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Detecting a weak signal from chaotic time series is of general interest in science and engineering.
In this work we introduce and investigate a signal detection algorithm for which chaos theory,
nonlinear dynamical reconstruction techniques, neural networks, and time-frequency analysis are
put together in a synergistic manner. By applying the scheme to numerical simulation and different
experimental measurement data sets �Hénon map, chaotic circuit, and NH3 laser data sets�, we
demonstrate that weak signals hidden beneath the noise floor can be detected by using a model-
based detector. Particularly, the signal frequencies can be extracted accurately in the time-frequency
space. By comparing the model-based method with the standard denoising wavelet technique as
well as supervised principal components analysis detector, we further show that the nonlinear
dynamics and neural network-based approach performs better in extracting frequencies of weak
signals hidden in chaotic time series. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2827500�

Traditionally, there are basically two kinds of techniques
for signal processing. They are time-domain, such as
beam forming, and frequency-domain, such as power
spectral density, short-time Fourier transform, Wigner–
Ville distribution, etc. In nonlinear processing of physical
signals, a third kind of technique, i.e., phase-space recon-
struction and analysis, has become common. The concep-
tual breakthrough, together with the availability of sens-
ing and data processing technologies, has generated an
enormous interest in the application of nonlinear dynam-
ics. Nonlinear signal processing methods, which analyze
signals from the dynamical perspective, offer an alterna-
tive paradigm. However, detecting signals hidden beneath
the noise floor is still a challenging task. As the signal-to-
noise ratio falls below unity, false alarms and detection
misses become serious problems. Furthermore, to satisfy
real-time requirements, detection schemes that are com-
putationally intensive do not enjoy widespread adoption.
In this work we introduce a small target detection strat-
egy based on chaos, phase-space embedding technique,
neural networks, and power spectral analyses. The ap-
proaches proposed are applicable to the problem of non-
linear modeling and detection. By analyzing different ex-
perimental measurement data sets, we demonstrate that

the frequencies of signals hidden in the chaotic data can
be extracted accurately.

I. INTRODUCTION

Signal detection and separation are problems commonly
encountered in science and engineering.1–16 Conventional
signal detection techniques17 based on statistical decision
theory typically approach the problem via the methodology
of hypothesis testing. Specifically, a choice is made between
two hypotheses through the use of some decision-making
criterion. The decision-making problem is usually solved by
Bayes’ hypothesis-testing procedure, with some statistical as-
sumptions or parametric characterizations of noise. The
problem becomes more challenging when a target signal is
much weaker, say, with a less-than-unity signal-to-noise ratio
�SNR�, than the background chaotic signal or noise. Most
importantly, the unwanted background noise could be gener-
ated by an unknown nonlinear dynamical mechanism, ren-
dering the assumptions of linearity, Gaussianity, and station-
arity, which are typically made in the standard statistical
approach to signal processing, invalid.

Recently, nonlinear dynamical modeling1–3,15,16,18,19 has
been combined with other techniques such as artificial neural
network20 �ANN� and time-frequency analysis21 to give rise
to a class of algorithms for signal detection. Research has
shown that different ANNs,8,9 such as principal components
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analysis, multilayer perceptron and radial basis function
�RBF� networks, etc., are able to perform the task of detect-
ing signals in time series data contaminated by nonlinear and
nonstationary background noise.

Dynamical modeling consists of matching the behavior
of a computational system to that exhibited by the measure-
ment data obtained from a physical system. If the dynamical
system is linear, an autoregressive moving average �ARMA�
model is sufficient. However, for nonlinear systems, ARMA
models are not sufficient and alternative models must be
used. Many modeling techniques can be used to solve prob-
lems of this type; for example, rational polynomial,
multilayer perceptrons, RBF and support vector neural net-
works, etc.8–10

In this work, we use a RBF neural network to build our
underlying dynamical equations. The signal-detection prob-
lem is solved by using a model-based algorithm. Theoreti-
cally, such a model-based detector can yield a good detection
performance if the interference results from a chaotic dy-
namical system. In experimental environments, however, it is
practically impossible to separate the deterministic compo-
nent of a measured signal from random noise. In this case, a
model-based method can be quite effective, as we shall dem-
onstrate in this paper. We first discuss a nonlinear dynamical
modeling scheme based on phase-space reconstruction,18,19,22

RBF neural networks,20,23 and frequency spectrum
analysis.21 The model8–10 is used to design a chaos-based
signal enhancement detection strategy. Behaviors of this de-
tector are studied by using computer generated chaotic data.
We then apply the detection algorithm to several experimen-
tal measurement data sets, such as chaotic circuit and NH3

laser data.

