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We investigate the dynamics of light rays in two classes of optical metamaterial systems: (1) time-

dependent system with a volcano-shaped, inhomogeneous and isotropic refractive-index distribution,

subject to external electromagnetic perturbations and (2) time-independent system consisting of

three overlapping or non-overlapping refractive-index distributions. Utilizing a mechanical-optical

analogy and coordinate transformation, the wave-propagation problem governed by the Maxwell’s

equations can be modeled by a set of ordinary differential equations for light rays. We find that

transient chaotic dynamics, hyperbolic or nonhyperbolic, are common in optical metamaterial

systems. Due to the analogy between light-ray dynamics in metamaterials and the motion of light in

matter as described by general relativity, our results reinforce the recent idea that chaos in

gravitational systems can be observed and studied in laboratory experiments. VC 2011 American
Institute of Physics. [doi:10.1063/1.3623436]

Optical metamaterials, also referred to as negative refrac-

tive-index materials, are artificially designed materials

with unconventional properties that natural materials do

not typically possess. Although the concept of metamateri-

als was proposed theoretically in 1968, explosive growth in

research occurred only about a decade ago, where now the

area has become one of the most active, interdisciplinary

fields. Significant applications include superlens overcom-

ing the optical diffraction limit and electromagnetically in-

visible materials. Quite recently, a correspondence of

light-ray dynamics in optical metamaterials to general

gravitational systems was suggested and signatures of

chaos were revealed, opening the avenue to explore funda-

mental phenomena in gravitational physics, which other-

wise would not have been possible to be tested, in

laboratory experiments. In this paper, we further probe

chaos in metamaterial systems. Through systematic com-

putations of light-ray trajectories in two classes of systems,

one time-dependent and another time-independent, we es-

tablish the existence of transient chaotic dynamics, both

hyperbolic and nonhyperbolic, in these systems. In light of

the analogy between metamaterial optics and gravitational

physics, our results suggest that transient chaos can be

quite common in gravitational systems obeying Einstein’s

general relativity.

I. INTRODUCTION

Metamaterials are artificially designed, engineered, and

fabricated structures possessing special (unconventional)

properties that may not be readily available from natural

materials. The last decade has witnessed an explosive growth

of research on metamaterials in terms of both fundamental

physics and potential applications. A primary research inter-

est in metamaterials lies in their electromagnetic and optical

properties. In this regard, negative refractive-index materi-

als,1–6 also referred to as left-handed media, are one of the

most extensively investigated types of metamaterials. First

conceived theoretically by Veselago7 in 1968, this extraordi-

nary material with both negative effective permittivity and

permeability exhibited a remarkable potential for a variety of

applications. For example, superlens8 made of doubly nega-

tive metamaterials9 can overcome the diffraction limit for

conventional lenses and make subwavelength imaging possi-

ble. Another important application is invisible materials,

where special cloak was realized in recent experiments for

electromagnetic wave at optical frequencies,10,11

Quite recently, a link between metamaterial optics and

celestial mechanics was proposed,12 making it possible to

investigate an array of gravitational phenomena predicted by

Einstein’s general relativity using optical analogies in the

laboratory. For example, in general relativity, light can be

trapped in some specific region in the space where a massive

gravitational body exists, but such a trapping can be realized

using metamaterials, generating an artificial "black hole" in

the laboratory.12 From this analogy, insights into the design

of novel optical cavities and photon traps can be gained,

with applications in areas such as micro-cavity lasers.

In this paper, we first study the light-ray dynamics in a

class of inhomogeneous, isotropic optical metamaterials in

the presence of a periodic, external electromagnetic pertur-

bation. The driving, analogous to, e.g., a third-body perturba-

tion in classical mechanics, provides a way to break the

stable periodic orbits of light ray in the corresponding static

material, making complex dynamics possible. Indeed, Ref.

