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A fundamental result in nonrelativistic quantum nonlinear dynamics is that the spectral statistics of

quantum systems that possess no geometric symmetry, but whose classical dynamics are chaotic,

are described by those of the Gaussian orthogonal ensemble (GOE) or the Gaussian unitary

ensemble (GUE), in the presence or absence of time-reversal symmetry, respectively. For massless

spin-half particles such as neutrinos in relativistic quantum mechanics in a chaotic billiard, the

seminal work of Berry and Mondragon established the GUE nature of the level-spacing statistics,

due to the combination of the chirality of Dirac particles and the confinement, which breaks the

time-reversal symmetry. A question is whether the GOE or the GUE statistics can be observed in

experimentally accessible, relativistic quantum systems. We demonstrate, using graphene

confinements in which the quasiparticle motions are governed by the Dirac equation in the

low-energy regime, that the level-spacing statistics are persistently those of GOE random matrices.

We present extensive numerical evidence obtained from the tight-binding approach and a physical

explanation for the GOE statistics. We also find that the presence of a weak magnetic field

switches the statistics to those of GUE. For a strong magnetic field, Landau levels become

influential, causing the level-spacing distribution to deviate markedly from the random-matrix

predictions. Issues addressed also include the effects of a number of realistic factors on level-spacing

statistics such as next nearest-neighbor interactions, different lattice orientations, enhanced hopping

energy for atoms on the boundary, and staggered potential due to graphene-substrate interactions.
VC 2011 American Institute of Physics. [doi:10.1063/1.3537814]

In the last three decades, quantum nonlinear dynamics,

an interdisciplinary field focusing on the quantum mani-

festations of classical chaos, has received a great deal of

attention from a number of physics communities. Indeed,

the quantization of chaotic Hamiltonian systems and sig-

natures of classical chaos in quantum regimes are funda-

mental in physics and are directly relevant to fields such

as condensed matter physics, atomic physics, nuclear

physics, optics, and acoustics. Issues that have been pur-

sued include energy-level statistics, statistical properties

of wavefunctions, quantum chaotic scattering, electronic

transport in quantum dots, localization, and the effect of

magnetic field, etc. Existing works on quantum nonlinear

dynamics are concerned almost exclusively with nonrela-

tivistic quantum mechanical systems described by the

Schrödinger equation, where the dependence of particle

energy on momentum is quadratic. A natural question is

whether phenomena in nonrelativistic quantum nonlin-

ear dynamics can occur in relativistic quantum systems

described by the Dirac equation, where the energy-

momentum relation is linear. This paper focuses on the

issue of energy level-spacing statistics by using chaotic

graphene billiards whose hexagonal lattice structure

generates a linear dependence of energy on wavevector

about the Dirac points so that the motions of quasipar-

ticles can be relativistic. We find that, for chaotic gra-

phene billiards in the absence of magnetic field, the level-

spacing distributions follow the statistics of random mat-

rices from the Gaussian orthogonal ensemble (GOE). The

GOE statistics are robust in that small perturbations

from the ideal graphene billiard configuration such as

high-order interactions in the tight-binding Hamiltonian,

different lattice orientations, boundary bonds, and stag-

gered potentials have little effect on the characteristics of

the statistics. This result should be contrasted with the

Gaussian unitary ensemble (GUE) statistics previously

predicted for spin-half relativistic particles (e.g., neutri-

nos) in chaotic billiards. We have also investigated the

effect of magnetic field on the level-spacing statistics and

find that a weak magnetic field changes the GOE statis-

tics to those of GUE, but a strong field can lead to large

deviations from both the GOE and GUE statistics. Our

results indicate that graphene systems can have proper-

ties that are not shared by either nonrelativistic quantum

or purely relativistic quantum systems, and the distribu-

tion of energy levels may have implications to graphene-

based devices that use quantum dots, a kind of “open”

billiard structure.
a)Author to whom correspondence should be addressed. Electronic mail:

liang.huang@asu.edu.
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I. INTRODUCTION

A fundamental result in nonrelativistic quantum nonlin-

ear dynamics is that, for systems whose classical dynamics

are chaotic, their energy-level statistics are described by

those of random matrices.1–6 Particularly, if the system pos-

sesses the time-reversal symmetry, the energy level-spacings

follow the distribution of those of random matrices from the

Gaussian orthogonal ensemble (GOE). If, in addition to

time-reversal symmetry, the particles have half-integer spin,

the system will have the symplectic symmetry and, as a con-

sequence, the resulted level-spacing statistics follow those of

random matrices from the Gaussian symplectic ensemble

(GSE). When the time-reversal symmetry is broken, e.g., as

in the presence of a magnetic field, the level-spacing statis-

tics are governed by the Gaussian unitary ensemble (GUE)

random matrices. The transition from GOE to GUE statistics

was first demonstrated in (Ref. 7). Both the GOE and GUE

statistics were observed experimentally for nonrelativistic

quantum (wave) systems exhibiting chaotic dynamics in the

classical limit,8–10 but so far there has been no experimental

evidence for the GSE statistics.

In relativistic quantum mechanics, the seminal work of

Berry and Mondragon11 established that, for massless spin-

half particles such as neutrinos12 in a billiard, if the classical

dynamics are integrable, the level-spacing statistics are Pois-

sonian, which are similar to those in integrable nonrelativis-

tic quantum systems. However, when the classical dynamics

are chaotic, the level-spacing distributions are persistently
those of GUE, even in the absence of any magnetic field.

This is due to the chiral nature of Dirac particles and the con-

finement scalar potential, which break the time-reversal sym-

metry. Since its prediction over two decades ago,11 this

phenomenon has not been tested experimentally, partly due

to the difficulty to construct relativistic quantum systems

with chaotic classical dynamics in the laboratory.

Recently, graphene, a single, one-atom-thick sheet of

carbon atoms arranged in a honeycomb lattice, has been real-

ized in experiments.13 In the low-energy regime, quasipar-

ticle motions in graphene are characteristic of those of

relativistic, massless Dirac fermions, and, consequently, de-

vices made of graphene are potentially capable of operating

at much higher speed than those based on the conventional

silicon electronics.14,15 Graphene confinements that have the

geometric shape of chaotic billiards thus represent a potential

experimental system for testing energy-level statistics in the

relativistic quantum regime.