II. MODEL-BASED DETECTOR

We first introduce and review a model-based detector.
RBF networks are a special class of feed-forward networks
that consist of three different layers:20 an input layer, one
hidden layer, and an output layer. An important property of
RBF networks is that the transformation from the input layer
to the hidden layer is nonlinear; however, the mapping from
the hidden layer to the output layer is linear. The basic form
of a RBF model can be written as20

f�x� = �
i=1

Nc

wihi�x� , �1�

where f is expressed as a linear combination of a set of Nc

fixed basis functions hi, and wi are linear coefficients. A con-
venient choice for hi is the Gaussian radial function

h�x� = exp�−
�x − xc�2

r2 � , �2�

with center xc and radius r. By using a training set

I = ��xi, ŷi�	i=1
N , �3�

where N is the length of the data points, one obtains the
optimal weight vector8

W = �HTH + �INc
�−1HTŷ . �4�

Note that I is the Nc�Nc unit matrix, while H is the N�Nc

design matrix calculated in terms of the RBFs in Eq. �2�. In
Eq. �4�, the regularization parameter � is associated with low
values of the prediction error. To choose a suitable regular-
ization parameter is important for avoiding over-fits of the
underlying equation to noisy data,9 and there are many
techniques,23 for example, Bayesian information criterion
�BIC� and generalized cross-validation, etc., to determine the
optimal regularization parameter.

Since all the model selection criteria depend nonlinearly
on �, a method of nonlinear optimization is needed. One
could use any of the standard techniques for this, such as the
Newton method. Alternatively, one can exploit the fact that
when the derivative of the prediction error is set to zero, the
resulting equation according to BIC can be manipulated so
that � can be expressed as follows:23

� =
ŷTP2ŷ Tr�A−1 − �A−2�

WTA−1W

N ln�N�
2�N − ���N + �ln�N� − 1��	

, �5�

where P= I−HA−1HT is the projection matrix, A−1= �HTH
+�I�−1 is the variance matrix, and �=N−Tr�P� denotes the
effective number of parameters. Note that Eq. �5� is not a
solution; it is a re-estimation formula because the right-hand
side depends on �. To use it, an initial value of � is chosen24

and used to calculate a value for the right-hand side. This
leads to a new estimate and the iterative process can continue
until satisfactory convergence is achieved. Once the regular-
ization parameter � is chosen with the knowledge of the
training data set �3�, one may compute the design matrix H
using RBFs and then obtain the optimal vector of weights W
that minimizes the mean-squared prediction error.

An important problem concerns how a training set can
be built from a single time series of measurement. A simple
method for constructing the input-output pairs of the network
is to apply the phase-space reconstruction technique. Given a
finite time series data v�n�, where v is a component of a
vector V that represents a variable evolving according to
some unknown dynamical system, our goal is to predict the
near-future behavior of the time series v�n�. This can be done
in principle. In particular, Takens embedding theorem18,19 en-
sures that, under certain conditions, for almost all time delay
� and for some m�2D+1, where D is the fractal dimension
of the attractor and m is the embedding dimension, there is a
smooth g :Rm→R1 such that

v�n�� = g�v��n − 1���, . . . ,v��n − m���� . �6�

Comparing Eq. �3� with Eq. �6�, we see that the training set
�3� can be written in the following form:

I 
 �v�i + �j − 1���,v�i + m��	i=1,. . .,N
j=1,. . .,m, �7�

where � is the time delay, and �v�k� ,k=1, . . . ,N�	 with N�
=N+m� is the observed time series to be analyzed. After the
input-output pairs I are given, one can proceed to choose an
optimal regularization parameter � by the BIC algorithm �5�,
and the minimum number of center points by minimizing the
mean-squared error �MSE�. After obtaining the design matrix
H and the weights W of the networks through training, we
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form the underlying dynamical model �1�, which may be
rewritten in the form f�x�=HW.