12 predicted the appearance of chaotic dynamics in this class

of systems. We then study a class of time-independent meta-

material systems with overlapping or non-overlapping re-

fractive-index distributions. For both time-dependent and

time-independent systems, we find that transient chaotic dy-

namics (or chaotic scattering dynamics)13–17 of light rays are

common. This means that, two incident light rays differing
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only slightly in initial conditions can exit the metamaterial

system through drastically different states.18 Besides provid-

ing direct evidence for transient chaos, we shall establish

through computations the dynamical nature of the process,

hyperbolic or nonhyperbolic (to be explained below). Due to

the analogy between metamaterial optics and gravitational

physics, our results suggest that transient chaos can be quite

common in gravitational systems obeying Einstein’s general

relativity. In addition, since ray dynamics can be experimen-

tally observed and investigated in optical metamaterials, our

results reinforce the idea that chaotic dynamics in relativistic

gravitational systems can be visualized and studied in labora-

tory experiments.19

In Sec. II, we describe the equations of motion govern-

ing the dynamical behavior of light rays in optical metamate-

rials. In Sec. III, we demonstrate transient chaos in

metamaterial systems with time-dependent refractive index.

In Sec. IV, we present evidence of transient chaos in time-in-

dependent systems. A brief conclusion is offered in Sec. V.

II. EQUATIONS OF MOTION

In general relativity, the geometry of the space is

described by the four-dimensional space-time metric gl�(x,

t). The propagation of light rays in this empty but curved

spacetime, which follows the natural geodesic lines, is gov-

erned by the Lagrangian

L ¼ 1

2
½g00ðx; tÞ _t2 � gijðx; tÞ _xi _xj�: (1)

Here, the Einstein summation convention is used for spatial

coordinate indices i and j, and the speed of light is normal-

ized to c¼ 1. To relate the light propagation in curved space

to that in the composite material, one needs to perform coor-

dinate transformations20 to Maxwell’s equations. For iso-

tropic media, an effective refraction index can be defined as

n ¼
ffiffiffiffiffiffiffiffiffiffiffi
g=g00

p
, where g¼ gii (i¼ 1, 2, and 3). Here we con-

sider media with centro-symmetric effective refractive index

n, and light-ray trajectories in the system can be further con-

fined to the plane r¼ (x, y) due to the nature of planar

motions of light rays in a centrally symmetric potential, as

an orthogonal transformation always exists which brings the

z-axis to being perpendicular to the plane of motion.

We now demonstrate that, after an appropriate coordi-

nate transformation, the Lagrangian becomes

L ¼ 1

2
½ _t2 � n2ðq; tÞð _q2 þ q2 _/2Þ�; (2)

where q¼ jrj, / denotes the azimuthal angle, and the deriva-

tives are with respect to the proper time s. In particular, the

key to the optical-mechanical analogy is the invariance of

the Maxwell’s equations under coordinate transformations. It

was demonstrated20 that the general covariant form of the

free-space Maxwell’s equations

Fl�; k þ Fkl; � þ F�k; l ¼ 0;

Fl�
; � ¼ l0Jl

is equivalent to the constitutive equations

D ¼ e0eEþ c�1w�H

B ¼ l0lH� c�1w� E:

Here, the optical medium has the permittivity and permeabil-

ity tensors e ¼ l ¼ ffiffiffiffiffiffiffi�g
p

gij=g00, where g¼ det(gl�) and

wi¼ g0i/g00. Consider now light-ray motion in a special

curved space-time metric gl� with the line element

ds2 ¼ g00dt2 � giidxidxi: (3)

We can perform the coordinate transformation x0i ¼ hix
i (no

summation) that relates it to the Minkowski space, where

hi ¼
ffiffiffiffiffi
gii
p

, denotes the Lamé coefficients of the transforma-

tion. To take into account the effect of the time-dilation factorffiffiffiffiffiffi
g00
p

, we use the normalized field quantities E0i ¼ ffiffiffiffiffiffi
g00
p

Ei

and H0i ¼ ffiffiffiffiffiffi
g00
p

Hi, which are observable in experiments. The

material properties in this case can be written as

eij ¼ lij ¼ h1h2h3dij=ðhi
ffiffiffiffiffiffi
g00

p Þ: (4)

For centrally symmetric space-time metric the line element

can be expressed using the spherical coordinates as

ds2 ¼ g00dt2 � gqqðdq2 þ q2dX2Þ: (5)

By defining an effective refractive index n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gqq=g00

p
, we

arrive at the transformed Lagrangian (2). This particular refrac-

tive index could be realized experimentally using pure dielec-

tric materials that are non-dissipative and non-dispersive.

