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We present a general method to analyze multichannel time series that are becoming increasingly

common in many areas of science and engineering. Of particular interest is the degree of synchrony

among various channels, motivated by the recognition that characterization of synchrony in a system

consisting of many interacting components can provide insights into its fundamental dynamics. Often

such a system is complex, high-dimensional, nonlinear, nonstationary, and noisy, rendering unlikely

complete synchronization in which the dynamical variables from individual components approach

each other asymptotically. Nonetheless, a weaker type of synchrony that lasts for a finite amount of

time, namely, phase synchronization, can be expected. Our idea is to calculate the average phase-

synchronization times from all available pairs of channels and then to construct a matrix. Due to

nonlinearity and stochasticity, the matrix is effectively random. Moreover, since the diagonal

elements of the matrix can be arbitrarily large, the matrix can be singular. To overcome this

difficulty, we develop a random-matrix based criterion for proper choosing of the diagonal matrix

elements. Monitoring of the eigenvalues and the determinant provides a powerful way to assess

changes in synchrony. The method is tested using a prototype nonstationary noisy dynamical system,

electroencephalogram (scalp) data from absence seizures for which enhanced cortico-thalamic

synchrony is presumed, and electrocorticogram (intracranial) data from subjects having partial

seizures with secondary generalization for which enhanced local synchrony is similarly presumed.
VC 2011 American Institute of Physics. [doi:10.1063/1.3615642]

An increasingly common practice in many fields of science

and engineering is to record a large amount of data simul-

taneously from an array of sensors (or channels) and then

to analyze the data to probe the dynamics of the underlying

system. In realistic situations, the system contains multiple

interacting components, is nonlinear, nonstationary, and

noisy. Because of these characteristics, traditional methods

such as those based on the Fourier power spectrum are of-

ten ineffective. To develop methods to analyze multichan-

nel data thus becomes an issue of paramount importance

and extremely broad interest. Here we present a method

based on the ideas of stochastic phase synchronization and

random matrices to extract information about the dynami-

cal evolution of the underlying system. Generally, for a

real system in a noisy environment, complete synchroniza-

tion among the multiple signal generators from different

channels is unlikely. Instead, in typical situations where the

generators oscillate in time, a weaker type of synchrony

that lasts for a finite amount of time, namely temporal

phase synchronization, can occur. Our idea is then to cal-

culate the average phase-synchronization times (APSTs)

among all available pairs of channels and then to construct

a matrix. Monitoring of the eigenvalues and the determi-

nant of the synchronization-time matrix provides an effec-

tive way to assess the degree of spatiotemporal synchrony.

Due to the nonlinear and stochastic nature of the underly-

ing system and environment, the synchronization-time

matrices are effectively random matrices. For example,

consider a set of multi-channel electrocorticogram (ECoG)

recordings. During any time window of observation, the

APSTs obtained from all distinct pair of channels are ran-

dom. Thus, for a given time window, the matrix elements

are uncorrelated or weakly correlated and can be effec-

tively regarded as random with respect to each other. We

find that the spectral properties of the synchronization-

time matrix exhibit a great deal of similarity to these of

random matrices whose elements are drawn, for instance,

from a Gaussian orthogonal ensemble. Moreover, any ma-

trix element as a function of time also appears to be highly

random. What we face is thus random evolution of a ran-

dom matrix. Looking for characteristic changes in the vari-

ous properties of the random matrix in time may therefore

provide an avenue to probing the change in the synchrony

of the underlying system with high sensitivity. A technical

issue is the choice of the diagonal elements, which are in

principle, infinite and, for a moving-window application,

they are the size of the window. Consequently, a difficulty

is that the window size is often much larger than the

APST, rendering singular the synchronization-time matrix

and diminishing the matrix’s ability to discern system

changes. We shall demonstrate that the spectral theory of

random matrices can be used to establish a criterion for

choosing the diagonal elements. Using coupled chaotic

oscillators with time-varying coupling, we demonstrate the
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power of our method to detect characteristic changes in

the system. We then apply our method to multichannel

ECoG recordings from epileptic subjects to quantify the

evolution of synchrony before, during, and after seizures,

with the finding that epileptic seizures can be associated

with either enhanced or reduced neuronal synchrony.