It thus seems quite feasible to test the prediction of

Berry and Mondragon for the GUE statistics of Dirac par-

ticles by using classically chaotic graphene confinement sys-

tems. In this regard, a Poissonian type of level-spacing

occurs for rectangular graphene dots. Increasing the strength

of the disorder, i.e., edge roughness or defect concentration,

tends to push the distribution toward that of GOE (Ref. 16).

When the disorder concentration becomes higher, the distri-

bution returns to Poissonian, due to the onset of Anderson

localization.17 In a recent Rapid Communication,18 we find

that, for “clean” chaotic graphene billiards, in the absence of

magnetic field, the level-spacing statistics belong to the GOE

universal class, in contrast to the GUE class predicted for rel-

ativistic Dirac particles. An intuitive explanation for this

phenomenon is the following. In graphene, quasiparticles in

the vicinity of a Dirac point obey the same Dirac equation as

that for neutrino, but the confinement to realize the billiard

plays a different role. Particularly, the abrupt edge termina-

tion in graphene billiard couples the two valleys in the mo-

mentum space. As a result, the wavefunctions for

quasiparticles with wavevectors near the two Dirac points

are no longer separable, rendering invalid description of the

two-component spinor Dirac equation for the whole system.

A full set of equations taking into account the two nonequi-

valent Dirac points and the boundary conditions are thus nec-

essary to describe the motions of the relativistic particle.

Especially, the time-reversal symmetry is preserved, suggest-

ing that the system belong to either the GOE or the GSE

class. In this regard, the abrupt edge termination in a gra-

phene billiard can be described by a step function in the

form of an infinite potential at the edge. Since the range of

the potential is short, the two valleys in the momentum space

are coupled, which also breaks the sublattice symmetry.

Since both the pseudospin valley symmetry and the sublattice

symmetry are broken, Kramer’s degeneracy and consequently

GSE statistics can be ruled out.19 The resulting level-spacing

statistics belong then to GOE. Similar effects have been

noticed by Robnik and Berry that, in certain cases, although

the system possesses neither time-reversal symmetry nor geo-

metric symmetry (or other dynamical symmetries), it can be

invariant under the combination of the two symmetries, and

nontrivial representations can be found in which the Hamilto-

nian matrix elements are real, leading to GOE statistics (other

than GUE) (Ref. 20).

A smooth mass term would preserve the valley symme-

try but break the sublattice symmetry, which also breaks the

time-reversal symmetry in each valley.21 Since the two val-

leys are decoupled (no or weak intervalley scattering), the

Hamiltonian consists of two degenerate blocks, each corre-

sponding to a quasiparticle with unitary symmetry. However,

the expected GUE level-spacing statistics have not been

observed. This can be explained in that, although the mass

term is relatively smooth, the system may still have some re-

sidual intervalley scattering, and the scattering time could be

shorter than the relevant Heisenberg time scale for the

level spacing, rendering the system to the GOE class.21

These symmetry properties22–25 are also related to pseudo-

spin effects in the system, which could lead to absence of

backscattering26,27 and weak-localization or antilocalization

phenomena,19,28–32 and also to universal conductance fluctu-

ations of different universal classes.21,33

In this paper, we present results from a detailed study of

the level-spacing statistics in chaotic graphene billiards, tak-

ing into full account quantum-mechanical symmetry consid-

erations. Particularly, we shall focus on two types of

billiards without any geometric symmetries but whose classi-

cal dynamics are fully chaotic. In order to generate a large

number of energy levels for reliable statistics, we use rela-

tively large sizes, in which the confinements contain tens of

thousands of atoms. Utilizing the tight-binding framework,

we obtain strong evidence for GOE statistics in such billiards
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in the absence of magnetic field. To address the question of

whether the GOE statistics are stable and thus potentially

experimentally observable in graphene devices, we use more

realistic tight-binding models to incorporate factors such as

next nearest-neighbor coupling, different lattice orientations,

enhanced hopping energy of the boundary atoms, and staggered

potential due to graphene-substrate interaction. Our results indi-

cate that, although these considerations may cause changes in

the band structure such as the induction of a band gap, a shift in

the Dirac point, or modification in the details of the band struc-

ture, the linear energy-momentum relation is preserved. As a

result, the spacing statistics for the levels around the Dirac

points are persistently of the GOE class.

We also study systematically the effect of an external

magnetic field on level-spacing statistics in chaotic graphene

billiards. In the presence of a weak magnetic field, the time-

reversal symmetry of the system is broken and GUE statistics

arise, as for chaotic billiards in the nonrelativistic quantum re-

gime. As the magnetic field becomes stronger, Landau levels

set in. The sublevels within the Landau levels are degenerate

so that they have zero spacing. Excluding these degenerate

sublevels, we find signatures of the GOE statistics. This is,

however, not related to time-reversal symmetry, but rather an

artificial effect caused by Landau levels. For energy levels far

from the Dirac points, the electronic densities of state are

high, and the effect of Landau levels is suppressed; therefore,

the level-spacing statistics belong to the GUE class.

In Sec. II, we introduce the tight-binding Hamiltonian

based method to calculate the energy levels for large gra-

phene billiards. In Sec. III, we present theory and numerical

results for GOE statistics for quasiparticles near the Dirac

points, taking into account a number of realistic physical fac-

tors. In Sec. IV, we describe the level-spacing statistics in

the presence of weak and strong magnetic fields. Conclu-

sions and discussions are given in Sec. V.

II. TIGHT-BINDING METHOD FOR CALCULATING
ENERGY LEVELS IN GRAPHENE BILLIARDS

For a graphene confinement in the presence of a mag-

netic field, the tight-binding Hamiltonian is given by

Ĥ ¼
X
ð�tijÞjiihjj; (1)

where the summation is over all pairs of nearest neighboring

atoms, and

tij ¼ t expð�i
2p
/0

ðri

rj

dr � AÞ (2)

is the nearest-neighbor hopping energy, A is the vector

potential associated with the magnetic field,

/0¼ h=e¼ 4.136 � 10�15 Tm2 is the magnetic flux quan-

tum, and t � 2.8 eV is the nearest-neighbor hopping energy

in the absence of magnetic field.34 Using the Landau gauge,

the vector potential is given by A¼ ( �By, 0, 0) for a perpen-

dicular uniform magnetic field B pointing out of the billiard

plane. For convenience, we shall use the magnetic flux

/¼BS through a hexagonal plaque as a parameter character-

izing the strength of the magnetic field, where the area is

S ¼ 3
ffiffiffi
3
p

= 2a2
0 ¼ 5:24 Å

2
, and a0¼ 1.42 Å is the atom sepa-

ration in the graphene lattice. The onsite energy has been

neglected as we assume it is the same for all carbon atoms in

the confinement. The eigenenergies can be calculated by

diagonalizing the tight-binding Hamiltonian.