By reversing such coordinate transformation, the light-

ray motion in the material in flat space-time (as the case in a

laboratory) is equivalent to that in empty but curved space-

time, which can be studied by using the Euler-Lagrangian

equations. We obtain

q0 ¼ v;

v0 ¼ ½v2 þ cðq; tÞðq2 þ v2Þ�=q;
t0 ¼ nðq; tÞðq2 þ v2Þ1=2;

(6)

where c q; tð Þ ¼ 1þ q@q ln n q; tð Þ, v � dq=d/, and all deriv-

atives marked by prime are with respect to the azimuthal

angle /, e.g., v0 � dv=d/. For static media [i.e.,

@tn(q, t)¼ 0], a recent stability analysis12 provided a suffi-

cient condition for having stable orbits inside the potential:

dc(q)/dq � 0, leading to a well-behaved refractive-index

function

nðqÞ � exp

ð
dqcðqÞ=q

� �
=q: (7)

A convenient case is given by the condition

nðqÞ ¼ n0ðq=aÞ expð�2q=aÞ;

where a is the radius of the circular orbit and n0 is a constant

characterizing the maximum refractive index nmax¼ n0/(2e).

Figure 1 presents a schematic illustration of the static effec-

tive refraction index with an outer boundary qmax, outside

which the refractive index ns(q) is truncated to unity. There

are many periodic light-ray orbits [Figs. 1(b) and 1(c)] within
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the interaction region q< qmax in this static system, making

it a high quality optical cavity. However, in the presence of a

time-dependent, external electromagnetic source, light-ray

trajectories inside the cavity become more complicated. The

time-dependent refractive index can be denoted as n(q,

t)¼ n(q)þDn(t), where Dn tð Þ ¼ nnmax sin xtð Þ, n, and x are

the strength and the angular frequency of the perturbation,

respectively.

A plausible scheme to realize the electromagnetic per-

turbation is as follows. In general, the refractive index of a

material is controlled by its electric permittivity eeff

� �
and

magnetic permeability (leff), which are basic quantities char-

acterizing metamaterials and are functions of the frequency

of propagating, polarized electromagnetic wave. The refrac-

tive index can thus be modulated by varying one of the pa-

rameters. For example, suppose we have a thin plate (x�y
plane) of optical metamaterial and a beam of polarized inci-

dent light, whose magnetic and electric components are in

the z-direction and confined within the x�y plane, respec-

tively. The light beam can propagate within the x�y plane

and change its direction. According to the definitions of eeff

and leff: hDi � eeff hEi and hBi � leff hHi, where h�i denotes

the average over one unit cell of the metamaterial structure,

we cannot control eeff by adding a time-varying external elec-

tric field in x- or y-direction. This is due to the fact that the

light beam keeps changing its direction during propagation.

However, an external periodic magnetic field can be applied

in the z-direction. If the field strength H0 is small, its effect

on the material property can be captured by first-order

approximation, regardless of the functional form of leff(x),

where x is the light frequency. In particular, we have

l ¼ ðhBi þ B0Þ= ðhHi þ H0Þleff þ B0=hHi. If we choose

B0� sin (t), then the permeability and consequently the re-

fractive index can be made to vary periodically with time.