I. INTRODUCTION

Multichannel data are becoming quite common in many

fields of science and engineering. Electroencephalogram

(EEG) and electrocorticogram (ECoG) signals in medicine

are one example. Recent years have witnessed an increasing

use of large-scale sensor networks in various civil and

defense applications, which typically generate a large

amount of multivariate data. Examples include monitoring

and collection of information on objects ranging from plank-

ton colonies,1 endangered species,2 soil and air contami-

nants3 to traffic flow,4 biomedical subjects,5 building and

bridges.6 Analysis of data from sensor networks also finds

critical applications in homeland defense, such as detection

of chemical or biological agents and pattern recognition.7

In a typical application, the underlying system generating

the observed data is nonlinear, nonstationary and noisy, and

one goal of data analysis is to detect, characterize, and possi-

bly predict any events that can significantly affect the normal

function of the system. For example, in a sensor network

deployed to collect information about certain plankton colo-

nies,1 it is important to be able to detect, as early as possible,

signatures of any unusual behaviors in the plankton dynamics

so that early warnings can be issued to mitigate or even to

avoid potentially environmentally catastrophic events. In a

large-scale sensor network used to monitor individuals in

military or homeland-defense applications, to be able to

detect abnormal behaviors such as highly synchronous and

organized movements at the earliest possible moment is of

key interest. In clinical practices, detecting and issuing early

warnings for seizures based on EEG or ECoG signals8–10 are

one of the grand goals in medical science. All these call for

an effective method to analyze nonlinear and nonstationary

multichannel data collected from a system in a noisy

environment.

In this paper, we develop a general method to monitor

and characterize synchronous behavior from multichannel

data. To be able to single out any unusual change in synchro-

nization with confidence is important for many practical appli-

cations, as mentioned above. Such a method is also of

fundamental interest at the level of basic science. For instance,

in epilepsy it is believed that neuronal hypersynchrony is asso-

ciated with the generation of seizures.11 A direct consequence

of this assumption is that, during the seizure, the number of

degrees of freedom of the underlying brain dynamical system

may be reduced. Interestingly, the experimental study of syn-

chronization between CA1 pyramidal neurons revealed that

seizure-like events are associated with desynchronization.12 A

reliable method that can effectively monitor the change in the

degree of synchronization can be useful for gaining insight

into a possible resolution of the controversy.

In Sec. II, we outline the main idea of our method

which is based on phase synchronization. We shall justify

why the average phase-synchronization times (APSTs)

between various pairs of channels can be useful for charac-

terizing the overall degree of synchrony in the underlying

dynamical system. All values of the APST obtained from a

window at a given time constitute a matrix, which is singu-

lar because the diagonal elements are not well defined. In

Sec. III, we present a theory based on the spectra of random

matrices to guide proper choosing of the diagonal elements

of the APST matrix. To validate the method, we first con-

struct a model of a network of coupled chaotic oscillators

under noise for which the phase-synchronization dynamics

is known, and test our method in this controlled setting

(Sec. IV). We then apply our method to EEG data from sub-

jects with absence seizures (3 Hz spike wave discharges),

for which synchrony is presumed (Sec. V). Results from

these tests indicate that our method is effective for monitor-

ing and quantifying synchronization from multichannel

data. As a step toward resolving the fundamental issue of

whether epileptic seizures are associated with hypersyn-

chrony or desynchronization, we apply the method to multi-

channel ECoG data from subjects with intracranial

generalized seizures. Our finding is that, at systems level,

whether epileptic seizures are accompanied by enhanced or

reduced synchrony is highly case-dependent. In particular,

while there are cases where the overall degree of synchroni-

zation tends to increase during the seizure, there are rela-

tively more cases where synchronization decreases during

the seizure, a finding consistent with the result in Ref. 12.

This means that, future monitoring and possibly therapeutic

technique for epileptic seizures based on synchronization

are likely to be highly individualized. (A brief account of

the part of these results was published in Ref. 21). Several

technical issues such as the validity of the random-matrix

hypothesis and performance comparison of our method with

existing methods are addressed in Sec. VI. Finally, brief

conclusions are presented in Sec. VII.

II. MATRIX OF AVERAGE PHASE-SYNCHRONIZATION
TIME

The nonlinear dynamical system from which multichan-

nel data are recorded can contain many interacting compo-

nents. The recordings are usually from signals to which quite

different combinations of the intrinsic dynamical variables of

the underlying system contributed. For realistic systems in

the presence of noise, it is often useful to explore

weaker forms of synchronization, such as phase synchroniza-

tion.13–15,17 For any multichannel time series, a reasonable

assumption is that they are oscillatory.18 For an oscillatory

signal, in principle a phase variable can be defined. Denote

the phase variable of data from channel i and j by /i tð Þ and

/j tð Þ, respectively. There is phase synchronization between

the two channels if /i tð Þ � /j tð Þ
�� �� < C,13 where C is a con-

stant of the order of 2p. Due to noise, a phase-synchronized

state so defined can last for only a finite amount of time. Thus

a practically useful quantity to characterize the degree of

phase synchronization is APST,19,20 which can be calculated
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by using a large time interval of observation during which a

number of 2p changes in the phase difference occur, as

shown in Fig. 1. In a moving-window analysis of nonstation-

ary data, the time interval is the size of the window. As the

system evolves, i.e., as the “window moves,” the APST can

change. Let sij(t) be this time between channels i and j at

time t, where t is the time at the end of a window. Suppose

there are N channels in total. To take full advantage of all

available data, we can define an N�N matrix (denoted by C)

of APSTs for all pairs of channels. The matrix, by construc-

tion, is symmetric, but the choice of the diagonal elements

becomes a critical issue. Any diagonal matrix element char-

acterizes the synchronization between a channel and itself, so

the synchronization time is infinite. In a moving window of

finite length, the time is simply the full length of the window.