Our focus will be on the energy spectrum around the

Dirac points to address the relativistic quantum nature of

the quasiparticle motions in graphene. Figure 1 shows the

energy-wavevector relation for an infinite graphene lattice in

the absence of magnetic field. As can be seen from the con-

tour lines around each Dirac point, when the energy is low,

say, E=t¼ 0.2, the contour line is almost circle, indicating

that the E�k relation is isotropic, which is characteristic of

the relativistic Dirac equation. For larger energy, say

E=t¼ 0.6, trigonal warping distortions occur,35 leading to an

anisotropic E�k relation bearing the hexagonal symmetry

of graphene lattice. The distortions become more dominant

as the energy is increased further. We shall then concentrate

on energy levels in the low energy range 0<E=t< 0.4 so

that our results can be meaningfully compared with those

from the relativistic neutrino billiards.

Figure 2 shows the band structure for a zigzag nanorib-

bon without or with a magnetic field. For a sufficiently

strong magnetic field, the linear E� k relation, even for

small energy, is violated, as Fig. 2(d) shows. To observe the

transition from GOE to GUE statistics under a magnetic field

in the relativistic quantum regime, we restrict our study to

the regime where the linear E� k relation is preserved while

the magnetic field is strong enough so that the GUE statistics

emerge even for nonrelativistic quantum chaotic billiards. We

shall then study three cases: /¼ 0 (without magnetic field),

/¼ 1=8000/0 (weak magnetic field), and /¼ 1=800/0

(strong magnetic field).36

We study two billiard shapes that are commonly used in

the study of level-spacing statistics, the Africa billiard7 and

FIG. 1. (Color online) Contour plot of energy in the momentum space for

an infinite graphene flake, where a ¼
ffiffiffi
3
p

a0 ¼ 2:46 Å is the lattice constant

along the zigzag direction. The dashed line indicates the first Brillouin zone.

The four sets of solid contour lines around each individual Dirac points are

for E=t¼ 0.2, 0.4, 0.6, 0.8 (inside out), respectively.
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one-eighth of the Sinai billiard, as shown in Fig. 3. We use

MATLAB to calculate the eigenvalues. The number of atoms

contained in a billiard is about 35 000, which represents the

limit set by the memory of our computer (60 GB). The area of

each billiard is about 950 nm2, and the number of levels in the

energy range 0<E=t< 0.4 is about 550. When we calculate

the local density-of-state (LDS) patterns, we employ a smaller

size, typically containing about 10 000 atoms, as it requires

more memory to calculate the eigenvectors. In the cases of

studying realistic effects without magnetic field, we use a

larger size of about 42 000 atoms, as solving eigenvalues of

real symmetric matrices needs less memory than that when

solving complex Hermitian matrices.

III. LEVEL-SPACING STATISTICS OF CHAOTIC
GRAPHENE BILLIARDS IN THE ABSENCE OF
MAGNETIC FIELD

For nonrelativistic chaotic quantum billiard, the

smoothed wavevector staircase function for positive eigen-

values is given by37

hNðkÞi ¼ Ak2=4pþ cLk=4pþ…; (3)

where A is the area of the billiard, L is its parameter, and

c¼ 1 (or �1) for Neumann (or Dirichlet) boundary condi-

tions. For relativistic spin-half particles such as the neutrino,

Berry and Mondragon found that the same formula holds

except that c¼ 0 (Ref. 11)

hNðkÞi ¼ Ak2=4pþ C1 þ…; (4)

where C1¼�1=12 is a constant.

For our chaotic graphene billiard, around a Dirac point,

we have E ¼ �hvFk, where vF ¼
ffiffiffi
3
p

ta=2�h is the Fermi veloc-

ity, and a¼ 2.46 Å is the lattice constant. Thus,

E ¼
ffiffiffi
3
p

tak=2. For the nth energy-level En, we have

kn ¼
2ffiffiffi
3
p

a
� En

t
:

Once the eigenenergy En is determined, the corresponding

wavevector kn can be obtained through the above relation.

For the graphene billiard shown in Fig. 3(a), Fig. 4(a) shows,

for eigenenergies in the range 0<En=t< 0.4, the wavevector

staircase function. The solid curve is given by

FIG. 2. Energy-momentum relation for graphene nanoribbon with zigzag

horizontal boundary: (a) /¼ 0; (b) /¼ 1=8000/0; (c) /¼ 1=800/0; and (d)

/¼ 1=500/0. Each layer of the ribbon contains 100 atoms.

FIG. 3. (Color online) Chaotic graphene billiards. (a) Africa billiard of

35542 atoms. The outline is determined by the equation xþ iy¼ 64(z þ 02z2

þ 0.2z3 eip=3)a, where z is the unit circle in the complex plane,

a ¼
ffiffiffi
3
p

a0 ¼ 2:46 Å. The area of the billiard is A¼ 934 nm2. (b) One-eighth

of the Sinai billiard with 37401 atoms. The coordinates are in units of lattice

constant a. The area is A¼ 1.607� 104 a2¼ 972 nm2.

FIG. 4. (Color online) Level-spacing statistics for the Africa billiard in Fig.

3(a) in the absence of magnetic field (/¼ 0). (a) Wavevector staircase func-

tion N(k) for eigenenergies 0<En=t< 0.4, where the number of energy lev-

els is 560 (circles). The curve is hN(k)i¼Ak2=(2p) þ 35 [Eq. (5)]. (b)