III. TRANSIENT CHAOS IN SYSTEMS WITH
TIME-DEPENDENT REFRACTIVE INDEX

Two parameters characterizing the initial conditions of

the ray dynamics are the impact parameter b and the time

tenter at which the light ray enters the interaction region

defined as q<qmax. The parameter tenter is necessary to com-

pletely determine the trajectories of light rays because the re-

fractive index is time-dependent. The initial time tenter can

affect the light-ray trajectories inside the interaction region

even when two beams of light are launched toward the inter-

action region with the same impact parameter. The two ini-

tial conditions can be conveniently defined as follows. The

center of the potential is set at the origin in the plane. The

light rays are sent from far field (q>qmax) in the x direction

toward the center of the interaction region. The impact pa-

rameter is then b : jyj. The time tenter then marks the instant

when the light ray reaches the circular outer boundary. Since

the external perturbation Dn(t) has the period T¼ 2p/x, it is

convenient to use tenter [mod(T)] as the entering time. Fig-

ures 2(a) and 2(b) show two parallel but closely separated

incoming light-ray trajectories entering the interaction region

at the same time, where the resulting trajectories inside the

interaction region are also close. However, for another pair

of nearby incident beams entering simultaneously, the trajec-

tories are completely different, as shown in Figs. 2(c) and

FIG. 1. (Color online) (a) Static effective refractive index and (b,c) stable

periodic light ray orbits. In (a), the refractive index is truncated to unity for

q>qmax¼ 1.74a, and the parameters are n0¼ 18.65 and a¼ 15 lm. In (b),

the periodic orbit has the period 2p and radius a. In (c), the periodic orbit

has the period 4p. The variables x and y are the Cartesian coordinates in two

dimensions, which hold for subsequent figures in the paper.

FIG. 2. (Color online) Scattering trajectories from two pairs of nearby initial

conditions. The dash-dotted circles mark the outer boundary of the static re-

fractive index potential, and the (green) triangles and (red) circles mark the

incoming and outgoing positions of light ray at the boundary, respectively.

All incident photons are sent from the � x toþ x direction and the impact pa-

rameter is b : jyj. The upper two panels (a: b¼ 1.50002a, tenter¼ 0.774T)

and (b: b¼ 1.50003a, tenter¼ 0.774T) show two nearby incident positions

with similar outgoing photon trajectories, while the bottom two panels (c:

b¼ 1.35995a, tenter¼ 0.854T) and (d: b¼ 1.35996a, tenter¼ 0.854T) show

two nearby incident rays with drastically different outgoing trajectories,

indicating a sensitive dependence on initial conditions. The parameters are

a¼ 15 lm, x¼ 6c/a, and n¼ 0.2.
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2(d). The light-ray trajectories can thus be highly sensitive to

the initial conditions, suggesting the emergence of transient

chaos.

We now explore the dynamics of light rays in terms of

the scattering functions, which are some quantities character-

izing the rays after the interaction versus the impact parame-

ter. In this regard, it is necessary to compensate the influence

of the entering time tenter on the light trajectory, which can

be quite significant if incident light rays are launched, e.g.,

from a line segment perpendicular to the incident direction.

To achieve this, we send the light rays from an arc of radius

qmax such that the wave front of the incident light beam coin-

cides with the outer boundary of the refractive index poten-

tial if the time-dependent term Dn(t) were not present. In

such an arrangement, the incident light rays with different

impact parameters enter the interaction region at the same

time, and so the scattering function can be obtained with

respect to a single input variable, i.e., the impact parameter.

The light rays stay in the region for a certain amount of time

tdelay and then leave the interaction region. The output varia-

bles, the angle h(b)[mod(2p)] and delay time tdelay(b)

