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Previous works on traffic-flow dynamics on complex networks have mostly focused on continuous
phase transition from a free-flow state to a locally congested state as a parameter, such as the
packet-generating rate, is increased through a critical value. Above the transition point congestion
occurs on a small subset of nodes. Utilizing a conventional traffic-flow model based on the packet
birth-death process and more importantly, taking into account the fact that in realistic networks
nodes have only finite buffers, we find an abrupt transition from free flow to complete congestion.
Slightly below the transition point, the network can support the maximum amount of traffic for
some optimal value of the routing parameter. We develop a mean-field theory to explain the
surprising transition phenomenon and provide numerical support. Furthermore, we propose a con-
trol strategy based on the idea of random packet dropping to prevent/break complete congestion.
Our finding provides insights into realistic communication networks where complete congestion
can occur directly from a free-flow state without any apparent precursor, and our control strategy
can be effective to restore traffic flow once complete congestion has occurred. © 2009 American
Institute of Physics. �DOI: 10.1063/1.3184539�

Understanding the dynamics of information flow on large
complex networks is a problem of considerable recent
interest. An important issue is the transition from free
flow to congestion, as a good understanding of the emer-
gence of congestion is a key to devising efficient strategies
to prevent and control such events. A number of previous
studies have reported the existence of continuous phase
transition from a free-flow state to a locally congested
state. The associated congested states are typically local
in that jamming occurs only on a small subset of nodes in
the network. In realistic situations congestions on large
scales and global congestions can emerge directly from a
free-flow state, which has been reported, e.g., on the In-
ternet. It is thus desirable to understand the occurrence
of global traffic congestion on complex networks. So far,
little attention has been given to the abrupt transition to
global congestion in network traffic. By using a local
traffic-routing model incorporating both finite packet
generation and finite buffer capabilities for nodes, we find
not only abrupt transition but also emergence of com-
plete congestion state. Based on numerical evidence and a
mean-field argument, we develop a theoretical under-
standing of this phenomenon. In addition, we articulate a
control strategy to prevent/break the complete congestion
and demonstrate its working on scale-free networks.

I. INTRODUCTION

Communication networks such as the Internet and vari-
ous wireless telephone networks are examples of key infra-
structure networks in a modern society. Due to the rapid
growths of these networks, congestions of information traffic
are expected to occur more and more frequently. It is a prob-

lem of broad interest to understand the dynamics of traffic
flow so as to develop control strategies to alleviate/eliminate
traffic congestions.1 There have been many empirical results
in this area, including the observation of phase transition
from a free-flow to a congested state,2 self-similarity of traf-
fic flows,3 scaling relations between the flow and
fluctuations,4,5 and congestion cascading.6,7 Reproducing
these observations by means of modeling represents a useful
approach to understanding and explaining the fundamental
dynamics of information traffic on various networks.8

Recent developments in complex networks9–12 have in-
spired interest in traffic-flow dynamics on these networks.
There is evidence that many large communication networks
exhibit highly heterogeneous degree distributions,9,10 gener-
ating efforts to explore the effects of different complex-
network topologies on traffic dynamics.11,12 For example,
packet-hopping models with different routing strategies, a
standard class of models in computer science, have been
studied on networks of regular and complex topologies.13–20

In some models, the number of packets is fixed, for which
analytical theories can be developed.19,20 However, a more
realistic situation is where the number of packets changes
constantly with time due to the birth and the death of packets
associated with traffic flow on the network,15–18 where death
is referred to as the removal of packets after arriving at their
destinations. In a packet-hopping model incorporating the
birth-death process, if the packet-generation rate exceeds a
critical value, a continuous phase transition from a free-flow
state to congestion can occur,15,18 regardless of the routing
protocol and of the network structure. After the transition,
the degree of congestion tends to become more severe as the
birth rate is increased further. Based on these results, many
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existing works have focused on improving the network resil-
ience to congestion by making perturbatively small adjust-
ments to the structure of the underlying network21–25 or by
designing better routing strategies.26–37 There is also a mod-
eling effort to reproduce the various dynamical behaviors
associated with realistic information traffic.38–42