Spectral staircase function N(E) vs aE2, for 0.02<En=t< 0.4 with 522 lev-

els, where a is the unfolding normalization constant. The dashed straight

line is the averaged staircase function [Eq. (6)]. (c) Magnification of part of

(b) for 0.02<En=t< 0.1 with 28 levels. (d) Unfolded level-spacing distribu-

tion P(S). (e) Cumulative unfolded level-spacing distribution I(S). (f) Spec-

tral rigidity D3. In (d)–(f), numerical data are represented by open circles

and the lines are theoretical predictions from the random-matrix theory:

dashed line for Poissonian, solid line for GOE, and dotted line for GUE sta-

tistics. The same legend holds for subsequent figures in this paper.
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hNðkÞi ¼ Ak2=2pþ C01; (5)

where C1
0 ¼ 35 is a fitting constant. Equation (5) differs from

Eq. (4) in the leading “Weyl” term by a factor of 2. This can

be understood as follows. For a single Dirac point, one

expects h N(k)i to follow Eq. (4). However, a finite graphene

has two nonequivalent Dirac points; thus, hN(k)i should be

twice of that given by Eq. (4), so the denominator becomes

2p (instead of 4p). The fitting constant C1
0 is due to the edge

states on the segments of the zigzag boundaries of the gra-

phene billiard where their energies are all about zero. For

zigzag ribbon the edge states exist for E < Ec ¼ �hvF=L
¼

ffiffiffi
3
p

ta=ð2LÞ, where L is the width of the ribbon.38 The sizes

of our graphene billiards are about 100a, leading to

Ec^ 0.01t. Figure 5 shows two typical edge states and a nor-

mal state. The edge states are localized on segments of the

zigzag boundaries. These states are essentially degenerate

states, contributing to an artificial bias in the spectral stair-

case function for small energy values. Therefore, we set a

minimum value 2Ec¼ 0.02t for En to exclude the edge states

from consideration.

Because we have E ¼ �hvFk for graphene billiards, the

smoothed spectral staircase function is given by

hNðEÞi ¼ AE2

2p�h2v2
F

þ C2 ¼ aE2 þ C2; (6)

where a ¼ A=ð2p�h2v2
FÞ is the unfolding normalization pa-

rameter and C2 is now zero after setting 2Ec as the minimum

value of En. Figure 4(b) shows the spectral staircase function

of En for 0.02<En=t< 0.4, and Fig. 4(c) shows a magnifica-

tion of part of Fig. 4(b) for eigenenergies in the range

0.02<E=t< 0.1. The dashed lines in these two panels are

Eq. (6) with C2¼ 0. They agree well with the numerical

results.

Now define xn � hNðEnÞi as the unfolded spectra. Let

Sn¼ xn þ 1� xn be the nearest-neighbor spacing and P(S) be

the distribution function of Sn. It can be verified thatÐ
SPðSÞdS ¼ 1. For nonrelativistic quantum billiards, the

distribution of this unfolded level-spacing follows several

universal classes, depending on the nature of the correspond-

ing classical dynamics and symmetry. Particularly, if the sys-

tem is classically integrable, the distribution is Poissonian39

PðSÞ ¼ e�S: (7)

For quantum billiards that are completely chaotic in the clas-

sical limit and do not possess any geometric symmetry,40,41

the level-spacing distributions follow the GOE statistics if

the system has time-reversal symmetry42

PðSÞ ¼ p
2

Se�pS2=4; (8)

and GUE statistics if the system has no time-reversal symmetry

PðSÞ ¼ 32

p
S2e�ð4=pÞS

2

: (9)

The cumulative level-spacing distribution can then be

obtained by

IðSÞ ¼
ðS

0

PðS0ÞdS0: (10)

The distribution of the unfolded level-spacing for the Africa

graphene billiard is shown in Fig. 4(d), and the cumulative

distribution is shown in Fig. 4(e). From the figures, we see

that the level-spacing follows the GOE statistics.

To obtain further evidence for the GOE statistics, we

calculate the spectral rigidity D3(L) for the graphene bil-

liards, which is used to measure long-range spectral fluctua-

tions and is defined as43

D3ðLÞ ¼ minða; bÞL�1

ðL=2

�L=2

dxfNðx0 þ xÞ � ax� bg2

* +
;

(11)

where the average is over x0. Numerically, if n unfolded lev-

els ~xi ¼ xi � x0 lie in the interval [�L, L], e.g.,

� L � ~x1 � � � � � ~xn � L, performing the integral in the

above equation yields44

D3ð2L; x0Þ ¼
n2

16
� 1

4L2

Xn

i¼1

~xi

" #2

þ 3n

8L2

Xn

i¼1

~x2
i

" #
� 3

16L4

Xn

i¼1

~x2
i

" #2

þ 1

2L

Xn

i¼1

ðn� 2iþ 1Þ~xi

" #
;

ð12Þ

and D3(L)¼hD3(L, x0)ix0
. Theoretically, D3(L) for a corre-

lated unfolded energy-level sequence is given by

D3ðLÞ ¼
1

15L4
L5 �

ðL

0

duðL� uÞ3ð2L2 � 9Lu� 3u2ÞYðuÞ
� �

;

(13)

where Y(u) is the following two-level cluster function:45

YðuÞ ¼ 0 for Poisson

YðuÞ ¼ UðuÞ2 þ d

du
UðuÞ �

ð1
u

dtUðtÞ for GOE;

YðuÞ ¼ UðuÞ2 for GUE;

and U(u)¼ sin (pu)=(pu).

FIG. 5. (Color online) Typical edge states (a), (b) and a normal state (c) for

one-eighth of the Sinai billiard with N¼ 9230 atoms. The energy values are

En=t¼ 1.610� 10�14, 7.475� 10�6, 0.313 for (a–c), respectively.
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Figure 4(f) shows the spectral rigidity for the calculated

eigenenergies of the Africa billiard. This, together with Figs.

4(d) and 4(e), represents strong evidence that the level-

spacing distribution in a chaotic graphene billiard in the rela-

tivistic quantum regime follows the GOE statistics. Figure 6

plots the same quantities as Fig. 4 for the one-eighth of Sinai

billiard in Fig. 3(b). Figures 6(a)–6(c) verify Eqs. (5) and

(6), and Figs. 6(d)–6(f) show unequivocally the GOE nature

in the level-spacing statistics. Comparing Fig. 6 with Fig. 4,

we notice that the level-spacing statistics from the 1=8 Sinai

billiard are closer to the theoretical expectation of GOE.

However, a careful examination of systems of different sizes

reveals that the discrepancy between the two billiards is not

caused by the difference in shapes, but by the number of lev-

els used in the statistics, or the size of the system. The larger

the system is, the closer the statistics to the theoretical

expectation.

The GOE statistics of unfolded level-spacing seem to be

counterintuitive as one would expect that the graphene cha-

otic billiards should exhibit the same GUE level-spacing dis-

tribution as the neutrino billiard,11 because they obey the

same massless Dirac equation. However, as explained in

Sec. I, because the graphene has two nonequivalent Dirac

points (valleys), the time-reversal symmetry for the neutrino

is actually the symplectic symmetry for graphene, which is

the time-reversal symmetry in a single valley.25 Thus, the

time-reversal symmetry breaking caused by the chirality in

the neutrino billiards does not infer time-reversal symmetry

breaking in graphene billiards. As a matter of fact, the time-

reversal symmetry of graphene, taking into account of both

valleys, is preserved in the absence of a magnetic field,25

which explains the GOE level-spacing statistics.