We now turn to the problem of designing the detection
algorithm by using the prediction equation �1�. We introduce
here a detection strategy8 rooted in chaos theory. It is based
on the existence of at least one positive Lyapunov exponent
in the chaotic dynamical system responsible for the genera-
tion of an initial chaotic process v0�n�. The basic idea is as
follows. Since chaos can be generated in a deterministic non-
linear dynamical system, we may invoke Takens embedding
theorem to build a model �1� that represents a reconstruction
of the system responsible for generating v0�n�. For a real
observed signal v�n� that contains a target signal s�n�, the
model is no longer suitable as v�n� in general differs from
v0�n�. The target signal s�n�, however, manifests itself as a
perturbation at the output of the model. Mathematically, the
difference between the predicted data f�x� and the data
ŷmeas�n� may be expressed as

e�n + 1� = f�xmeas,W� − ŷmeas�n + 1�

= f�x�n� + s�n�� − �f�x�n�� + s�n��

� f�x�n�� + � f/�x�n� · s�n� − f�x�n�� − s�n�

� s�n��� f/�x�n� − 1�

� s�n��e�in − 1� , �8�

for i=1, . . . ,m, where �i is the ith Lyapunov exponent, m is
the dimension of the dynamical system, and n gives the in-
dex of time series. For a chaotic system, �i�0 for some i,
we thus see that the target signal is enlarged by e�in�1 and
e�n��s�n�. It should be noted that the linear analysis given
in Eq. �8� cannot be used directly to extract the signal com-
ponent s�n� from a chaotic time series. However, this expres-
sion provides the basis of a method to detect the existence of
a “weak” signal component. On the one hand, the prediction
error e will behave like a random series if the measured data
ŷmeas does not contain any signal component. The error
source may be the device error and/or the modeling error.
Their corresponding error spectra reveal pseudorandom fea-
tures. When a signal component is present in ŷmeas, on the
other hand, the prediction error e as defined in Eq. �8� indi-
cates the existence of the enhanced signal component. By
analyzing the characteristics of the error series e�n� using,
for example, a time-frequency analysis and comparing its
spectrum with the spectrum of the original data, s�n� can thus
be detected if any new feature in the spectrum of e�n� is
observed.

A step-by-step implementation of our model-based de-
tection algorithm is as follows.

• Consider two time series �v0�i� , i=1, . . . ,N0�	 and �v�i� , i
=1, . . . ,N�	. The former labeled with subscript “0” is a
time series of the background environment in the absence
of target signal, and the latter consists of both the back-
ground and the target signal.

• Determine the optimal reconstruction parameters4–7 �em-
bedding dimension m and time delay �� based on nonlinear
time series analysis techniques Eq. �6�. In particular, m can
be determined by computing the correlation dimension or

false nearest neighbors, and � can be given by computing
the autocorrelation or mutual information.18,19

• With Eqs. �3� and �7�, we can reconstruct the input-output
pairs of RBF networks using both the training and test data
series: �xi,0

j , ŷi,0	 with j=1, . . . ,m, i=1, . . . ,N0=N0�−m�
and �xi

j , ŷi	 with j=1, . . . ,m, i=1, . . . ,N=N�−m�.
• Determine the optimal regularization parameter � using

Eq. �5� and the minimum number of the hidden layer by
minimizing the prediction error.

• Choose a radial basis function �2� with a suitable width to
compute design matrices H0 and H.

• Obtain the optimal vector W0 of weights of the network in
terms of Eq. �4�.

• Using the trained network parameters and test series, we
can compute the prediction error between the measured
series and the prediction data e= ŷ−HW0.

• Analyze the characteristics of the error series e using time-
frequency analysis and compare its spectrum with the
spectrum of the original data. Any new feature in the spec-
trum of e is indicative of the presence of the weak target
signals.

• Compute the mean-square value Re=�i=1
N �e�i��2 /N and

compare Re with the threshold for a given probability of
false alarm. Exceeding the threshold indicates successful
detection of the target signal.

III. MODELING, DETECTION, AND ROBUST
ANALYSES USING A NUMERICAL EXAMPLE

A. Modeling

As an example, we consider a time series v�i��=x�i��, i
=1, . . . ,4000 generated from the x component of the Hénon
map

x�n + 1� = 1 − 1.4x2�n� + y�n� ,

�9�
y�n + 1� = 0.3x�n� .

