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Multistability has been a phenomenon of continuous interest in nonlinear dynamics. Most existing
works so far have focused on smooth dynamical systems. Motivated by the fact that nonsmooth
dynamical systems can arise commonly in realistic physical and engineering applications such as
impact oscillators and switching electronic circuits, we investigate multistability in such systems. In
particular, we consider a generic class of piecewise smooth dynamical systems expressed in normal
form but representative of nonsmooth systems in realistic situations, and focus on the weakly
dissipative regime and the Hamiltonian limit. We find that, as the Hamiltonian limit is approached,
periodic attractors can be generated through a series of saddle-node bifurcations. A striking phe-
nomenon is that the periods of the newly created attractors follow an arithmetic sequence. This has
no counterpart in smooth dynamical systems. We provide physical analyses, numerical computa-
tions, and rigorous mathematical arguments to substantiate the finding. © 2008 American Institute
of Physics. �DOI: 10.1063/1.2985853�

Multistability, as characterized by the coexistence of mul-
tiple attractors, is common in nonlinear dynamical sys-
tems. In such a case, starting the system from a different
initial condition can result in a completely different final
or asymptotic state. The behavior thus has implications to
fundamental issues such as repeatability in experimental
science. Existing works on multistability in nonlinear dy-
namics focus mostly on smooth systems. A typical sce-
nario for multistability to arise is when a Hamiltonian
system becomes weakly dissipative so that a large num-
ber of Kol’mogorov–Arnol’d–Moser (KAM) islands be-
come sinks, or stable periodic attractors. There has also
been an interest in nonsmooth dynamical systems. For
example, piecewise smooth systems have been known to
arise commonly in physical and engineering contexts
such as impact oscillators and switching circuits. Previ-
ous works have shown that nonsmooth dynamical sys-
tems can exhibit bifurcations that have no counterparts
in smooth systems. The aim of this paper is to explore
general phenomena associated with multistability in non-
smooth dynamical systems. We shall use a generic class of
piecewise smooth maps that are representative of
nonsmooth dynamical systems. By focusing on the weakly
dissipative regime near the Hamiltonian limit, we find
that multistability can arise as a result of various saddle-
node bifurcations. A striking phenomenon is that, as a
parameter characterizing the amount of the dissipation is
decreased, the periods of the stable periodic attractors
created at the sequence of saddle-node bifurcations follow
an arithmetic order. We call such bifurcations “arithmeti-
cally period-adding bifurcations.” We provide physical
analyses, numerical computations, and mathematical
proofs to establish the occurrence of these bifurcations.

Our work reveals that multistability can be common in
nonsmooth dynamical systems, and its characteristics can
be quite different from those in smooth dynamical
systems.

I. INTRODUCTION

Nonlinear dynamical systems exhibit rich long-term be-
haviors such as stationary, periodic, quasiperiodic, and cha-
otic attractors. Many systems in nature and technological ap-
plications share the trait that, for a given set of parameters,
there can be more than one attractor or asymptotic state, each
with its own basin of attraction. As a result, such a system,
when starting from different initial conditions, can evolve
into different attractors with completely different long-term
behaviors. The situation can also arise that the number of
coexisting attractors is large. This phenomenon is called mul-
tistability and it occurs in many fields of science and
engineering.1–3

The dynamics of systems exhibiting multistability have
attracted continuous interest.4–9 One typical scenario by
which many attractors, usually periodic ones, can arise in the
phase space is through weak dissipation in a Hamiltonian
system. In the absence of dissipation, the system is conser-
vative and its phase space is typically occupied by a mixture
of infinite hierarchies of Kol’mogorov–Arnol’d–Moser
�KAM� islands and chaotic seas. When a small amount of
dissipation is introduced, the KAM islands are turned into
sinks, generating an infinite number of periodic attractors in
the phase space, and the original chaotic seas become effec-
tively basin boundaries. As a result, the basins of attraction
of the attractors are interwoven in an extremely complicated
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manner,4–8 and the basin boundaries permeate most of the
phase space, except for small open neighborhoods about the
periodic attractors. The fractal dimensions of the basin
boundaries are close to the dimension of the phase space.