The results so far are for ideal chaotic graphene bil-

liards. In experimental situations, a number of nonidealities

can arise, such as interactions beyond the nearest neighbors,

lattice orientation, substrate properties, etc. To be experi-

mentally observable, the GOE statistics should be robust

even when these nonidealities are present. It is thus impor-

tant to investigate the robustness of the level-spacing statis-

tics of chaotic graphene billiards under various realistic

considerations.

A. Effect of next nearest-neighbor coupling

In the absence of magnetic field, the tight-binding Ham-

iltonian incorporating the next nearest-neighbor interactions

is given by

Ĥ ¼
X

t

ð�tÞjiihjj þ
X

t0
ð�t0Þjiihjj; (14)

where the first summation is over all pairs of nearest neigh-

boring atoms, and the second summation is over all pairs of

next nearest neighboring atoms with coupling strength

t0 ¼ 0.1t (Ref. 34). In this case, around the Dirac point K, let-

ting k¼K þ q, to the first order in |q| the energy is given by

E6 � 3t06vF�hjqj: (15)

Thus, the linear energy-momentum relation persists except

with a shift in energy of 3t0 at the Dirac points. Figures 7(b)

and 7(d) plot the band structure of a zigzag ribbon taking

into account the next nearest-neighbor couplings. For com-

parison, the corresponding cases of t0 ¼ 0 are shown in Figs.

7(a) and 7(c). In addition to the shift in the energy, another

feature can be seen. Particularly, for t0 ¼ 0, the positive

energy band connecting the two Dirac points is flat, i.e.,

E=t� 0, which contributes to the edge states for E=t �> 0.

However, for t0 ¼ 0.1t, the band bends downward. Thus, if

we consider the energies above the Dirac points, e.g.,

0.3<En=t< 0.7, there is no edge-state contributions.

The level-spacing statistics are shown in Fig. 8 for eige-

nenergies in the range of 0.3<En=t< 0.7 with about 700

levels. We observe the GOE statistics. Thus, although the

next nearest-neighbor interactions modify the band structure

and consequently may have implications in realistic applica-

tions,46 they have little effect on the level-spacing statistics.

B. Effect of lattice orientation

So far we have assumed that the horizontal direction of the

graphene billiards is zigzaged. Since the energy-momentum

relation (especially the location of the Dirac points) is direc-

tion-dependent, and the billiard shape has no geometric symme-

try, it is worthwhile to examine whether the lattice orientation

FIG. 6. (Color online) Level-spacing statistics for the graphene billiard in

Fig. 3(b) in the absence of magnetic field (/¼ 0). (a) Wavevector staircase

function N(k) for eigenenergies 0<En=t< 0.4 for a total of 582 energy lev-

els. The curve is hN(k)i¼Ak2=(2p)þ 34 [Eq. (4)]. (b) Spectral staircase

function N(E) vs a E2 for calculated eigenenergies En (solid curve). The

dashed straight line is the averaged staircase function [Eq. (6)]. The energy

range is 0.02<En=t< 0.4 and the number of levels is 549. The constant C2

is zero since the edge states are excluded. (c) A magnification of part of (b)

for 0.02<En=t< 0.1 with 29 levels. (d) Unfolded level-spacing distribution

P(S). (e) Cumulative unfolded level-spacing distribution I(S). (f) Spectral

rigidity D3.
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of the graphene billiard will affect the level-spacing statis-

tics. To do so, we first generate a rectangular graphene flake,

rotate it with angle h, and then form the confinement by cut-

ting off the outside atoms. Again, boundary atoms with only

one bond are removed to avoid artificial scattering effects.

We have done calculations for the Africa billiard for h¼ p=7

and h¼ p=2 (chosen arbitrarily), and the results for h¼ p=7

are shown in Fig. 9. We can see that, although the details of

the distribution are somewhat different from those of the

h¼ 0 case (Fig. 4), the GOE statistics are well preserved.

Comparing the three cases (i.e., h¼ 0, p=7, p=2), we find that

the main difference is the number of edge states, as for dif-

ferent orientations the numbers of zigzag terminations are

different. Figure 10 shows the eigenenergies right above the

Dirac point for the three orientations. It can be seen that the

h¼ 0 case has more edge states. The edge states are, how-

ever, excluded in the level-spacing statistics. For different

orientations, the values of the eigenenergies are different, as

shown in Fig. 10. In addition, the details of the wavefunction

concentrations associated with various eigenenergies are also

different. However, our calculations reveal that the level-

spacing statistics belong to the same GOE class, indicating

the robustness of the GOE statistics for chaotic graphene bil-

liards in the relativistic quantum regime.

C. Effect of boundary bonds and staggered potentials

We have assumed uniform hopping energy throughout

the billiard. However, the bonds associated with the bound-

ary atoms can be shorter. As a result, the hopping energy of

the boundary atoms can be, e.g., 10% larger than that associ-

ated with the inner atoms. This edge effect is in fact crucial

FIG. 8. (Color online) In the presence of next nearest-neighbor interactions,

level-spacing statistics for the Africa billiard of N¼ 42505 atoms in the ab-

sence of magnetic field. (a) Spectral staircase function N(E) vs aE2 for

0.3(¼3t0)<En=t< 0.7 (solid curve), where the origin of E has shifted to 3t0.
The dashed straight line is the averaged staircase function [Eq. (6)]. (b)

Unfolded level-spacing distribution P(S). (c) Cumulative unfolded level-

spacing distribution I(S). (d) Spectral rigidity D3.

FIG. 9. (Color online) In the presence of lattice tilting (see text), level-

spacing statistics for the Africa billiard of N¼ 42518 atoms. The angle of

lattice tilting is h¼p=7 and there is no magnetic field. (a) Spectral staircase

function N(E) vs a E2 for 0.02<En=t< 0.4 (solid curve). The dashed

straight line is the averaged staircase function [Eq. (6)]. (b) Unfolded level-

spacing distribution P(S). (c) Cumulative unfolded level-spacing distribution

I(S). (d) Spectral rigidity D3.