The embedding dimension can be determined from the cor-
relation dimension D2. For the Hénon data, it is found that
D2�1.19. Thus, the embedding dimension is taken as m
=Ceil�2D2+1�=3. To determine the time delay �, we com-
pute the autocorrelation function and/or mutual information.
For this time series, we get �=1. Using Eq. �7�, we can
construct the input-output pairs of the RBF networks. To test
the modeling performance, we use the first 2000 points as the
training series to model the underlying dynamics, and the
second 2000 points for testing purposes.

In order to design the matrix H0 using the training series,
we determine the number of center points required. By ap-
plying the minimum MSE value as a modeling criterion, we
obtain Nc=40. The center points are randomly chosen from
the reconstructed attractor. To get the optimal regularization
parameter �, we use the BIC algorithm. The optimal value is
found to be ��2.81�10−12�0.

Using the test data set and the underlying equation, we
can get one-step prediction data. As shown in Fig. 1�b�, the
modeling data completely fits the test series, where MSE
�0.0001 is small. We also compute the correlation dimen-
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sion of the modeling series. Its value is D2�1.24, which is
compatible with the true value of 1.19. Our neural-network-
based model is thus suitable for the Hénon chaotic system.

B. Detection and robust analyses

We now illustrate the detection performance of our
scheme with the Hénon map. We use the x component of the
map and add a two-frequency target signal s�tn�
=sin�2�f0tn�+0.8 sin�3�f0tn� �f0 is the fundamental fre-
quency of the signal� to the chaotic data with SNR
=−35 dB. For such a small value of SNR, Fig. 2 shows that

the signal frequency is completely hidden in the chaotic
broadband spectrum. Figures 3�a� and 3�b� show the ampli-
tude spectra of the original Hénon data and the data with
hidden target signal. The detection result is given in Fig.
3�c�. As expected, two frequencies �f0=60 and 90� of the
target signal can be correctly extracted.

We have also considered a broadband signal s�tn�
=sin�2�f0�1+0.05tn�tn�, as shown in Fig. 4. The signal is
immersed completely in the chaotic data. The frequency
spectra of the original chaotic signal and the signal with tar-
get signal are shown in Figs. 5�b� and 5�a�, respectively.

FIG. 1. �Color online� �a� Hénon time
series for training RBF networks with
�m ,��= �3,1�. �b� Hénon time series
for testing RBF networks. Solid trace
is the original Hénon time series, and
the red trace �dashed line� corresponds
to one-step prediction data.

FIG. 2. �Color online� Power spectrum of Hénon cha-
otic signal and a two-frequency target signal with
SNR=−35 dB.
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Apparently, no signal feature can be found in Fig. 5�b�. After
using the RBF-based detection algorithm, the spectrum of
the signal �in 60	 f0	80� becomes observable, as shown in
Fig. 5�c�.

To analyze the robustness of our detection strategy, we
have considered the case where Gaussian noise is present in
the chaotic signal with several values of chaos-to-noise ratio
�CNR�.25 To characterize the tolerance of our scheme to
noise, we define a relative MSE:


mse =
MSE�0�

MSE
, �10�

where MSE�0� is the mean-squared error between the training
data and the corresponding RBF network modeling data, and
MSE is the mean-squared error between the test data and the
corresponding modeling data. Ensemble statistics are com-
puted for 100 different training and testing data sets, and the
regularization parameter is computed by the BIC algorithm

FIG. 3. �Color online� Frequency
spectra of �a� Hénon chaotic signal,
�b� mixed Hénon and target signal, and
�c� the prediction error. We see that the
two frequencies �f0=60 and 90� of the
target signal can be extracted
accurately.

FIG. 4. �Color online� Power spectra of the Hénon cha-
otic signal and a broadband target signal with SNR
=−35 dB.
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for each run. Four different CNR values are chosen. For each
CNR value, we add three different signal sources; namely,
periodic signal, computer-generated broadband signal, and a
real speech signal, to the Hénon chaotic time series. The
detection results are summarized in Fig. 6, where the shallow

dark line stands for the detection threshold for a given false
alarm. If 
mse exceeds the threshold, we say that a target is
present; otherwise, the scheme fails to detect a target signal.
From Fig. 6�a�, a case of noise-free Hénon time series, we
see that signal detection is possible for very low SNR values

FIG. 5. �Color online� Frequency
spectra of �a� Hénon chaotic signal,
�b� mixed Hénon chaotic and broad-
band target signal, and �c� the predic-
tion error.