The purpose of this paper is to explore multistability in
nonsmooth dynamical systems that arise commonly in physi-
cal and engineering devices such as impact oscillators2 and
electronic circuits.3 In particular, we shall consider a generic
class of piecewise smooth systems.10–16 For such a system,
the phase space can be divided into two regions where the
dynamics in each region are different from each other but are
nonetheless smooth, and a border that separates the two re-
gions. This setting is representative of physical systems such
as switch electronic circuits,3 and previous mathematical
analyses have revealed interesting phenomena such as
period-adding bifurcations as a result of “border collision” in
the phase space.10,11 Since our focus is on multistability, we
shall consider the weakly dissipative regime and ask what
can happen when the Hamiltonian limit is approached. To be
concrete, we let b denote the dissipation parameter, where
0� �b � �1 and �b � =1 corresponds to the Hamiltonian limit.
What we have found through mathematical analysis and nu-
merical computations is a striking bifurcation route leading
to multistability which we call arithmetically period-adding
bifurcations. In particular, assume the setting where the sys-
tem already has a number of coexisting attractors, say for
b=b0, where 0� �b0 � �1. As �b� is increased from �b0�, a
sequence of saddle-node bifurcations can occur. At each bi-
furcation, a periodic attractor appears as a new member of
the coexisting attractors. This attractor exists continuously
for �b � � �b0� and its period is higher than the periods of all
attractors that already existed before the bifurcation. The sur-
prising feature is that the sequence constituted by the periods
of the new attractors created at the consecutive saddle-node
bifurcations is arithmetic. That is, for any given value of b,
the periods of multiple coexisting periodic attractors satisfy
an arithmetic rule and, at each saddle-node bifurcation, a
periodic attractor is added and its period is arithmetically
related to the periods of the existing attractors. The bifurca-
tions thus provide a natural ordering of the coexisting attrac-
tors with respect to their periods. To our knowledge, this
phenomenon of arithmetically period-adding bifurcations
finds no counterpart in smooth dynamical systems, but it is a
generic feature associated with multistability in nonsmooth
dynamical systems.

In Sec. II, we describe our system model and present
numerical evidence for the continuous appearance of arith-
metically period-adding attractors. To find the underlying
arithmetic rule in period, in Sec. III, we investigate the glo-
bal dynamics of the system in the Hamiltonian limit. Insight
into the dynamical mechanism of arithmetically period-
adding bifurcations can be obtained by using symbolic dy-
namics, which we shall consider in Sec. IV. For specified
parameter settings, the existence of coexisting multiple at-
tractors with an arithmetic rule in period can be established
rigorously �Sec. V�. Conclusions are presented in Sec. VI.

II. MODEL DESCRIPTION AND NUMERICAL
EVIDENCE FOR MULTISTABILITY

We consider a class of two-dimensional piecewise
smooth systems with one border and two smooth regions,
denoted by S0 and S1, respectively. The systems are intro-
duced as the normal form for border collision
bifurcations10–16 and can be expressed in terms of two affine-
subsystems, f0 and f1, as follows:

Xn+1 = F�Xn� = � f0�Xn� , if Xn � S0,

f1�Xn� , if Xn � S1,
� �1�

where Xn= �xn ,yn��R2, S0ª��x ,y��R2 :x�0,y�R	 and
S1ª��x ,y��R2 :x�0,y�R	, and

f0�Xn� = 
a 1

b 0
�
xn

yn
� + 
�

0
� ,

f1�Xn� = 
c 1

d 0
�
xn

yn
� + 
�

0
� .

