus the true (pre-assumed)

values for the three dynamical processes on a number of model and real-

world networks. The symbols denote the same networks as in Fig. 3. The

lines are s0 ¼ s. Other parameters are the same as in Fig. 1.

FIG. 5. (a) Success rate of prediction of existent links Se as a function of the

average time delay s for different ranges of time delays for random consen-

sus networks. (b) Predicted average time delay s0 versus the original time

delay s for different ranges of time delay. The lines are s0 ¼ s. Other param-

eters are the same as in Fig. 1.

FIG. 3. Success rate of prediction of existent links Se for (a) consensus dy-

namics, (b) Kuramoto oscillators, and (c) R€ossler dynamics as a function of

time delay s for a number of model and real-world networks: scale-free net-

works (scale-free),27 random network (random),28 small-world network

(small-world),29 dolphin social network (dolphins),30 network of American

football games among colleges (football),31 friendship network of karate

club (karate),32 and network of political book purchases (book).33 Other pa-

rameters are the same as in Fig. 1. The success rate of nonexistent links is

higher than 0.99 for all considered cases and thus are not shown.
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cDFab ¼ �chkidab;

we can write Eq. (22) as

_naðtÞ ¼ �chkinaðtÞ þ ckanaðt� sÞ þ faðtÞ: (23)

Since the covariance of Gaussian noise is given by

hgiðtÞgiðt0Þi ¼ r2dijdðt� t0Þ, we can obtain a similar relation:

hfaðtÞfbðt0Þi ¼ r2dabdðt� t0Þ:

Applying the first-order approximation nðt� sÞ ¼ nðtÞ �
s _nðtÞ for small time delay s, we obtain

ð1þ cskaÞ _naðtÞ ¼ �cðhki � kaÞnaðtÞ þ faðtÞ: (24)

In the long time limit t!1, Eq. (24) has the solution

naðtÞ ¼
1

1þ cska

ðt

0

exp � cðhki � kaÞðt� t0Þ
1þ cska

� �
faðt0Þdt;

(25)

which yields

hn2
ai ¼

1

ð1þ cskaÞ2
ðt

0

ðt

0

exp � cðhki � kaÞðt� t0Þ
1þ cska

� �

exp � cðhki � kaÞðt� t00Þ
1þ cska

� �
hfaðt0Þfaðt00Þidt0dt00

¼ r2

ð1þ cskaÞ2
ðt

0

exp � 2cðhki � kaÞðt� t0Þ
1þ cska

� �
dt0

¼ r2

2cðhki � kaÞð1þ cskaÞ
: (26)

Now turn to the fluctuations �i. Substituting �i ¼
P

a waina

into the correlation function Cij ¼ h�i�ji between any two

nodes, we have

Cij ¼
XN�1

a¼0

waiwajhn2
ai

¼ r2

2c

XN�1

a¼0

waiwaj

ðhki � kaÞð1þ cskaÞ
: (27)

The off-diagonal elements of C contain complete informa-

tion about the network structure while its diagonal elements

can be obtained from off-diagonal ones. It thus suffices to

consider off-diagonal elements only. For i 6¼ j, Eq. (27) gives

the generalized inverse matrix C† as

C†
ij ¼

2c

r2

XN�1

a¼0

ðhki � kaÞð1þ cskaÞwaiwaj

� 2c

r2
½ðcshki � 1ÞP� csP2�ij: (28)

After P is successfully predicted, the time delay s can be

estimated from Eq. (28) as

s �
*

Pþ r2

2c C†
h i

ij

c½hkiP� P2�ij

+
i6¼j;Pij 6¼0;ðP2Þij 6¼0

; (29)

where the average h�i covers all possible i and j by excluding

the diagonal elements in matrices P and P2, and all zero off-

diagonal elements in P and P2. Excluding these zero ele-

ments can effectively reduce the error in estimating s.