A difficulty with this simple choice is that the window size is

often much larger than the APST. As a result, the matrix can

become quite singular, hampering further analysis and the

matrix’s ability to discern system changes.

Our main idea is that, since our task is to probe system

changes through the synchronization-time matrix constructed

from noisy time series, the “condition” of the matrix should

not depend too sensitively on the variations of the diagonal

matrix elements. However, the condition should not be totally

insensitive to the variations either, as required by the task.

Thus, a criterion is needed for properly choosing the diagonal

elements. We have developed a theoretical approach to resolv-

ing this issue based on random matrices (see Sec. III).

It is useful to clarify the relation between our approach

and several previous matrix-based methods to detect global

changes in synchronization.22–26 The early proposal by

Wackermann22 was to examine the Shannon information en-

tropy associated with the spectrum of eigenvalues of the

cross-correlation matrix. The method by Allefeld and

Kurths23 was based on a matrix whose elements are statistics

of various phase differences, which is capable of detecting

clusters of phase-synchronization. Bialonski and Lehnertz

proposed to detect phase-synchronization clusters from mul-

tivariate time series by using the phase-coherence matrix,24 a

matrix whose entries are the values of the mean phase coher-

ence between pairs of time series. They applied the method

to EEG recordings from epilepsy patients. The recent method

by Schindler et al.25 centered about computing the largest

and smallest eigenvalues of the zero-lag (or equal time) cor-

relation matrix, and the method was demonstrated to be able

to detect, for instance, statistically significant changes in the

correlation structure of focal onset seizures. There was also a

method by Müller et al. on estimating the strength of genuine

and random correlations in non-stationary multivariate time

series.27 In all these methods, the matrix elements are quanti-

ties derived from some types of correlation measures that

typically assume values between zero and one. Our idea of

using the APST is motivated by the fact that it can in general

be significantly more sensitive to changes in the degree of

synchronization than correlations. In particular, as the system

becomes more phase coherent, the APST can increase signifi-

cantly, typically over many orders of magnitude for noisy dy-

namical systems.19 As we will show in this paper, the

synchronization-time matrix, when properly constructed, can

indeed be extremely responsive to changes in the degree of

synchronization of the underlying noisy system.

III. USE OF RANDOM-MATRIX THEORY TO CHOOSE
DIAGONAL ELEMENTS OF SYNCHRONIZATION-TIME
MATRIX

We have seen that to properly choose the diagonal ele-

ments of the synchronization-time matrix C is the key to our

method. Here we present a sensitivity analysis based on ran-

dom-matrix theory to find an optimal set of values for the di-

agonal elements while maximizing sensitivity to changes in

synchrony.

Multichannel data from a real system are stochastic, as

they are corrupted by both internal (e.g., dynamic) and exter-

nal (e.g., measurement) noises. The APST between any pair

of channels can thus be regarded as a random variable, and C
is effectively a random matrix. To gain insight we generate

an ensemble of random matrices, with non-diagonal ele-

ments drawn from a Gaussian distribution. The diagonal ele-

ment a is varied systematically. The “condition” of the

matrix can be quantified by the conditional number C of the

matrix, which is the ratio between the largest and the small-

est eigenvalues. For a fixed value of a, we can use the en-

semble of random matrices to calculate the average value

Ch i and its variance (or standard deviation rC). A large var-

iance relative to Ch i is undesirable, as the underlying matrix

would be highly sensitive to fluctuations of its elements. For

nonstationary and noisy data, such a high sensitivity means

that various characteristics of the matrix can exhibit large

fluctuations with respect to the moving window. We are thus

led to examine, analytically, the ratio RC � rC= Ch i as a

function of a.

We shall use the random-matrix theory to analyze the

statistical behavior of the ratio RC, for the following two

reasons: (1) the matrix elements in our case (average phase-

synchronization times) are random from window to window

and (2) the matrix is symmetric as the APST must be the

same between two channels, regardless of the direction. For

an N�N symmetric random matrix, let k1� k2�…� kN be

the eigenvalue spectrum. A general result from random-ma-

trix theory28 is that the distribution of ki’s for i¼ 1,…, N� 1

falls on a semicircle while kN is outside in the limit N!1,

as shown schematically in Fig. 2. Note that, the semicircle

law holds generally for symmetrical random matrices, which

include those from Gaussian orthogonal and unitary ensem-

bles.29 Consider first the situation where all diagonal ele-

ments are zero (a non-zero value a= 0 merely shifts all

eigenvalues by the same amount). We have

FIG. 1. (Color online) Schematic illustration of the definition of APST,

where D/ tð Þ is the phase difference between signals from an arbitrary pair

of channels. Each Dtn (n¼ 1,…) represents a time interval, where D/
remains bounded within 2p. The APST is s � limn!1ð1=nÞ

Pn
i¼1 Dtn.
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0 ¼
XN

i¼1

ki ¼
XN�1

i¼1

ki þ kN � �ðN � 1ÞDþ kN;

where �D is the center of the semicircle. We obtain

D ¼ kN=ðN � 1Þ: (1)