FIG. 7. (Color online) Band structure of a zigzag graphene ribbon having

120 atoms in a vertical layer: (a), (c) t0 ¼ 0 (without next nearest-neighbor

coupling); (b), (d) t0 ¼ 0.1t (next nearest-neighbor interactions included).

Lower panels are the respective magnifications of upper panels around the

Dirac point.

FIG. 10. (Color online) Eigenenergies close to the Dirac point for the three

orientations (h¼ 0, p=7, p=2) for the African billiard with N¼ 42505,

42518, 42512 atoms, respectively.
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for determining the values and scaling rule for the band gap

of graphene armchair or zigzag ribbons.47 We have exam-

ined its effect on the level-spacing statistics. Specifically, af-

ter generating the billiard, we determined the boundary

atoms, and changed the hopping energy of these atoms with

other atoms inside the billiard to 1.1t. Our computations

revealed no observable difference in the level-spacing

statistics.

Another important feature is staggered potential, that is,

the two inequivalent sublattices are biased to different poten-

tials, which can be a natural way to tune the band gap of gra-

phene nanoribbon as the staggered potential can arise

naturally from the interaction between graphene and the sub-

strate.48,49 Figure 11 shows the energy gap caused by a stag-

gered potential U0¼ 0.1t. The edge states are visible as the

horizontal line segment at En¼6 U0. The level-spacing

statistics for the energy levels in the range U0 þ
2Ec¼ 0.12<En=t< 0.5 are shown in Fig. 12. The statistics

apparently still belong to the GOE class.

IV. EFFECT OF MAGNETIC FIELD ON LEVEL-SPACING
STATISTICS

A. Weak magnetic field

The presence of a magnetic field breaks the time-rever-

sal symmetry of the graphene system25 and, consequently,

the level-spacing distribution belongs to the GUE class. Fig-

ure 13 plots the same quantities as Fig. 4 for the same Africa

billiard with a uniform magnetic field /¼/0=8000. Figure

14 presents the level-spacing statistics for the one-eighth

Sinai billiard in Fig. 3(b) with /¼/0=8000. Figures 13(a)–

13(c) and 14(a)–14(c) indicate that the level statistics agree

well with the semiclassical predictions [Eqs. (5) and (6)].

The unfolded level-spacing statistics are shown in Figs.

13(d)–13(f) and 14(d)–14(f). In both cases, we observe

strong signatures of GUE statistics.

B. Strong magnetic field

For a stronger magnetic field, e.g., for /¼/0=800, the

quantization of the energy levels to Landau levels becomes

important. The energy levels are clustered, leading to

@N=@E!1, appeared in the plots of staircase function

[Figs. 15(a)–15(c) and 16(a)–16(c)] as the large vertical

steps. The staircase counting function deviates markedly

FIG. 11. (Color online) Eigenenergies of the Africa billiard of N¼ 42505

atoms with staggered potential U0¼ 0.1t, which demonstrates the band gap

caused by the staggered potential.

FIG. 12. (Color online) Level-spacing statistics for the Africa billiard of

N¼ 42505 atoms with staggered potential U0¼ 0.1t in the absence of mag-

netic field. (a) Spectral staircase function N(E) vs aE2 (solid curve). The

dashed straight line is the averaged staircase function [Eq. (6)]. The eigene-

nergies are in the range U0 þ 2Ec¼ 0.12<En=t< 0.5 that contains 946 lev-

els. (b) Unfolded level-spacing distribution P(S). (c) Cumulative unfolded

level-spacing distribution I(S). (d) Spectral rigidity D3.

FIG. 13. (Color online) Level-spacing statistics for the Africa billiard in

Fig. 3(a) for /¼/0=8000. (a) Wavevector staircase function N(k) for eige-

nenergies 0<En=t< 0.4 with a total of 559 energy levels. The curve is

hN(k)i¼Ak2=(2p) þ 35 [Eq. (4)]. (b) Spectral staircase function N(E) vs

aE2 for 0.02<En=t< 0.4 (solid curve). There are 522 levels. The dashed

straight line is the averaged staircase function [Eq. (6)]. (c) Magnification of

part of (b) for 0.02<En=t< 0.1 with 28 levels. (d) Unfolded level-spacing

distribution P(S). (e) Cumulative unfolded level-spacing distribution I(S). (f)

Spectral rigidity D3.
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from the semiclassical predictions. The unfolded level-spac-

ing distribution is shown in Figs. 15(d) and 16(d). The high

value of first data point is originated from the spacing of

energy levels within the Landau levels, which is basically

zero compared to the normal level-spacings. Figures 15(e)

and 16(e) show the cumulative distribution excluding the

first point. The results show deviations from GUE and are in

fact closer to GOE. Intuitively, this can be understood by

noting that the Landau levels “squeeze” the energy levels

around them [Figs. 15(c) and 16(c)], resulting in smaller

level-spacings and larger values of P(S) for small S. At the

same time, because the overall slope of the staircase count-

ing function is unchanged, the squeezing of energy levels

around the Landau levels tends to stretch the energy levels in

between the different Landau levels [Figs. 15(c) and 16(c)],

yielding large level-spacings and larger values of P(S) for

large S. This stretching “pushes” the level-spacing distribu-

tion from GUE to GOE. Similar results have been observed

in nonrelativistic quantum chaotic billiards where the system

is described by Schrödinger equation, in the energy range

where the density of states is low and the Landau levels are

apparent.

Figures 15(f) and 16(f) show the spectral rigidity, which

does not fall into any of the three known categories. This is

because the staircase function no longer follows the semi-

classical prediction when the effects of the Landau levels

cannot be neglected for strong magnetic field.

To illustrate the effect of level stretching and level

squeezing as caused by the eigenstates entering and leaving

a Landau level, respectively, we plot the eigenstates around

a Landau level in Fig. 17. A general observation is that,

when the energy is increased to enter a Landau level, both

the pattern and eigenenergies vary significantly, with less

correlation between adjacent states. When the energy is

increased further to leave the Landau level, the consecutive

states show a systematic variation and the level-spacing

becomes smaller. Note that, for extremely strong magnetic

field, almost all the energy levels are quantized to Landau

levels, between two Landau levels the states are such that the

electrons=holes are localized at the edge of the billiard, as in

nonrelativistic two-dimensional electron gas systems.50

For higher energy levels where the Landau level is not

apparent, the level-spacing statistics return to the GUE class

again. Figure 18 shows, for the one-eighth Sinai billiard, the

level-spacing statistics for eigenenergies in the range

0.4<E=t< 0.7. Figures 18(b)–18(d) indicate GUE statistics.