[mod(T)], are then plotted as functions of impact parameter

b, as shown in Figure 3. These plots are characteristic of

transient chaos in open Hamiltonian systems.13

There are two types of transient chaos in open Hamilto-

nian systems: hyperbolic21 and nonhyperbolic.22–26 In hyper-

bolic systems, all periodic orbits are unstable and the decay

of particles from the interaction region is exponential.21 In

contrast, in nonhyperbolic dynamics, there are Kolmogorov-

Arnold-Moser (KAM) tori and nonattracting chaotic sets

coexisting in the phase space, and the particle decay is alge-

braic.22,23 To determine the nature of transient chaos of opti-

cal rays in metamaterials, we compute and analyze the

phase-space structure. In particular, without the time-de-

pendent perturbation, there are two stable periodic orbits in

the phase space, as shown in Figs. 1(b) and 1(c). In fact, if

the refractive index n qð Þ ¼ n0 q=að Þe�2q=a was not truncated

for q> qmax, it can be less than unity. In that case, more peri-

odic orbits of periods of multiples of 2p can exist, e.g., the

third possible periodic orbit has period 6p. Physical reality

requires, however, ns(q)> 1 so that the truncation is neces-

sary. Besides periodic orbits of periods 2p and 4p, there are

an infinite number of quasiperiodic orbits in the interaction

region. When the time-dependent perturbation is turned on,

unstable periodic orbits are created, some of these quasiperi-

odic orbits survive, forming KAM tori, and nonattracting

chaotic sets arise through the typical mechanism of homo-

clinic/heteroclinic intersections between the stable and

unstable manifolds of the unstable periodic orbits. As the in-

tensity n of the perturbation is increased, the regions contain-

ing the KAM tori shrink and the chaotic regions become

more extensive in the phase space. A typical phase-space

structure is shown in Fig. 4(a), where we observe both KAM

tori and chaotic regions surrounding a central KAM island.

Transient chaos is thus nonhyperbolic in this case. We note

that, an analogous class of systems in classical mechanics

exists, namely, soft-wall billiards with repulsive potentials,

for which certain rigorous results on chaotic dynamics are

available.24–26

That the transient chaotic dynamics is nonhyperbolic

can be further verified by examining the decay law of light

rays. In particular, we define R(t) to be the fraction of a large

number of light rays (or photons in the short wavelength

limit) still remaining in the interaction region q< qmax at

time t. Because of the time-dependent nature of the refractive

index, we launch a large number of incident light rays suc-

cessively and uniformly distributed in one period T of the

external perturbation Dn(t). The decay law of the light rays

is shown in Fig. 4(b), where we see that R(t) decreases expo-

nentially for small t but algebraically for most of the time

interval considered. We have, for t< 8.7, R(t)� e� at where

a 	 2.3, and for t 
 8.7, R(t)� t� b where b 	 1.4.

IV. TRANSIENT CHAOS IN SYSTEMS WITH
TIME-INDEPENDENT REFRACTIVE INDEX

To demonstrate the generality of transient chaos in opti-

cal-metamaterial systems, we now consider a class of sys-

tems in which the refractive index is time-independent. In

contrast to the time-dependent case where chaos has been

uncovered previously,12 there has been no study of chaos in

time-independent metamaterial systems. Our system consists

of three equally spaced, static, and volcano-shaped refractive
FIG. 3. (Color online) (a) Delay-time function tdelay(b)[mod(T)] and (b)

angle function h(b)[mod(2p)] for n¼ 0.2.

FIG. 4. (Color online) (a) Phase-space structure on a Poincaré surface of

section for n¼ 0.2. There are both KAM islands and chaotic regions, indicat-

ing nonhyperbolic transient chaos. The data points are sampled at t¼mT for

m 2N. (b) Fraction of light rays remaining in the interaction region as a

function of time. We see that the decay is mostly algebraic, except for the

initial small-time interval where the decay is exponential, as demonstrated

by the plot in the inset.
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index potentials, as shown in Figs. 5(a) and 5(b). The

Lagrangian of the system is of the same form as Eq. (2)

except that now the refractive index is constant. Moreover,

due to the loss of the central symmetry in the potential, an

additional dynamical variable hv, the velocity angle with

respect to the þ x direction, is needed to describe the dynam-

ics. We obtain

_x ¼ coshv=nðx; yÞ; (8)

_y ¼ sinhv=nðx; yÞ;
_hv ¼ ðdv̂=dhvÞ � rn=n2;

where v̂ is the unit vector in the velocity direction, and the

derivatives are with respect to any affine parameter. In this

system, the characteristics of transient chaos can be quite dif-

ferent in terms of whether the three refractive index poten-

tials overlap. Figures 5(a) and 5(b) show two different

configurations of the potentials. In Fig. 5(a), where the

potentials are spatially separated, there are stable periodic

orbits in each potential region and unstable orbits circling

the three potentials. In the overlapping case [Fig. 5(b)], some

of the stable orbits are destroyed, giving rise to complicated

trajectories. In this case, light ray trajectories can bounce

back and forth between the original stable orbits within a sin-

gle potential region and the unstable orbits that connect the

three potentials, forming new unstable periodic orbits.