Using bar to denote the ensemble average, we have

�kN�1 � �k1 ¼ 4rC

ffiffiffiffi
N
p

;

where the quantity rC is given by

rC �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hs2

iji � hsiji2
q

for i= j. Using the approximation

kN ¼ maxi

 XN

j¼1

sij

!
� ðN � 1Þhsiji;

we obtain

D ¼ hsiji: (2)

From the semicircle distribution, we then have

�k1 ¼ �2rC

ffiffiffiffi
N
p
� hsiji: (3)

Now consider the general case of a= 0. The condition num-

ber is given by

C ¼ aþ kN

aþ k1

¼ aþ kN þ DkN

aþ k1 þ Dk1

� aþ kN

aþ k1

�
1� Dk1

aþ k1

þ ðDk1Þ2

ðaþ k1Þ2
�
: (4)

We thus have

hCi � aþ �kN

aþ �k1

�
1þ

r2
k1

ðaþ �k1Þ2
�
� aþ �kN

aþ �k1

(5)

and

ðhCiÞ2 �
�

aþ �kN

aþ �k1

�2�
1þ 2

r2
k1

ðaþ �k1Þ2
�
; (6)

for jaþ k1j � rk1
. The second moment of C can be calcu-

lated, as follows:

C2 ¼ ðaþ kNÞ2

ðaþ k1þDk1Þ2
¼ ðaþ kNÞ2

ðaþ k1Þ2
�

1� 2Dk1

aþ k1

þ 3ðDk1Þ2

ðaþ k1Þ2
�

This leads to

hC2i ¼ ðaþ kNÞ2

ðaþ k1Þ2
�

1þ
3r2

k1

ðaþ k1Þ2
�
:

To first order in rk1
=jaþ k1j, we obtain

r2
C ¼ hC2i � hCi2 � ðaþ

�kNÞ2

ðaþ �k1Þ2
r2

k1

ðaþ �k1Þ2
� hCi2

r2
k1

ðaþ �k1Þ2
:

(7)

This yields

RC �
rk1

aþ �k1

: (8)

We see that RC diverges for

a ¼ ��k1 ¼ 2rC

ffiffiffiffi
N
p
þ hsiji; for i 6¼ j: (9)

A representative example of numerically obtained behavior

of RC(a) is shown in Fig. 3 (open circles), where N¼ 100,

sij�N(1, 0.2) (rather arbitrarily), and 106 matrix realizations

are used. The solid curve is from the theoretical prediction

Eq. (8), we observe a very good agreement.

We thus see that, when choosing a proper value a for the

diagonal elements, the singular region about

a ¼ 2rC

ffiffiffiffi
N
p
þ hsiji should be avoided. For instance, if

rC

ffiffiffiffi
N
p
	 hsiji, one can choose a several times larger than

sij

� 	
, the average value of all off-diagonal elements. In this

way the variance of the “condition” of the matrix is small so

that the fluctuations of the matrix elements due to noise can be

suppressed but, the variance is still appreciable so that the ma-

trix may capture characteristic changes in the underlying

system.

The existence of the singular behavior in RC in fact

makes the criterion to choose the diagonal matrix elements

less empirical: the singular region should be avoided. While

FIG. 2. Wigner’s semicircle distribution for eigenvalues of random matrices

of zero diagonal elements.

FIG. 3. (Color online) For an ensemble of 106, 100� 100 random matrices,

ratio RC � rC= Ch i versus a. Open circles are results from direct numerical

computation, and the solid curve is from theoretical prediction Eq. (8).
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there is still quite a bit of freedom (or uncertainty) in choos-

ing the diagonal elements, the criterion leads to values of the

elements that are quite reasonable, as will be verified by con-

trolled numerical experiments in Sec. IV.

It is useful to state one fact that will be useful to under-

stand numerical results, that is, for a random matrix, the

value of the determinant can be significantly enhanced as the

mean value of the matrix elements is increased. To be con-

crete, we consider the following 3� 3 symmetric random

matrix,

A ¼
a�a a1 a2

a1 a�a a3

a2 a3 a�a

0
@

1
A;

where a1,2,3> 0 are random numbers, �a is their mean, and

a� 1 is the enhancement factor chosen according to our cri-

terion for diagonal elements. The determinant of A can be

written as

detðAÞ ¼ a�a½ða2 � 3Þð�aÞ2 � 3r2
 þ 2a1a2a3; (10)

where r2 ¼ ð1=3Þ
P3

i¼1 ðai � �aÞ2 is the variance of the ma-

trix element. In general, r and �a are of the same order of

magnitude. Thus for a� 1 we have detðAÞ � ð�aÞ3. Consider

a similar matrix with elements b1,2,3 and �b < �a, We have

detðAÞ
detðBÞ �

�
�a
�b

�3

� 1:

For N�N matrices where N> 3, the enhancement can be

quite significant even when there is only a small increase in

the mean value of the matrix elements. Indeed, as we shall see

below, there can be order-of-magnitude changes in the deter-

minant for various examples. Thus, our approach to choosing

the diagonal elements can be regarded as a strategy to signifi-

cantly magnify the overall degree of synchronization among

multiple-channel signals, which makes our method at once

sensitive and also robust to variation in synchrony.