Many previous works have focused on the onset of local
congestion where only a few nodes are jammed. This can
occur slightly beyond the onset of congestion due to the
continuous nature of the phase transition from a free-flow
state to congestion.15,18,24,25,31–33,35,42 However, in a realistic
communication network in the absence of effective control,
congestion may occur on a much large scale directly from a
free-flow state without any apparent precursor. A typical ex-
ample is the congestion cascading behavior occurred on the
Internet.6,7 It is thus of interest to study how traffic conges-
tion can arise on a global scale on complex networks from a
free-flow state. So far, abrupt congestion has received rela-
tively little attention. In Refs. 29 and 30, it was found that
traffic-aware schemes can induce rich behaviors in a phase
diagram, including a discontinuous phase transition between
a free-flow phase and a congested phase. In this paper, we
report a more severe congestion phenomenon, namely, an
abrupt transition from a free-flow state to a complete conges-
tion state as a consequence of a cascading process. The key
ingredient responsible for triggering the emergence of com-
plete congestion is the limitation of buffer capacities of
nodes. We investigate the emergence of globally abrupt con-
gestion by incorporating the finite buffer capacity into a
paradigmatic birth-death packet hopping model with a local
routing strategy.

In the free-flow regime, packets are forwarded to their
destinations in finite times. When the packet-generation rate
exceeds a critical value, all nodes are gradually fully occu-
pied by packets and no packets can hop among nodes ulti-
mately. In this case, the average time for a packet to reach its
destination becomes infinite. The striking feature is that no
intermediate state can exist between the two regimes. The
transition from a free-flow state to complete congestion is
thus abrupt, which we find is the consequence of a severe
type of congestion cascading process, where once small
numbers of nodes become congested, the congestion will
spread from the nodes to all other nodes in the network. We
also find that the maximum amount of traffic flow is
achieved infinitesimally below the phase-transition point. We
consider different values of the routing parameter for both
homogenous and heterogeneous packet-handling abilities of
nodes and obtain the optimal value of the routing parameter
with respect to the phase-transition point. We then develop
an analytic estimate for the optimal parameter value. Based
on these results, we propose a probabilistic packet-dropping
strategy to prevent a complete congestion by imposing that
congested nodes have an adjustable probability to drop all
packets stored in their buffers. It is thus desirable to find the
optimal dropping probability that can induce the highest
transmission efficiency under different conditions. This con-
trol strategy is practically implementable on real communi-
cation and information networked traffic systems.

In Sec. II, we describe our traffic-flow model. In Sec. III,
we study traffic dynamics based on homogeneous delivering
abilities for nodes. In Sec. IV, we investigate the flow dy-
namics on networks with heterogeneous node delivering
abilities. In Sec. V, a control strategy is articulated and ana-
lyzed for preventing/breaking the complete congestion. Con-
clusions and discussions are presented in Sec. VI.

II. MODEL

Our traffic model is as follows. Any node is character-
ized by a delivering capability d and a finite buffer capacity
B, where d denotes the maximum number of packets that can
be delivered from the node at each time step and B is the
maximum number of packets that can be stored in the node
ready for delivery. Here, B is an adjustable parameter and
identical for all nodes. With respect to the choice of the
parameter d, we consider two cases. First, in an idealized
setting the parameter d can be assumed to be identical for all
nodes. In this case we set d=1 for all nodes. Second, in a
realistic network, hubs can have a larger capability to process
and deliver packets. It is then reasonable to assume that the
delivering capability of node i is proportional to its degree ki.
For this case we shall set di=ki.

The dynamical evolution of the traffic flow is governed
by the following rules.

�1� Packet birth. At each time step, on each node one packet
is generated with probability g. The total number of gen-
erated packets on the network at each time step is then
Ng. Each generated packet is given a randomly selected
destination node.

�2� Packet routing. At each time step, all nodes forward
packets simultaneously. Node i performs a local search
of destinations within its neighbors for the packets
stored in its buffer. If a packet’s destination is one of i
neighbors, there are two possible cases: �a� if the desti-
nation’s buffer is not full, the packet is delivered directly
to the destination and then removed from the original
node and �b� if the destination’s buffer is full so that it
cannot accept more packets, the packet has to stay at
node i and wait for the next delivering opportunity. If
the packet’s destination is not in node i neighbors, we
adopt a local routing strategy proposed in Ref. 31, i.e.,
node i selects one of its neighbors, say, node j, accord-
ing to the probability kj

� /�l��i
kl

� for possible delivery of
the packet, where � is an adjustable routing parameter
and �i denotes the set of neighboring nodes of node i.
Even when node j buffer is not full, delivery may still
fail, as the total number of delivered packets to j may
exceed the available space in j buffer. �Here, the avail-
able space is the extra space in j buffer, having accom-
modated packets from the last time step.� In this case,
we randomly select some packets to fill in j buffer, while
those packets that cannot be forwarded stay at their
original nodes.