Although in this energy range trigonal warping becomes

dominant (Fig. 1), which renders the theoretical description

of Dirac equation inappropriate, the energy levels can be ac-

cessible in experiments and thus relevant to graphene quan-

tum-dot operations. We note that N(En) still depends

hyperbolically on En [Fig. 18(a)], indicating a linear depend-

ence between En and kn. This can be understood that in this

energy range, the trigonal warping determines the scars

FIG. 14. (Color online) Level-spacing statistics for one-eighth of the Sinai

billiard in Fig. 3(b) for /¼/0=8000. (a) Wavevector staircase function N(k)

for eigenenergies 0<En=t< 0.4 with a total of 590 energy levels. The curve

is hN(k)i¼Ak2=(2p) þ 34 [Eq. (4)]. (b) Spectral staircase function N(E) vs a
E2 for 0.02<En=t< 0.4 (solid curve). There are 550 levels. The dashed

straight line is the averaged staircase function [Eq. (6)]. (c) Magnification of

a part of (b) for 0.02<En=t< 0.1 with 30 levels. (d) Unfolded level-spacing

distribution P(S). (e) Cumulative unfolded level-spacing distribution I(S). (f)

Spectral rigidity D3.

FIG. 15. (Color online) Level-spacing statistics for the Africa billiard in

Fig. 3(a) for /¼/0=800. (a) Wavevector staircase function N(k) for eigene-

nergies 0<En t< 0.4 with a total of 560 energy levels. The curve is

hN(k)i¼Ak2=(2p) þ 34 [Eq. (4)]. (b) Spectral staircase function N(E) vs

aE2 for 0.02<En=t< 0.4 (solid curve). There are 509 levels. The dashed

straight line is the averaged staircase function [Eq. (6)]. (c) Magnification of

part of (b) for 0.02<En=t< 0.15 with 52 levels. (d) Unfolded level-spacing

distribution P=S). (e) Cumulative unfolded level-spacing distribution I(S).

(f) Spectral rigidity D3.
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(electron density patterns obtained from eigenstates) in the

system, and restrains them to having line segments only in

three directions, e.g., from the Dirac points to the origin.51

Along these directions, the E� k relation is approximately

linear up to E=t�1. This explains the hyperbolic relation

between N(En) and En even for high energies far away from

the Dirac point.

The above observation of the GUE statistics for higher

eigenenergies, from another aspect, corroborates our argu-

ments that, around the Dirac point, the energy level-spacing

statistics are shifted “artificially” to GOE by the Landau lev-

els. This could be important as the level-spacing can possibly

be revealed in the peak spacings of the conductance in the

corresponding quantum dots made from “open” billiards.52

Magnetic field effects in classical billiards have been

studied in Ref. 53, where it was found that for billiards with

sufficiently smooth boundaries, such as the integrable ellipti-

cal billiard system, flyaway chaos can be induced by an in-

termediate magnetic field, but increasing the magnetic field

further to the Landau regime can squeeze out the existence

of this chaos.

V. CONCLUSIONS

We have examined the level-spacing statistics of chaotic

graphene billiards in the low-energy regime around the Dirac

point where the energy-momentum relation is linear so that

the quasiparticles are characteristic of relativistic motion.

Our general finding is that, in the absence of magnetic field,

the level-spacings follow the GOE statistics. The GOE distri-

bution is robust with respect to various modifications to the

Hamiltonian such as the addition of next nearest-neighbor

interactions, different lattice orientations, boundary-bond

effect, and staggered potentials. This should be contrasted to

the GUE statistics predicted for relativistic, spin-half par-

ticles such as neutrinos in chaotic billiards in the absence of

magnetic field. The underlying mechanism for the GOE sta-

tistics in chaotic graphene billiards is the finite-boundary

induced coupling of the quasiparticle motions about the two

Dirac points, which preserves the time-reversal symmetry.

We have also investigated the effect of magnetic field

on the level-spacing statistics, which breaks the time-reversal

symmetry. For weak magnetic field, the level-spacing statis-

tics become of the GUE type. However, for strong magnetic

FIG. 17. (Color online) Some typical consecutive states for the Africa bil-

liard around a Landau level for a smaller system with 13 859 atoms. The

energies are E=t¼ 0.1596,0.1651,0.1664,0.1666,0.1684,0.1693 for (a)–(f),

respectively. The level-spacings for these states are DE=t¼ 0.0055,0.0013,

0.0002,0.0018,0.0009. (c) and (d) are two Landau-level states.

FIG. 18. (Color online) Level-spacing statistics for the billiard in Fig. 3(b)

for /¼/0=800. (a) Spectral staircase function N(E) vs aE2 for En=t > 0.4

(solid curve). The dashed straight line is the averaged staircase function [Eq.

(6)]. (b) Spectral rigidity D3. (c) Unfolded level-spacing distribution P(S).

(d) Cumulative unfolded level-spacing distribution I(S). (b)–(d) are for

energy levels in the range of 0.4<En=t< 0.7 with a total of 1294 levels.

FIG. 16. (Color online) Level-spacing statistics for one-eighth of the Sinai

billiard in Fig. 3(b) for /¼/0=800. (a) Wavevector staircase function N(k)

for eigenenergies 0<En=t< 0.4 with a total of 589 energy levels. The curve

is hN(k)i¼Ak2=(2p) þ 34 [Eq. (4)]. (b) Spectral staircase function N(E) vs

aE2 for 0.02<En=t< 0.4 (solid curve). There are 538 levels. The dashed

straight line is the averaged staircase function [Eq. (6)]. (c) Magnification of

a part of (b) for 0.02<En=t< 0.1 with 57 levels. (d) Unfolded level-spacing

distribution P(S). (e) Cumulative unfolded level-spacing distribution I(S). (f)

Spectral rigidity D3.
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field, around the Dirac point where the density of states is

low, Landau levels arise. As a result, energy levels are

squeezed about and stretched in between the Landau levels,

shifting the level-spacing distribution from GUE to GOE.

This is, however, an artificial effect because, in this case, the

spectral staircase function, one of the fundamental quantities

in characterizing energy-level statistics, deviates signifi-

cantly from the semiclassical prediction. For higher energy

levels well above the Dirac point for which the relativistic

quantum description becomes less relevant, the GUE statis-

tics are recovered in the presence of a magnetic field.