IV. CONTROL STUDY: NETWORK OF COUPLED
CHAOTIC OSCILLATORS

We consider a prototypical model of nonstationary dy-

namical systems,20 a network of coupled chaotic Rössler

oscillators, to validate the method of APST matrix. The net-

work is described by

dxi

dt
¼ �xiyi � zi þ KðtÞðxiþ1 þ xi�1 � 2xiÞ;

dyi

dt
¼ xixi þ 0:165yi þ eniðtÞ;

dzi

dt
¼ 0:2þ ðxi � 100Þzi;

(11)

for i¼ 1,…, N (with periodic boundary conditions), where xi

is the frequency of the ith oscillator drawn uniformly from

the interval [x0�Dx=2, x0þDx=2]. The nonstationary na-

ture of the system is manifested by the time-dependent cou-

pling parameter K(t). The terms eni tð Þ represent noise, where

e is the noise amplitude and ni(t) are independent Gaussian

random processes of zero mean and unit variance. Due to the

frequency spread among the oscillators, phase synchroniza-

tion occurs for K(t)>Kc � Dx. Given a long experimental

time interval T, the coupling parameter K(t) is varied in the

range [0, Km], where Km>Kc, according to the following

piecewise linear rule: K(t)¼ 2Kmt=T for 0� t< T=2 and

K(t)¼ 2Km(1� t=T) for T=2� t< T, as shown in Fig. 4(a).

For the chaotic Rössler attractor from each oscillator, the

phase variable /i can be conveniently defined as

/i tð Þ ¼ tan�1 yi tð Þ=xi tð Þ½ 
. In simulations we choose x0¼ 1.0

and Dx¼ 0.1, and set T¼ 105 (corresponding to about

17 000 cycles of oscillations). The size of the moving win-

dow is chosen to be DT¼ 500, which contains about 85

cycles of oscillation. In a given window, all off-diagonal ma-

trix elements are normalized by their maximal value.

In the phase-synchronized regime, the value of sij is the

moving-window size DT, so all matrix elements assume the

same value, causing the matrix to be singular. To overcome

this difficulty, numerically we allow the elements to fluctuate

randomly in the interval [DT, 1.1DT] (somewhat arbitrary). In

each window, after all off-diagonal elements are obtained, we

calculate their average sh i. The diagonal elements are chosen

to be 5 sh i. We then calculate all the eigenvalues of the matrix

and its determinant. For relatively low levels of noise (e.g.,

e ¼ 0:2), the individual matrix elements, the eigenvalues, and

the determinant all are sensitive to phase synchronization.

However, we observe that the determinant exhibits among

those measures the highest degree of sensitivity, in that its val-

ues can change over several orders of magnitude as the system

evolves from a nonsynchronous to synchronous state, as

shown in Fig. 4. For larger noise amplitude, when the syn-

chronization-tracking ability of any individual matrix element

deteriorates or is lost, the determinant still stands out as a suit-

able measure capable of quantitatively assessing the system’s

evolution toward phase synchronization and for distinguishing

between phase-synchronized and non-synchronized state, as

shown in Fig. 5.

FIG. 4. For a network of 20 locally coupled chaotic Rössler oscillators for

noise amplitude e ¼ 0:2, (a) time-dependent coupling parameter, (b)–(d)

evolutions of a typical matrix element, the largest eigenvalue, and lnDet,

natural log of the determinant.
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We emphasize that the network model30 Eq. (11) is used

solely for the purpose of control study, i.e., to test if our ma-

trix C would capture changes in the degree of phase synchro-

nization, which are known a priori. There is no reason other

than convenience to choose coupled chaotic oscillators. We

also emphasize that the model should in no way be consid-

ered as being relevant to brain networks where the dynamics

and the topology can be extremely complex.

V. APPLICATION TO EPILEPTIC EEG AND ECOG
BRAIN SIGNALS

A. Background

Seizure prediction, early recognition, and blockage of

seizures are considered by the membership of the American

Epilepsy Society (AES) as the top research priority among

fifteen listed (AEP News, Fall 1996). To achieve these goals

a good understanding of the mechanism and dynamics of

seizures is necessary. A wide belief among clinical epileptol-

ogists is that seizures are generally caused by increased

neuronal synchrony in the brain. From EEG or ECoG record-

ings, seizures are typically associated with episodes of high-

amplitude rhythmical activities which, naively, may be

assumed as being caused by hypersynchrony in the underly-

ing neuronal aggregates. In the classical textbook on neural

science,11 for example, it is stated that “the phases in the de-

velopment of a partial seizure can be arbitrarily divided into

the interictal period, followed by neuronal synchronization,

seizure spread, and finally secondary generalization.” For

generalized seizures, hypersynchronization of cortico-tha-

lamic cells is invoked as the main responsible mechanism.