For notational convenience, we write M0=� a 1
b 0

� and M1

=� c 1
d 0

�. Here, a is the trace and b is the determinant of the
Jacobian matrix M0 of the system at the fixed point in S0, and
c is the trace and d is the determinant of the Jacobian matrix
M1 of the system evaluated at the fixed point in S1. To be
consistent with our previous works,14,15 we choose the fol-
lowing parameter setting:

a � 0, b � 0, c = − b/a, and d = b .

The area-contracting rate of the map system is b. The map is
dissipative for −1�b�0 and conservative for b=−1. By the
natural invariant property of the system dynamics with re-
spect to �,13–15 any attractor of the system must contract
linearly with �, collapsing to �x ,y�= �0,0� for �→0. There-
fore, the study of dynamics of the map F for all ��R can be
reduced to the three cases: �i� ��0, �ii� �=0, and �iii� �
�0. As in previous works on multistability in smooth dy-
namical systems,6–8 we shall take b as the bifurcation param-
eter and investigate the rising of attractors in the regime of
weak dissipation as the system approaches the Hamiltonian
limit.

To provide numerical evidence for multistability and
their appearance through period-adding bifurcations, we fix
a=−2 �somewhat arbitrarily� and vary the bifurcation param-
eter b. As shown by the bifurcation diagram in Fig. 1, there
are multiple coexisting attractors. At each bifurcation point
bi, a periodic attractor of period i is born, and the period of
the newly born attractor increases as b is varied toward the
Hamiltonian limit b=−1. For example, the periods of the
periodic attractors shown in Fig. 1 are 3n+2, where n is a
non-negative integer. When the system passes through a bi-
furcation point, the number of multiple coexisting periodic
attractors is increased by one. A particular example of mul-
tiple coexisting attractors is shown in Fig. 2, for b11�b
=−0.95�b8, where three periodic attractors, of period 2, 5,
and 8, respectively, together with their basins of attraction,
are displayed. We observe that the basins appear to have a
quite complicated and interwoven structure, which is typical
of multistability even in smooth dynamical systems.5–8
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Our extensive and systematic numerical computations
have revealed the following general features for the
nonsmooth system Eq. �1� as the area-contracting rate ap-
proaches the Hamiltonian limit from a weakly dissipative
regime.

• The dynamics is dominated by a large number of coexist-
ing periodic attractors.

• After a critical bifurcation point bi, a periodic attractor as a
new member of the family of multiple coexisting attractors
appears and exists continuously, that is, once a periodic
attractor is created before the Hamiltonian limit, this at-
tractor exists continuously as a stable attractor and it be-
comes marginally stable at the Hamiltonian limit.

• The period of a newly created periodic attractor after a
critical bifurcation point bi is higher than the periods of
periodic attractors that already existed before the bifurca-
tion point bi.

• The sequence of the periods of newly created periodic at-
tractors is arithmetic. For example, in Fig. 1, the sequence
is �2,5 ,8 ,11, ¯ ,3n−1	, where n is a positive integer.
Thus, as the system approaches the Hamiltonian limit, the
number of coexisting attractors keeps increasing.

• The higher the period of an attractor, the shorter the inter-
val of the bifurcation parameter b for its existence. Be-

cause of this, attractors of higher periods are difficult to
detect numerically.

• The basins of attraction of the coexisting attractors are
interwoven in a complicated manner, as shown in Fig. 2.

III. GLOBAL DYNAMICS IN THE HAMILTONIAN
LIMIT

Once a periodic attractor appears, it continuously exists
as the system approaches the Hamiltonian limit, at which
there are marginally stable periodic orbits in various KAM
islands whose eigenvalues have magnitude 1. From a differ-
ent viewpoint, one can imagine moving the system away
from the Hamiltonian limit and making it weakly dissipative.
The marginally stable orbits then become attractors. To un-
derstand the arithmetic rule governing the periods of the at-
tractors, it is insightful to investigate the global dynamics in
the corresponding area-preserving, piecewise linear system
for b=−1 at which the determinants of two affine-subsystems
are one.