In this paper, we have focused on the chaotic graphene

billiards. Mixed billiards exhibiting regular motion on invari-

ant tori for some initial conditions and chaotic motion for the

complementary initial conditions are also important subjects

in quantum chaos,54 and the level-spacing statistics of mixed

graphene billiards deserve future investigation.
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Rev. Lett. 74, 2666 (1995).
10P. So, S. M. Anlage, E. Ott, and R. N. Oerter, Phys. Rev. Lett. 74, 2662

(1995).
11M. V. Berry and R. J. Mondragon, Proc. R. Soc. London, Ser. A 412, 53

(1987).
12Neutrinos have a minuscule, but nonzero mass. See G. Karagiorgi, A.

Aguilar-Arevalo, J. M. Conrad, M. H. Shaevitz, K. Whisnant, M. Sorel,

and V. Barger, Phys. Rev. D 75, 013011 (2007).
13K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V.

Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
14F. Miao, S. Wijeratne, Y. Zhang, U. C. Coskun, W. Bao, and C. N. Lau,

Science 317, 1530 (2007).
15L. A. Ponomarenko, F. Schedin, M. I. Katsnelson, R. Yang, E. W. Hill, K.

S. Novoselov, and A. K. Geim, Science 320, 356 (2008).
16F. Libisch, C. Stampfer, and J. Burgdörfer, Phys. Rev. B 79, 115423 (2009).

17I. Amanatidis and S. N. Evangelou, Phys. Rev. B 79, 205420 (2009).
18L. Huang, Y.-C. Lai, and C. Grebogi, Phys. Rev. E 81, 055203(R) (2010).
19H. Suzuura and T. Ando, Phys. Rev. Lett. 89, 266603 (2002).
20M. Robnik, and M. V. Berry, J. Phys. A 19, 669 (1986); M. Robnik,

in Quantum Chaos and Statistical Nuclear Physics, Lecture Notes in

Physics, Vol. 263 (Springer-Verlag, Berlin, 1986).
21J. Wurm, A Rycerz, I. Adagideli, M. Wimmer, K. Richter, and H. U. Bar-

anger, Phys. Rev. Lett. 102, 056806 (2009).
22S. Ryu, C. Mudry, H. Obuse, and A. Furusaki, Phys. Rev. Lett. 99, 116601

(2007).
23K. Nomura, M. Koshino, and S. Ryu, Phys. Rev. Lett. 99, 146806 (2007).
24P. M. Ostrovsky, I. V. Gornyi, and A. D. Mirlin, Phys. Rev. Lett. 98,

256801 (2007).
25C. W. J. Beenakker, Rev. Mod. Phys. 80, 1337 (2008).
26C. Bena, Phys. Rev. Lett. 100, 076601 (2008).
27I. Brihuega, P. Mallet, C. Bena, S. Bose, C. Michaelis, L. Vitali, F. Var-

chon, L. Magaud, K. Kern, and J. Y. Veuillen, Phys. Rev. Lett. 101,

206802 (2008).
28T. Ando, T. Nakanishi, and R. Saito, J. Phys. Soc. Jpn. 67, 2857 (1998).
29S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, L. A. Pono-

marenko, D. Jiang, and A. K. Geim, Phys. Rev. Lett. 97, 016801 (2006).
30E. McCann, K. Kechedzhi, V. I. Falko, H. Suzuura, T. Ando, and B. L.

Altshuler, Phys. Rev. Lett. 97, 146805 (2006).
31A. F. Morpurgo and F. Guinea, Phys. Rev. Lett. 97, 196804 (2006).
32X. Wu, X. Li, Z. Song, C. Berger, and W. A. de Heer, Phys. Rev. Lett. 98,

136801 (2007).
33M. Y. Kharitonov and K. B. Efetov, Phys. Rev. B 78, 033404 (2008).
34A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K.

Geim, Rev. Mod. Phys. 81, 109 (2009).
35R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 61, 2981

(2000); A. Rycerz, J. TworzydŁo, and C. W. J. Beenakker, Nat. Phys. 3,

172 (2007); V. V. Cheianov, V. Fal’ko, and B. L. Altshuler, Science 315,

1252 (2007); J. L. Garcia-Pomar, A. Cortijo, and M. Nieto-Vesperinas,

Phys. Rev. Lett. 100, 236801 (2008).
36The magnetic field can be scaled down for larger confinements to yield

similar effects.
37H. P. Baltes and E. R. Hilf, Spectra of Finite Systems (B.-I. Wissenschaft-

severlag, Mannheim, 1976).
38L. Brey and H. A. Fertig, Phys. Rev. B 73, 235411 (2006).
39M. V. Berry and M. Tabor, Proc. R. Soc. London 356, 375 (1977).
40M. L. Mehta, Random Matrices (Academic, New York, 1967).
41A. Bohr and B. R. Mottelson, Nuclear Structure, Vol. 1 (Benjamin, New

York, 1969), Appendix 2C, pp. 294–301.
42Here we do not consider GSE since it is irrelevant to our studies.
43F. J. Dyson and M. L. Mehta, J. Math. Phys. 4, 701 (1963).
44O. Bohigas and M. J. Giannoni, Ann. Phys. 89, 393 (1975).
45B. Liu, G.-C. Zhang, L. Ding, J.-H. Dai, and H.-J. Zhang, Phys. Lett. A

260, 406 (1999).
46A. R. Wright, F. Liu and C. Zhang, Nanotechnology 20, 405203 (2009).
47Y.-W. Son, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. 97, 216803

(2006).
48C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).
49S. Y. Zhou, G.-H. Gweon, A. V. Fedorov, P. N. First, W. A. de Heer,

D.-H. Lee, F. Guinea, A. H. Castro Neto, and A. Lanzara, Nature Mater. 6,

770 (2007).
50A. H. MacDonald, Phys. Rev. B 29, 6563 (1984).
51L. Huang, Y.-C. Lai, D. K. Ferry, S. M. Goodnick, and R. Akis, Phys.

Rev. Lett. 103, 054101 (2009).
52Y. Alhassid and C. H. Lewenkopf, Phys. Rev. Lett. 75, 3922 (1995).
53M. Robnik and M. V. Berry, J. Phys. A 18, 1361 (1985); M. Robnik, in

Nonlinear Phenomena and Chaos, Malvern Physics Series (Adam-Hilger,

Bristol, 1986); J. Phys. A 19, 3619 (1986).
54M. Robnik, Nonlinear Phenom. Complex Syst. (Minsk) 1, 1 (1998);
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