FIG. 6. �Color online� Relative MSE
values vs SNR for four different CNR
values. The green trace specifies a de-
tection threshold. CNRs are �a� �, �b�
20 dB, �c� 10 dB, and �d� 5 dB.
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�SNR�−40 dB�. Indeed, Figs. 3�c� and 5�c� illustrate such
detection results. Furthermore, with respective CNRs of 20,
10, and 5 dB, Figs. 6�b�–6�d� show that targets can be de-
tected with SNRs larger than −25, −20, and −15 dB, respec-
tively. Therefore, better performance can be expected for
relatively higher values of CNR.

IV. APPLICATIONS TO EXPERIMENTAL DATA

A. Chaotic circuit data

In the first experiment, we consider a
Lorenz–Stenflo16,26–28 �LS� chaotic circuit. The circuit equa-
tions are given by27

C1u̇x = −
ux

R1,5
+

R1,3uy

R1,1R1,4
+

R1,3uv

R1,2R1,4
,

C2u̇y =
R2,2ux

R2,1R2,3
−

uy

R2,5
−

uxuz

R2,4
, �11�

C3u̇z =
R3,2uxuy

R3,1R3,3
−

uz

R3,4
, C4u̇v = −

ux

R4,1
−

uv

R4,2
.

Equations �11� are reduced to the classical Lorenz system
when the parameter associated with the flow rotation is set to
zero: R1,3 / �R1,2R1,4�=0. We add a periodic signal from a
conventional laboratory signal generator to the LS chaotic
signal by using a summing amplifier, as shown in Fig. 7. The
summed output is given by

Uoutput = − �UchaosR3/R1 + UsignalR3/R2� .

For fixed values of R1 and R3, the SNR of the data can be
adjusted by changing the value of R2. Experimentally,
Uchaos�
ux� and Usignal are in the unit of volts. The signal
Uoutput is recorded via an interface circuit through a micro-
phone attached to the computer with an A/D conversion
scheme of sampling rate of 8000 Hz and a 16-bit resolution.

In real situations, the target signal is usually found to
vary over a wide dynamic range. A qualitative description of
the received signal may fall under one of three likely
categories:8 �1� it consists solely of interference; �2� it con-
sists of a weak target signal plus interference; �3� it consists
of a strong target signal plus interference, as shown in Figs.

FIG. 7. Circuit diagram for measuring mixed signal. Parameters are R1

=10 k and R3=10 k. R2 is adjustable. Op Amp is �A741CP.

FIG. 8. �Color online� For the LS cir-
cuit, �a� chaotic background signal, �b�
mixed chaotic and target signal for
R2=300 k, and �c� mixed chaotic
and target signal for R2=100 k.
Black trace corresponds to the original
time series and red trace �dashed line�
corresponds to one-time prediction.
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FIG. 9. �Color online� LS chaotic cir-
cuit data analyses corresponding to
Fig. 8. �a�–�c� Frequency spectra of
three measurement data. �d�–�f� Fre-
quency spectra of the detection error.

FIG. 10. �a� A target signal, �b� fre-
quency spectrum of the target signal
�f0=200 Hz�, �c� chaotic time series of
the LS circuit, and �d� reconstructed
phase space of chaotic circuit system
with m=7 and �=13.
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8�a�–8�c�, respectively. The frequency spectra are plotted in
Figs. 9�a�–9�c�, respectively. When there is no external input
signal Usignal �Fig. 10�c��, a nonlinear time-series analysis
yields D2�2.61. We thus choose m=7. The time delay is
chosen to be29 �=13. The corresponding reconstructed phase
space is shown in Fig. 10�d�.

In RBF-based detection experiments, 10 000 LS circuit
time series are used for training, where 100 center points are
randomly chosen from the reconstruction attractor. By using
the BIC algorithm, the optimal regularization parameter is
found to be ��1.8�10−7. As soon as the network weight W
is trained, the modeling results can be computed by Eq. �1�.
We found that the trained RBF network is an excellent dy-
namical model for the chaotic circuit data. By fixing the
network parameters, i.e., centers, regularization parameter,
and weight, the detection performance of our technique is
evaluated by using 20 000 samples from the other two data
sets. Figures 9�d�–9�f� show the detection errors. In particu-
lar, we use a new data set with 2000 sample points to test the
modeling ability of the network. As shown in Fig. 9�d�, the
frequency spectrum exhibits a white noise spectrum. When
the signal is strong �the 200 Hz frequency line seen in Fig.
9�c��, the signal frequency can be extracted accurately, as
shown in Fig. 9�f�. For a weak signal completely hidden in
the chaotic noise spectrum �Fig. 9�b��, our technique is also
able to detect the signal frequency, as shown in Fig. 9�e�.