V. CONCLUSION AND OUTLOOK

In summary, we have developed a physical theory to

address the inverse problem for complex oscillator networked

systems in the presence of time delay and noise, based solely

on measured time series. Especially, we have obtained a for-

mula relating the generalized inverse of the dynamical corre-

lation matrix, which can be computed purely from data, to the

structural Laplacian (or adjacency) matrix and the amount of

time delay. Under reasonable approximations, the network to-

pology and the effect of time delay can be separated, leading

to a computationally extremely efficient method for inferring

the network topology and for estimating the time delay. The

validity of the method has been tested numerically using a va-

riety of combinations of nodal dynamics and network topol-

ogy, including a number of real-world network structures. Our

method is completely data driven, and we expect it to be ap-

plicable to reverse engineering of complex networks in a vari-

ety of fields, such as biomedical and social sciences where

such systems are ubiquitous.

It is noteworthy that our theory and method are valid

under a number of assumptions/approximations: (i) oscillator

networks that generate continuous time series, (ii) approxi-

mately one-dimensional nodal dynamics, (iii) uniform or

nearly uniform time delays in all node-to-node interactions on

the network, (iv) the system’s remaining in a steady state, (v)

symmetric interactions between nodes, i.e., no directionality.

These assumptions/approximations are necessary for the de-

velopment of the theory and the resulting prediction method.

For instance, the standard linearization can be implemented

only when the system is in a steady state; otherwise if the time

series is obtained from some transient states, the linearization

is no longer valid. The assumption of uniform or nearly uni-

form time delays is needed for decomposing Eq. (2) in terms

of the eigenmodes. In addition, our theory and method at this

stage are not applicable to weighted networks with inhomoge-

neous interaction strengths because of the approximation used

in our derivations. In particular, the disagreement between the

theory and simulations resulting from the approximations will

lead to inaccuracy in the predicted weights and a considerable

overlap of bimodal distribution in such networks. The overlap

renders the difficulty in necessary separation of existent links

from zero elements in the Laplacian matrix, so that both the

link weights and the network structure inferred by the current

method would not be reliable. In this regard, solving the

“inverse” problem in directed, weighted dynamical networks

with non-uniform time delays remains to be a challenging

task. Our method for treating identical nodal dynamics might

be possibly extended to nonidentical cases with small parame-

ter mismatch in the framework of linearized equations, as has
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been explored in synchronization of coupled nonidentical

oscillators.34,35 We hope our work can stimulate further

efforts in articulating more powerful approaches to the inverse

problem in more general networked systems beyond the sim-

plified cases studied in the present work.

ACKNOWLEDGMENTS

J.R. thanks Dr. Gang Yan for useful discussions.

W.X.W. and Y.C.L. are supported by AFOSR under Grant

No. FA9550-10-1-0083. W.X.W. is supported by NSFC

under Grant No. 11105011.

1L. M. Pecora and T. L. Carroll, Phys. Rev. Lett. 80, 2109 (1998); M. Bara-

hona and L. M. Pecora, Phys. Rev. Lett. 89, 054101 (2002).
2M. Bogu~n�a and R. Pastor-Satorras, Phys. Rev. E 66, 047104 (2002).
3T. Nishikawa, A. E. Motter, Y.-C. Lai, and F. C. Hoppensteadt, Phys. Rev.

Lett. 91, 014101 (2003).
4J. G. Restrepo, E. Ott, and B. R. Hunt, Phys. Rev. Lett. 97, 094102 (2006).
5J. Ren and B. Li, Phys. Rev. E 79, 051922 (2009).
6M. K. S. Yeung, J. Tegne�r, and J. J. Collins, Proc. Natl. Acad. Sci. U.S.A.

99, 6163 (2002).
7R. G€utig, A. Aertsen, and S. Rotter, Neural Comput. 14, 121 (2002); G.

Pipa and S. Gr€un, Neurocomputing 52, 31 (2003).
8J. Bongard and H. Lipson, Proc. Natl. Acad. Sci. U.S.A. 104, 9943 (2007).
9M. Timme, Phys. Rev. Lett. 98, 224101 (2007).

10S. G. Shandilya and M. Timme, New J. Phys. 13, 013004 (2011).
11D. Napoletani and T. D. Sauer, Phys. Rev. E 77, 026103 (2008).
12W.-X. Wang, Q. Chen, L. Huang, Y.-C. Lai, and M. A. F. Harrison, Phys.

Rev. E 80, 016116 (2009).
13J. Ren, W.-X. Wang, B. Li, and Y.-C. Lai, Phys. Rev. Lett. 104, 058701

(2010).
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