�3� Packet ordering. At each time step, every node can de-
liver at most d packets, and in the buffer of each node,
the last-in–first-out �LIFO� queuing rule is applied. �We
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have checked that using the first-in–first-out rule leads to
the same results as LIFO.�

The main difference between our model and previous
models15,18,24,25,31–33,35,42 is that we impose buffer limitation,
which changes characteristically the corresponding routing
strategy. This consideration is quite realistic as it takes into
account the fact that in manmade communication networks,
the storage capabilities of hosts and routers for data packets
are limited by cost, and this limitation will naturally influ-
ence the routing behavior when congestion occurs. As we
will see, the buffer limitation can lead to a sudden occur-
rence of complete congestion on the network.

There are two purposes to introduce the routing param-
eter �. First, from the perspective of optimized routing, the
optimal value of � can be sorted out in the presence of buffer
limitation to enhance the efficiency of information transmis-
sion and to avoid congestion. Second, different values of �
can be used to examine the generality of the abrupt transition
to global congestion with respect to different routing behav-
iors. The results will be shown below.

III. TRAFFIC FLOW UNDER HOMOGENEOUS NODE
DELIVERING CAPABILITY

We first consider our traffic model with identical deliv-
ering capability for all nodes on scale-free networks, i.e.,
d=1. All networks simulated in this paper are generated us-
ing the standard algorithm43 with size N=1000 and average
degree �k�=6. In a free-flow state, the number of generated
packets is approximately the number of removed packets. In
a jammed state, a subset of nodes can no longer deliver all
received packets, leading to a continuous accumulation of
packets. To gain insights into the characteristics of conges-
tion under different packet-generation rates, we examine the
congestion size s and the traffic flux F, defined as the number
of congested nodes and the total number of packets moving
from one node to another on the network, respectively. Rep-
resentative time evolutions of s and F for different values of
the generation rates g are shown in Fig. 1. We see that for

relatively small values of g �e.g., for g=0.001�, s�t� is zero so
that the traffic is free of any congestion. In this case, F�t�
increases from zero first and then reaches a steady state but
with fluctuations about its average value. For larger values of
g, s�t� tends to increase rapidly with time to N, the network
size, indicating the occurrence of a complete congestion state
where all nodes in the network are congested. Once such a
congested state sets in, no packets can be forwarded and
removed from the network, as can be seen by the corre-
sponding evolution of the traffic flux F�t�, which, after arriv-
ing at a peak, decreases quickly to zero. This observation
indicates that the complete congestion state can be persistent.

The steady-state congestion size s can be regarded effec-
tively as an order parameter to characterize the phase transi-
tion from free flow to congestion. Figure 2 shows s versus
the packet-generation rate g for different values of the buffer
capacity B and routing parameter �. We observe that s=0 for
small values of g. The striking phenomenon is that as g is
increased through a critical value, s attains the value of N
abruptly. That is, for g immediately above gc, a complete
congestion occurs, and there exists no intermediate state
where only a subset of nodes is congested. One can also use
other quantities as the order parameter to characterize the
transition, for example, the size of the giant component of
noncongested nodes. Because the transition occurs between
the free-flow state with nearly no congestion and a com-
pletely congested state, the giant component of noncongested
nodes can be either the scale of network size or vanish for
the two phases, respectively. The nature of the transition is
thus invariant with respect to two different order parameters.
The dependencies of the traffic flux on g for different param-
eters are shown in Fig. 3. We observe that in a free-flow
state, F is an increasing function of g. At the critical point gc,
F reaches a maximum. As g is increased through gc, F de-
creases to zero rather suddenly. This abrupt transition to
complete congestion is characteristically different44,45 from
various continuous phase transitions reported in the
literature.15,18,24,25,28,31–33,35,37,42

FIG. 1. �Color online� Time evolution of �a� congestion size s�t� and �b�
traffic flux F�t� under different packet generation rate g. Simulation param-
eters are B=5, �=0, and N=1000.