The plausible cause for neuronal hypersynchronization can

be attributed to the breakdown of inhibition.11 That seizures

are associated with neuronal hypersynchronization has

become the standard dogma in epilepsy.

Interestingly, an experimental study revealed that

“seizure-like” events are associated with desynchroniza-

tion.12 Netoff and Schiff used the dual-cell patch-clamp tech-

nique to study synchronization between CA1 pyramidal

neurons in the hippocampal slice. They found that, while

brief bursts in 4-amino-pyridine (4AP) are highly synchro-

nous events, during seizure-like events the degree of syn-

chronization is actually decreased compared to those bursts

and to baseline interictal periods. In fact, synchronization

appears to increase as seizures turn off. Since seizures can be

regarded as sustained neuronal activity, the authors specu-

lated that “asynchrony is necessary to maintain a high level

of activity in neuronal networks for sustained periods of

time” and “synchrony may disrupt such activity,” as sug-

gested by the theoretical work of Gutkin et al.31

To understand the interplay between neuronal synchrony

and the occurrence of seizures is fundamental to advancing

epilepsy. While the enhanced amplitude and rhythmicity seen

during seizures may imply a kind of enhanced synchronous

neuronal activities in some local region which contribute to

each individual EEG or ECoG channel, whether global syn-

chronization among different regions of the brain can occur is

unknown. Our phase-synchronization and random-matrix

based method can be used to gain insights into this issue.

B. Results

We apply the synchronization-time matrix to EEG and

ECoG seizure time series. The data were collected from

patients with pharmaco-resistant seizures, who underwent

evaluation for epilepsy surgery at the University of Kansas

Comprehensive Epilepsy Center. The EEG data were col-

lected using the standard methodology (10–20 system),11 and

the ECoG data are recorded using multiple contact electrodes

(Ad-Tech). The signal was sampled at the rate of 240 Hz,

amplified to the dynamic range of 6300 lV, and digitized to

10 bits precision with 0.59 lV=bit using commercially avail-

able devices (Nicolet, Madison WI). The recordings were

deemed of good technical quality and suitable for analysis. To

minimize noise, we use differential signals from pairs of chan-

nels with no common reference (i.e., the difference between

channels i and j, where i and j are used only once). The data

analyzed in this paper consist of multichannel brain signal

recordings from six subjects. In each of the first four subjects,

we analyze five 10-min segments of ECoG, each containing a

seizure (five seizures per subject) and recorded from the

amygdala-hypocampal and frontal regions. All seizures for

these subjects were of mesial temporal origin. In the fifth sub-

ject, we analyze three 10-min scalp EEG recordings, each

containing several absence (spike-slow wave complexes) seiz-

ures separated by background EEG. For the sixth subject, in-

tracranial ECoG was obtained in a 10 min segment containing

a secondarily generalized seizure. Twenty one contacts in the

case of scalp data and between 48 and 52 contacts in the cases

of intracranial data were recorded and used in the analysis.

Both raw data and low-pass filtered data (in the frequency

band [0,60] Hz) were tested, but the results from the synchro-

nization-time matrices are essentially the same. A moving

window is chosen to contain between 210 and 215 data points

(corresponding to 4.3 s and 136.5 s, respectively). The time

interval between two adjacent moving windows is half

second.

FIG. 5. For a network of 20 locally coupled chaotic Rössler oscillators for

noise amplitude e ¼ 1:0, (a)–(c) evolutions of a typical matrix element, of

the largest eigenvalue, and of ln Det, natural log of the determinant.

033108-6 I. Osorio and Y.-C. Lai Chaos 21, 033108 (2011)

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://cha.aip.org/cha/copyright.jsp



To calculate the phase for signal xj(t) from the jth chan-

nel, we apply the fifth-order Butterworth filter to obtain yj(t)
that corresponds to a proper rotation. We then perform the

Hilbert transform,

H½yjðtÞ
 ¼
1

p
P


ð1
�1

yjðt0Þ
t� t0

dt0
�
; (12)

where “P �f g” stands for the Cauchy principal value of the in-

tegral. From H[yj(t)], we construct the following complex

analytic signal:

wjðtÞ ¼ yjðtÞ þ iH½yjðtÞ
 ¼ AjðtÞ exp½i/jðtÞ
; j ¼ 1;…; 9;

(13)

which defines the phase variables /j tð Þ (j¼ 1,…,9).

Absence seizures32 are regarded as one of the best

examples of enhanced neuronal synchrony. They can thus be

used as more realistic, clinical control to validate our

method. Figure 6 shows a representative example, where (a)

is the raw EEG differential signal from two channels (#7 and

#8 (Ref. 11)) containing three absence seizures identified by

three pairs of vertical lines, (b) and (c) are the time evolu-

tions of the determinant of the APST matrix on a linear and

semi-logarithmic scale, respectively. We see that the deter-

minant (Det) shows large increases with each seizure, indi-

cating a high degree of sensitivity to increase in synchrony.