B. NH3 laser data

We have also used a chaotic far-infrared-laser data to
evaluate our detection scheme. In this case, the dynamical
equations that generate the chaotic data are not available.
The time series represents the output power of the laser in-
tensity, consisting of 9000 data points. Part of it is shown in
Fig. 11�a�. Similar to the LS circuit model, the system exhib-

its high-frequency pulsations, with gradually rising ampli-
tude that collapses to small values in relatively short time.
The rapid decay of oscillations in this data occurs with no
periodicity and is a challenge to model building. During the
collapses the signal abruptly jumps from one region of the
attractor to another, and these transitions are the most diffi-
cult part of the series to model. The corresponding frequency
spectrum of the signal is shown in Fig. 11�b�.

The embedding parameters are found to be �m ,��
= �9,2� for this laser series. The first 3000 samples of data
points are employed to train the RBF network, while the
second 3000 data points are used to check the prediction
ability of the underlying dynamical system. The remaining
3000 data samples are reserved for the purpose of weak sig-
nal detection, whereby a periodic signal of two different fre-
quencies are added with a SNR=−22 dB. Comparing Fig.
11�b� with Fig. 11�e�, we see that the additional periodic
signal is completely hidden in the NH3 laser frequency spec-
trum. Figure 11�f� is our detection result. Comparing the dif-
ference between Figs. 11�f� and 11�c�, we see that the two
signal frequencies, of 25 and 37.5 Hz, can be extracted faith-
fully from the mixed data.

V. COMPARISON WITH TRADITIONAL TECHNIQUES
OF WEAK SIGNAL DETECTION

By applying our model-based method for different cha-
otic experimental data sets, we have demonstrated that the
technique performs well to detect weak signals. To better
evaluate the detection method, we have compared it with two
traditional methods of frequency estimation: the standard
WPDENCMP denoising wavelet method30 and supervised prin-
cipal components analysis �SPCA� detector.14 To further
demonstrate the generality of our method, we use a different

FIG. 11. �Color online� For NH3 laser
data, �a� original chaotic background
data, �b� frequency spectrum of the
signal in �a�, �c� frequency spectrum
of prediction error signal for �a�, �d�
mixed chaotic background and target
signal, �e� frequency spectrum of the
signal in �d�, and �f� frequency spec-
trum of prediction error signal for �d�.

013104-9 Chaotic signal processing Chaos 18, 013104 �2008�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://cha.aip.org/cha/copyright.jsp



set of experimental chaotic signals: chaotic Rössler circuit
data, and test all three methods. The circuit simulates a modi-
fied version of the Rössler equations, where the quadratic
nonlinearity is replaced by a piecewise linear element.31

A circuit diagram and equations can be found in Refs. 31
and 32. A target signal �Usignal=sin�2�f0t� with f0=500 Hz�,
its Fourier spectrum, and a representative chaotic Rössler
circuit signal are shown in Fig. 12. A reconstructed phase

FIG. 12. �a� Target signal sin�2�f0t�,
where f0=500 Hz, �b� frequency spec-
trum of the target signal, �c� back-
ground chaotic signal from the Rössler
circuit, and �d� reconstructed phase-
space plot of the chaotic signal.

FIG. 13. Frequency spectra of three
measurement data from the Rössler
circuit: �a� background chaotic signal
�b� R2=80 k, and �c� R2=40 k.
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space is shown in Fig. 12�d�, where the embedding dimen-
sion is chosen to be m=5 �D2�2.43� and time delay is �
=6. We have considered three cases as for the LS circuit
data. Figure 13 shows the corresponding frequency spectra.
The 500 Hz signal is much weaker than the Rössler signal
components at the fundamental frequency f =285 Hz and its
harmonic frequencies.