FIG. 2. �Color online� Steady-state congestion size s as a function of the
packet-generation rate g for different values of the buffer capacity B and the
routing parameter �. The size is calculated by averaging over 50 000 time
steps after the system enters a steady state. In all cases, there is an abrupt
transition to massive congestion where all nodes in the network are
congested.
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Qualitatively, the abrupt transition from free flow to
complete congestion is caused by the buffer limitation and
the resulting routing behavior. Due to the buffer limitation, a
node is not able to accept more packets when congested. The
packets that are supposed to be delivered to the congested
node from its neighbors will be accumulated at these neigh-
boring nodes, leading to more congestions. There is a cas-
cading process by which congestion can spread to the entire
network in a short time. Besides, as reported in Refs. 29 and
30, abrupt transition can be induced by traffic-aware schemes
as well. Our computations and analysis have indicated that
the transition to globally complete congestion results from
buffer limitation.

The results in Figs. 2 and 3 indicate that the maximally
possible free-traffic flux is achieved for g�gc. A larger value
of gc indicates that the underlying network is more resilient
to traffic congestion. It is thus insightful to investigate the
behavior of gc with respect to variations in the buffer size B
and in the routing parameter �. Figure 4 shows gc as a func-
tion of � for different values of B. For each B value, there
exists a maximum value for gc in the middle range of �
shown. The value of � for which gc reaches a maximum is

then the optimal routing parameter. For the optimal value of
�, not only can the highest packet-generation rate for free
flow be supported, but the traffic flux is also maximized. As
B is increased, so is the maximum value of gc. This is so
because a node with a smaller buffer will be more suscep-
tible to congestion. The optimal value of �, however, de-
creases with B, as indicated by the arrows in Fig. 4.

To gain a quantitative understanding of the phenomenon
in Fig. 4, we consider the number of packets received by a
node of degree k at time t, denoted by nk

r�t�. Let the number
of delivered packets be nk

d�t�. At time t, for B�d and uncor-
related networks �no degree-degree correlation among
nodes�, our routing protocol gives

nk
r�t� = k �

k�=kmin

kmax k�P�k��
�k�

nk�
d �t�

k�

k��k�=kmin

kmax k�P�k��
�k� k��

, �1�

where k� is the degree of a neighboring node of a node of
degree k, k� is the degree of a neighboring node of a node of
degree k�, P�k�� is the degree distribution of the network,
and kmin and kmax are the minimum and the maximum de-
grees of the network, respectively. When the network attains
the maximum packet-handling capability, the number of
packets received at each node is equal to the number of
nodes delivered so as to fully utilize the delivering capabili-
ties of all nodes. Since in a free-flow state, the numbers of
received and delivered packets are approximately indepen-
dent of time, we can replace both nk

r�t� and nk
d�t� in Eq. �1�

with d. This leads to

1 =
k1+�

�k1+��
, �2�

where the following identities have been used:
�k=kmin

kmax P�k�=1 and �k�=kmin

kmax k�1+�P�k��= �k1+��. For a hetero-
geneous network, in order for Eq. �2� to be satisfied by nodes
with varying degrees, the choice of � should be �=−1,
which is the optimal value of the routing parameter.

The theoretical estimate �opt=−1 is, however, an under-
estimate as compared to the numerical values. To explain the
discrepancy, we study the number of packets at nodes of
different degrees. As shown in Figs. 5�a� and 5�b�, for �=−1,
the average values of the maximum numbers of packets and
the average numbers of packets for a small subset of large
degree nodes are degree independent. There are fluctuations
about the average values for nodes with smaller degrees.
Since the buffer capacities are assumed to be the same for all
nodes, larger fluctuations in the number of packets indicate a
higher probability for the corresponding node to be con-
gested. As a result, nodes of relatively small degrees are
more susceptible to congestion. When a node gets congested,
it can trigger subsequent congestions on its neighboring
nodes because the packets delivered from the neighboring
nodes cannot be accepted and have to queue. As a result, a
complete congestion is more likely to occur due to conges-
tions at low-degree nodes. To avoid this situation, the opti-
mal routing parameter should be larger than �1 so that more
packets are forwarded to higher-degree nodes. The phenom-
enon of fluctuation-induced congestion at lower-degree
nodes can become more severe as the buffer capacity is de-

FIG. 3. �Color online� Traffic flux F as a function of g for different values
of the buffer-capacity parameter B and of the routing parameter �, where F
is calculated by averaging over 50 000 time steps after the system settles
into a steady state.