For the time-independent case, two convenient dynami-

cal variables characterizing the transient dynamics are the

impact parameter and the angle of incident light ray. To be

concrete, we focus on scattering functions and the decay law

with respect to variation in the impact parameter. An exam-

ple of sensitive dependence of the trajectories on initial con-

ditions is shown in the bottom panels of Fig. 5. In the non-

overlapping potential case, the stable orbits inside each

potential region cannot be reached by the trajectories starting

from outside, i.e., the stable and the unstable orbits are well

separated. Figure 5(c) shows two distinct trajectories from

two extremely closed initial impact parameters. For the over-

lapping case, Figs. 5(d) and 5(e) show two different trajecto-

ries from two nearby impact parameters. One can still see

that the light ray encircles around the original stable orbits

within the single potential region but finally leaves, due to

the fact that the overlapping regions break the original stable

orbits and connect them to the regions outside.

Typical scattering functions, for which the incident

angle of the light rays is fixed to be along the þ x direction,

and the associated light-ray decay law are shown in Fig. 6.

We observe typical features of transient chaos. As shown in

Fig. 6(c), the decay law is exponential in this case, indicating

the hyperbolic nature of the transient chaotic dynamics. The

physical reason is that, since the potentials are non-overlap-

ping, the stable and unstable periodic orbits are well sepa-

rated in the phase space. Since decay law is meaningfully

defined by light rays from outside the interaction region in

all directions with random impact parameters, the KAM

islands surrounding the stable periodic orbits are isolated

from the regions outside and so are inaccessible to these

rays, as shown in Figs. 7(a) and 7(b), respectively. For the

overlapping-potential case, the dynamics is nonhyperbolic,

as demonstrated by the phase-space structures shown in Figs.

7(c) and 7(d). In this case, three potentials penetrate into

each other so that the originally inaccessible KAM islands

are now accessible to light rays initiated afar from the inter-

action region, leading to an algebraic decay law. There is

then a crossover from exponential to algebraic decay as a

system parameter changes so that the refractive-index poten-

tials begin to overlap with each other, a known phenomenon

in chaotic scattering in potential systems.27,28

FIG. 5. (Color online) Time-independent effective-index distribution for (a)

three separated potentials d ¼ ð2:5=
ffiffiffi
3
p
Þrmax, and (b) three overlapping poten-

tials d ¼ ð1:5=
ffiffiffi
3
p
Þrmax. Sensitive dependence of light ray trajectories on ini-

tial conditions is shown in (c-e). The dash-dotted circles, (green) triangles

and (red) circles have the same meaning as in Fig. 2. For the non-overlapping

potential case (a), we show two trajectories in (c). The trajectory marked by

the solid lines is for b¼ 2.92724527 and the one marked by dashed line is for

a slightly different b value (increased by 108). In (d) b¼ 2.69012, and (e)

b¼ 2.69013, two distinct trajectories from two close impact parameters for

the overlapping potential case (b) are shown, respectively.

FIG. 6. (Color online) For the non-overlapping refractive-index potential

case d ¼ ð2:5=
ffiffiffi
3
p
Þrmax

� �
, (a,b) scattering functions and (c) exponential

light-ray decay law.
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V. CONCLUSION

We have demonstrated transient chaotic dynamics of

light rays in optical metamaterials under time-dependent per-

turbations, which can be realized by an external electromag-

netic field. The transient dynamics is typically

nonhyperbolic in this case. We have also demonstrated that,

even without the external time-dependent perturbations, tran-

sient chaos can arise from a class of static refractive-index

potential configurations. To our knowledge, chaos in optical

metamaterial systems with static refractive index has not

been observed previously. A rigorous mathematical under-

standing of the chaotic dynamics in optical metamaterials is

not available at the present, but insights can be obtained

from previous mathematical works on chaos in soft-wall bil-

liards.24–26 Based on the recently established connection

between optical metamaterial and relativistic gravitational

systems,12 our results reinforce the idea that complex chaotic

dynamics in the latter can potentially be observed and tested

in laboratory experiments using optical metamaterials.
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