The variation of the degree of synchrony can be better seen

from the time evolution of ln (Det), as shown in Fig. 6(c).

Results using a different scheme of montage are shown in

Fig. 7. These results demonstrate that the matrix is capable

of detecting and characterizing changes in synchronization

associated with seizures.

Note that relatively large fluctuations in ln (Det) can

occur throughout the time interval, such as the large increase

in ln (Det) at the beginning of Fig. 6(c). While the origin of

such large fluctuations could not be identified, we do observe

that, when seizures occur, the corresponding variations in the

determinant tend to be larger than all these fluctuations.

Partial seizures with secondary generalization start in

a brain region and eventually spread to the entire brain.

Figure 8 shows one representative example, where (a) is a

differential ECoG signal with seizure onset around t¼ 300

s, (b) and (c) are the evolutions of Det and ln Det over a

10-min period. A large increase in synchrony is seen in this

seizure, mainly when it becomes secondarily generalized.

Figure 8(c) also shows an interesting phenomenon: the

degree of synchronization decreases dramatically before

the termination of the seizure, falling markedly below

interictal values, and recovering slowly to pre-seizure

levels.

The changes in the degree and direction of the synchro-

nization measure in the seizure in Fig. 8 were not uniformly

found in other seizures from different subjects. Figures

9(a)–(h) show a representative ECoG signal and the time

evolution of lnDet for four seizures from three subjects,

where the dashed lines indicate the clinical onset of seiz-

ures. We observe that, there are cases where ln Det tends to

decrease toward the ictal phase, indicating a global

decrease in the degree of phase synchronization. The mini-

mal value of ln Det is usually achieved in the ictal state.

While an overall decrease of the synchronization level

FIG. 6. (Color online) For the absence seizure EEG data (x-axis: time in

seconds), (a) a differential data segment containing three seizures, (b) and

(c) time evolutions of Det (determinant of the APST matrix) and ln Det (nat-

ural log of the determinant), respectively. The size of the moving time win-

dow is approximately 8.5 s and the montage consists of 8 pairs of

differential channels (2–3, 4–5, 1–11, 12–13, 7–8, 9–10, 6–14, 15–16).

FIG. 7. (Color online) For the absence seizure EEG data (x-axis: time in

seconds), (a) a differential data segment containing three spike-slow wave

seizures, (b) and (c) time evolutions of Det and of ln Det (natural log of the

determinant), respectively. The montage consists of 5 pairs of differential

channels (1–6, 2–7, 3–8, 4–9, 5–10).
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during seizure appears to be common, there are also cases

where the opposite occurs. These mixed results indicate

that, at a systems level, whether epileptic seizures are asso-

ciated with enhanced or reduced synchrony can be highly

case-dependent.

VI. ISSUES

A. Random-matrix characteristics

In developing our criterion for choosing the diagonal ele-

ments of the APST matrix, we invoke the random-matrix

assumption and make use of their eigenvalue spectra. A key

property is that the eigenvalues, except for the largest one, fol-

low Wigner’s semicircle distribution. (The largest eigenvalue

is typically located far away from the rest of the eigenvalues.)

Do phase-synchronization time matrices from epileptic ECoG

signals exhibit these random-matrix characteristics?

The typical matrix size for epileptic ECoG signals in our

study is only 25� 25. To overcome this difficulty, we exam-

ine the time evolution of the eigenvalue spectrum. Figure 10

shows, for the secondarily generalized seizure event in Fig. 8,

the evolution of all 25 eigenvalues. We observe that the larg-

est eigenvalue k25 is indeed far away from the rest of the spec-

trum. For k1–24, there is a spread, but there is a relatively high

concentration of eigenvalues about the middle of the spread,

signifying a semicircle-like distribution. These suggest that

the random-matrix hypothesis is applicable to multi-channel

epileptic ECoG signals.

B. Heuristic understanding of the evolution of
determinant

To understand why the determinant of the APST ma-

trix can show significant changes with a seizure, we take as

example the case of the secondarily generalized seizure

shown in Fig. 8. For this case, there are 25 independent dif-

ferential signals, so that number of distinct matrix elements

is 300. Figures 11(a)–(d) show the histograms of these ele-

ments corresponding to a time in (a) interictal state, (b)

ictal state where the determinant is large, (c) ictal state

with a small determinant, and (d) postictal state. We

observe that, as the ictal state is approached, the histogram

shifts toward the right [Figs. 11(a) and 11(b)], indicating a

larger mean value of the APST in the ictal state. The histo-

gram then shifts toward the left, as shown in Fig. 11(c),

giving rise to smaller mean value of the APST. This leads

to the dip in the determinant observed in Fig. 8(c). In the

postictal state, the histogram moves gradually toward the

location in the interictal state, as can be seen by comparing

Fig. 11(d) with Fig. 11(a). The general observation is that

the value of the determinant can be significantly enhanced

as the mean value of the matrix elements is increased, as

argued in Sec. III.