FIG. 4. �Color online� Critical generation rate gc vs the routing parameter �
for different values of the buffer capacity B. Each data point is obtained by
averaging over ten network realizations and ten runs of traffic dynamics
starting from random initial packet distribution for each network realization.
The maximum values of gc are marked by arrows.
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creased. From the perspective of control, for smaller buffer
capacity, the value of � should be increased so that packets
can bypass the lower-degree nodes. Traffic fluctuations at
low-degree nodes are thus responsible for the deviation of
the optimal routing parameter away from the theoretical es-
timate of �1.

IV. TRAFFIC FLOW UNDER HETEROGENEOUS NODE
DELIVERING CAPACITY

A meaningful way to impose heterogeneity in node de-
livering capacity is to set di=ki. Our computations have re-
vealed, however, abrupt transitions from free-flow state to
complete congestion similar to those observed under homo-
geneous node delivering capacities. The dependencies of the
transition point gc on the routing parameter � for different
buffer capacities B are shown in Fig. 6. We again observe the
existence of an optimal value of � for each B, which is larger

than �1. However, the dependence of the optimal value of �
on B differs from that in the homogeneous case. There is in
fact a positive correlation between the two quantities in the
sense that a higher value of B leads to a larger optimal value
for �. To understand this behavior, we again consider Eq.
�1�. For B�d, nk

r�t� is replaced by dk=k. We then have

k = k �
k�=kmin

kmax k�2P�k��
�k�

·
k��k�

k��k�=kmin

kmax k�1+�P�k��
, �3�

which yields

1 =
k��k�
�k1+��

. �4�

Due to the heterogeneous degree distribution of the network,
to satisfy Eq. �4� for all possible degrees k requires �=0.
There are still, however, discrepancies between this estimate
and the numerical values.

A heuristic explanation is provided in the following. For
�=0, packets perform a random walk. If the buffers of nodes
are unlimited, at each time, the number of packets received
by a node from its neighbors is approximately proportional
to the number of its neighbors for uncorrelated networks.
Since the delivering capacities of nodes are proportional to
node degrees as well, all nodes’ delivering capacities are
fully utilized. In other words, the delivering capacities match
the receiving loads for all nodes so that in this case, it is
unlikely that packets can accumulate in node buffers to trig-
ger congestion cascades. Random walk is thus the optimal
routing behavior for heterogeneous delivering capacity with
unlimited buffer capacity. However, since the buffer capaci-
ties for all nodes are limited, higher-degree nodes are not
able to accept more packets than those allowed by their
buffer capacities. The excessive packets to be delivered from
a neighboring node to a high-degree node are thus placed in
a queue, leading to congestions at the neighboring node. As a
consequence, the optimal value of � needs to be negative to
allow redundant packets to bypass high-degree nodes. In ad-
dition, we observe that high-degree nodes with smaller val-
ues of B are more susceptible to congestion, which also ar-
gues for a lower value of � to avoid congestions. There is
then a positive correlation between the optimal value of �
and B.

V. A CONTROL STRATEGY

Control strategies have been previously proposed for
mitigating traffic burden and enhancing network capacity in
routing traffic, such as modifying the structure of underlying
networks21–25 and designing more efficient routing
algorithms.26,28,31–37 When a massive congestion occurs on a
global scale where every node in the network is congested,
these strategies will not be effective, since no nodes can
receive additional packets. It is necessary to actually remove
packets from the buffers of some nodes so that traffic may
start to flow again. When a free-flow state is resumed, the
removed packets can be redelivered from their sources to
destinations. Motivated by this consideration, we propose a
random packet-dropping process. In particular, let Pd be the

FIG. 5. �Color online� The maximum and average numbers of packets nk in
nodes as functions of their degrees k for �=−1. The scattered data at a given
degree represent �a� the maximum number of packets and �b� the average
number of packets on different nodes of the same degree. The average
number of packets is calculated by averaging over 50 000 time steps after
the system reaches a steady state. Other parameters are g=0.0002 and N
=1000. The dashed line in �b� is for reference.

FIG. 6. �Color online� For heterogeneous node delivering capacities defined
by dk=k, the dependence of the critical generation rate gc on the routing
parameter � for different values of B. The maximum values of gc are
marked by arrows.
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probability with which congested nodes drop all packets
stored in their buffers. The quantity 1− Pd is then the prob-
ability that a congested node is not affected. The result of the
random packet-dropping strategy can be quantified by the
packet arrival rate A, defined as the average number of pack-
ets reaching their destinations at each time step. If the control
fails to restore the traffic flow so that complete congestion
persists, the value of A will be zero.