To carry out the detection scheme, 10 000 circuit
samples are trained, where 100 center points are randomly
chosen from the reconstructed attractor. By using the BIC
algorithm, the optimal regularization parameter is found to
be ��3.6�10−8. The detection results are shown in Figs.
14�a�–14�c�. When there is no external input signal, the de-
tected error exhibits a white-noise-like spectrum, but it can
be seen from Fig. 14�a� that the maximum frequency peak
appears at f =285 Hz. When the signal is weak, detection
results indeed reveal a clear signal frequency line �f
=500 Hz�, as shown in Figs. 14�b� and 14�c�.

We now apply the standard wavelet denoising
technique30 to analyze our three cases. We first apply the
function DDENCMP to compute the threshold parameter as
well as other coefficients by using the chaotic data. As soon
as the parameters are trained, we denoise the test data for ten
times by changing the threshold parameter so as to find the
optimal detection result. One of the results is shown in Figs.
14�d�–14�f�. We note from Fig. 14�e� that the fundamental
frequency 285 Hz and its harmonic frequencies of the cha-
otic time series are extracted, but the additional signal fre-
quency 500 Hz is undetectable. When the signal is strong,
the extracted signal frequency has a lower amplitude than
other frequency components. Thus, the wavelet-based

method appears not capable of extracting the signal fre-
quency even when the signal is strong.

We next turn to SPCA detection. As discussed in the Ref.
14, there are two channels in an SPCA detector. Each chan-
nel consists of a nonlinear phase-space reconstructor �for em-
bedding a data matrix using the received time series in terms
of data dimension q and time delay �� and a principal com-
ponents analyzer �for feature extraction�. The output error
time series, which results from the difference between the
two sets of eigenvectors of the correlation data matrices from
these two channels, is analyzed using the standard frequency
estimation. In the detection experiment, we choose the time
delay �=1 and the data dimension q=20. The feature dimen-
sion can be chosen to be the embedding dimension m. We
use m=5. The signal frequency extracted is shown in Figs.
14�g�–14�i�. When the signal is weak, the signal frequency
cannot be extracted correctly, as shown in Fig. 14�h�. How-
ever, it can be seen from Fig. 14�i� that the SPCA detection
algorithm is able to extract the signal frequency line at
500 Hz, although the fundamental frequency 285 Hz of the
Rössler chaotic signal is also extracted.

The reason that the detection performance of the wavelet
denoising technique or SPCA detector is not as good as the
model-based method can be seen as follows. The wavelet
packet uses entropy criterion to decompose the signal from
noisy data, where a different threshold parameter may give a
different decomposition result. If both the signal and the
background chaotic signal are of completely different statis-
tical characteristics, the entropy-based decomposition tech-
nique can be used, but difficulty arises when the target signal
and the chaotic data cannot be distinguished statistically. On

FIG. 14. Frequency spectra of detec-
tion error corresponding to three cases
in Fig. 13: �a�–�c� from our model-
based scheme, �d�–�f� from wavelet
denoising, and �g�–�i� from SPCA
detector.
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the other hand, the SPCA algorithm uses the feature space to
detect small difference between chaotic and mixed signal. An
improper choice of parameters could lead to some false fre-
quency peaks. In particular, the generation of this ghost sig-
nal is due mainly to the slight nonstationarity of the back-
ground noise and, to some extent, the use of relatively short
data length �10 000 data points used for training� in our ex-
periments as constrained by computational resources. How-
ever, the model-based approach uses a neural network to
mimic the unknown generating equations of a time series.
Therefore, instead of explicitly deducing the equations de-
scribing the underlying dynamics of the system, an implicit
neural model that approximates the ideal equations is built.
Neural networks are attractive for modeling nonlinear dy-
namical systems because they are inherently nonlinear �due
to nonlinear activation functions�.9,20 The model-based
scheme is able to capture the dynamical features of the sys-
tem, enabling weak signals to be detected.

VI. CONCLUSION

In this paper, we have addressed the problem of detect-
ing weak signals in chaotic or random interference environ-
ments. By analyzing Hénon chaotic time series as well as
experimentally measured data sets, we have shown that a
detection scheme, which is based on chaos, nonlinear phase-
space reconstruction technique, and RBF neural networks, is
capable of detecting weak signals buried in a chaotic noisy
background. In particular, the computational time to train the
network is fast, making it suitable for real time applications.
The scheme therefore represents a useful approach to detec-
tion in nonlinear signal processing, and we expect it to be
widely applicable for identifying and extracting weak signals
buried in strong in-band noise.
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