C. Method of phase-coherence matrix

As a comparison study, we apply the method of phase-

coherence matrix24 to our model system Eq. (11) and ECoG

signals. The method is based on calculating the mean phase

coherence16,17 and is quite representative of methods utilizing

coherence or correlation measures of phase variables.22–25

For multi-channel signals xj(t) (j¼ 1,…,K), assuming M
measurements in the moving window, one can define the fol-

lowing measure of mean phase coherence between channels j
and k:

FIG. 8. (Color online) (a) ECoG signal from a secondarily generalized sei-

zure event (x-axis: time in seconds). (b) and (c) Time evolutions of Det and

ln Det (natural log of the determinant), respectively.

FIG. 9. (Color online) Results of four secondarily generalized seizure events

from three subjects. Each pair of panels corresponds to one event. For exam-

ple, (a) is the ECoG signal containing one seizure from the first subject and

(b) is the corresponding time evolution of ln Det (natural log of the determi-

nant). The pairs (c,d), (e,f), and (g,h) have the same meaning.
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Rjk ¼
���� 1

M

XM

m¼1

eið/jm�/kmÞ
����; (14)

where /jm is the phase of xj(t) at the mth measurement. If the

phases are fully synchronized, we have Rjk¼ 1. In general,

we have 0�Rjk� 1. The quantities Rjk thus represent a

phase-coherence matrix R, where the diagonal elements are

naturally Rjj¼ 1 for j¼ 1,…,K.

Figures 12(a)–12(c) show a representative result of apply-

ing the matrix R to the model system Eq. (11), where (a)-(c)

are the time traces of an individual matrix element, the maxi-

mum eigenvalue, and the determinant, respectively. The noise

amplitude is e ¼ 1:0 and the region between the vertical

dashed lines denotes the time interval during which the oscil-

lator network is phase synchronized. We see that, while the

FIG. 10. (Color online) For the secondarily generalized seizure event in

Fig. 9, time evolution of the eigenvalue spectrum of the APST matrix.

FIG. 11. (Color online) For the secondarily generalized seizure event in

Fig. 8, histograms of elements of the APST matrix for four instants of time: (a)

interictal state, (b) ictal state with determinant near the peak value in Fig. 8, (c)

ictal state with determinant in the dip in Fig. 8, and (d) postictal state.

FIG. 12. (Color online) For the oscillator network Eq. (11), performance of

the phase-coherence matrix R. (a) and (c) Time evolution of a typical matrix

element, the largest eigenvalue, and ln Det. Note that the directions of

change in ln Det (natural log of the determinant) are opposite to those in

Fig. 5. Model parameters are the same as in Fig. 5.

FIG. 13. (Color online) (a) ECoG signal from a secondarily generalized sei-

zure event. (b) Time evolution of Det of phase coherence matrix.
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matrix can still capture the evolution toward phase synchroni-

zation, its ability to detect the onset of synchronization is

degraded as the determinant appears to vary continuously

through the onset point [e.g., comparing Fig. 12(c) with

Fig. 5(c)]. Similar behavior occurs when the matrix is applied

to EEG or ECoG signals. For instance, Fig. 13(b) shows for

the same ECoG signal as in Fig. 8, the time evolutions of Det.

Variations of the matrix determinant over the seizure event

are present, but they are insignificant as compared with those

in Fig. 8. These results indicate that that APST matrix has a

much higher sensitivity to seizure than the phase-coherence

matrix.

VII. CONCLUSION

Epileptic seizures affect about 1% of the population in

industrialized countries. Seizure prediction is one of the

most important but challenging problems in biomedical sci-

ences. It was believed that neuronal hypersynchrony is asso-

ciated with the generation of seizures. However, an

experimental study revealed that seizure-like events are asso-

ciated with desynchronization. To resolve the controversy is

fundamental to epilepsy. Since multichannel EEG or ECoG

recordings are now readily available from laboratory or clini-

cal studies of epilepsy, a method sensitive to variations of

synchrony is desirable.

We have developed a general method to analyze syn-

chrony from multichannel time series, based on a matrix

whose elements are various times for pairs of channels to

maintain temporal synchronization in their phases. Monitor-

ing of the properties of the matrix provides an effective way

to assess changes in synchrony. The method is validated by a

control model of coupled nonlinear oscillators and tested

using clinical EEG and ECoG data. One finding is that, at a

systems level, whether epileptic seizures are accompanied

by enhanced or reduced synchrony is highly case-dependent.

Comparing with previous methods,22–25 our synchroni-

zation-time matrix appears to be much more sensitive to

changes in the system that one aims to characterize. For ab-

sence seizures where there is clinical evidence of enhanced

synchrony, our method yields result that is not only consist-

ent with the evidence, but also able to capture the evolution

of the degree of synchrony in a quantitative manner. For in-

tracranial secondarily generalized seizures, our finding that

synchrony can be either reduced or enhanced emphasizes the

necessity of probing and analyzing this brain disease from a

more individualized aspect. Our synchronization-time matrix

based method is general and applicable to multichannel,

noisy, nonlinear and nonstationary time series from other

fields.
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