Figure 7 shows the arrival rate A as a function of the
dropping probability Pd under different conditions. The drop-
ping process is performed starting from the first time step. At
each time step, each congested node drops all packets in its
buffer according to probability Pd. We see that the strategy is
indeed quite effective to avoid complete congestion, as re-
flected by the nonzero values of A in steady states. The op-
timal value of Pd that maximizes the value of A increases as
the packet-generation rate g is increased. In addition, the
value of A also increases with g. To gain insight into the
occurrence of the optimal value of Pd, we consider the evo-
lution of the total number nT�t� of packets on the network as
follows:

dnT�t�
dt

= g�N − s�t�� − A�t� − s�t�PdB , �5�

where s is the congestion size. Since packets cannot be gen-
erated on congested nodes, g�N−s�t�� is the total number of
generated packets at time step t and s�t�PdB is the number of
dropped packets. In a steady state, nT, s, and A are indepen-
dent of time and, hence, we have dnT�t� /dt=0. Equation �5�
then becomes

A = gN − s�g + PdB� . �6�

As the dropping probability Pd is increased, the congestion
size s decreases. Equation �6� indicates that for fixed values
of g and B, to maintain a certain value for A, increasing Pd

will cause a decrease in s and vice versa. More intuitively,
for a small value of Pd, the dropping strategy has a little
effect on alleviating complete congestion so that only a small
number of packets can reach their destinations and the value
of A is close to zero. For a high value of Pd, many packets
are dropped before arriving at their destinations. In this case,
although complete congestion no longer occurs, the arrival
rate is low. Therefore, we expect the value of A to be maxi-
mized for some value of Pd, neither too small nor too large.

In a free-flow state, due to the balance between the num-
ber of generated packets and that of removed packets, the
number of packets reaching their destinations at each time
step is equal to the product of the generation rate and the
network size. Hence, the maximum value of A in the absence
of control is gcN. When the strategy of random-packet drop-
ping is executed, the value of A can be maximized. Let the
maximum value be Amax. Figure 8 shows the ratio
Amax / �gcN� versus g for different values of B and �. We see
that ratio can be enhanced for larger values of g. The fact
that all values of the ratio are larger than unity indicates the
effectiveness of the control strategy.

We remark that our packet-dropping strategy is appli-
cable to traffic systems where complete congestion occurs
due to cascading. Dropping packets from congested nodes
can effectively inhibit the cascading process. For traffic sys-
tems with continuous phase transition where the node buffer
capacity is tacitly assumed to be infinite, packets will con-
tinuously pile up at congested nodes and congestion cannot
spread over the network in a cascading fashion. For such
systems, our strategy will not be effective.

VI. CONCLUSIONS

We have studied the traffic dynamics on complex net-
works using a traffic-routing model based on local topologi-

FIG. 7. �Color online� Arrival rate A as a function of random packet-
dropping probability Pd for different values of g, B, and �, where A is
obtained by averaging over 50 000 time steps after the system settles into a
steady state. Each data point is also averaged by ten network realizations.

FIG. 8. �Color online� Ratio between the maximum arrival rate Amax and the
arrival rate gcN in the absence of control. The averaging process is the same
as in Fig. 7.
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cal information under the realistic consideration that both the
node delivering and buffer capacities are finite. Utilizing the
congestion size as an order parameter, we have found an
abrupt transition from a free-flow state to a complete conges-
tion state. Infinitesimally below the transition point, packet
generation rate and the amount of traffic flow on the network
are maximized. We have also investigated the dependence of
the transition point on the routing parameter and found the
existence of optimal values of the routing parameter for both
situations where the node-delivering capabilities are homo-
geneous and heterogeneous. When the routing parameter as-
sumes the optimal value, network traffic is highly efficient in
the sense that both the packet generation rate and the amount
of traffic flow can be maximized. There exists a positive
correlation between the optimal value of the routing param-
eter and the node-buffer capacity. We have utilized the mean-
field approximation to explain this “resonance” phenomenon.
To break the complete congestion, we have proposed and
tested a random packet-dropping strategy. Our computations
reveal the existence of an optimal value for the dropping
probability for which complete congestion can be effectively
eliminated.
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