A. Invariant property

For a given ��0, let v1= �� ,−��, v2= �a� ,−��,
v3= �� ,−a��, and O= �0,0� and let B��R2 be the polygon
with vertices v1, v2, O, and v3. As an example, Fig. 3�a�
shows the geometrical shape of B� for ��0. In the case in
which �=0, we can see that B0= �0	. Note that the fixed
point p� of the map F is always in B�. We can actually show
that the set B� is a maximal invariant set enclosed by hetero-
clinic saddle connections, as follows.

Theorem 1. If b=−1, the set B� is an invariant set of F,
i.e., F�B��=B�.

Proof. To show that B� is invariant under F, we partition
B� into three regions Ri. The first region R1 is a square with
vertices �� ,0�, �� ,−��, �0,−�� and O. The second region R2

�the third region R3� is a triangle with vertices O, �0,−��,
and �a� ,−�� �O, �� ,−a��, and �� ,0��, respectively, as
shown in Fig. 3�a�. The partition of B� is thus a collection of
regions Ri that are pairwise disjoint except at the boundary
points, whose union is B�, i.e.,

FIG. 1. �Color online� Bifurcation diagram of Eq. �1� for a=−2 showing the
occurrence of multiple coexisting periodic attractors. At each bifurcation
point bi, a new periodic attractor of period i appears. In fact, the period of
any newly appeared attractor is increased arithmetically. The precise values
of various bi are given in Table I.
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FIG. 2. �Color online� For a=−2 and b=−0.95 in Eq. �1�, basins of attrac-
tion of three distinct periodic attractors and an additional attractor at infinity.
Blank regions indicate the initial conditions that lead to trajectories ap-
proaching infinity. The blue, yellow, and red regions denote the basins of the
periodic attractors of period 2, 5, and 8, respectively.
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FIG. 3. �Color online� �a� For ��0, partition of B into three regions: R1

�blue�, R2 �red�, and R3 �yellow�. Black filled dots indicate the points v1, v2,
and v3, respectively. �b� First iterations of the respective regions in �a� under
the map F.
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B� = R1 � R2 � R3. �2�

Straightforward computations for the image of Ri under the
area-preserving map F yield the following relations:

F�R1� � R1 � R2, F�R2� = R3,

F�R3� � R1 � R2, F�R1 � R3� = R1 � R2,

which imply that B� is an invariant set of F. �

When the parameter � is fixed, the invariant set B� is
included in the trapping region of the corresponding dissipa-
tive system.15 For instance, for ��0, the regions Ri and its
transformations F�Ri� are illustrated in Fig. 3. To describe
the existence of heteroclinic saddle connections, we can ex-
amine the existence of a particular saddle periodic orbit.15

Theorem 2. For ��0, a�−1, and b=−1, there exists a
periodic saddle orbit �v1 ,v2 ,v3	.

Proof. For ��0, v1 can be iterated under the map F,
which leads to

F�v1� = v2, F�v2� = v3, F�v3� = v1. �3�

That is, �v1 ,v2 ,v3	 is a periodic orbit of period 3. To deter-
mine the stability of this orbit, we calculate the Jacobian
matrix DF3 of the map F3, evaluated at v1. We get

DF3�v1� = 
− a 0

0 − 1/a � �4�

for which the eigenvalues are �1=−a and �2=−1 /a. The
period-3 orbit �v1 ,v2 ,v3	 is thus a saddle for a�−1. �

Calculation of the stable and the unstable manifolds of
each point of the orbit �v1 ,v2 ,v3	 reveals that they constitute
the boundary of B�,17 indicating that the invariant set B� is
only a trapping region, i.e., a trajectory starting outside B�

diverges to infinity. An example of the convex polygon B for
��0 and its three partitions is shown in Fig. 3�a�, and their
images under one iteration of the map are shown in Fig. 3�b�.
Note that, since b is negative, the map is orientation-
preserving. Indeed, as shown in Fig. 3�b�, the mappings of
the regions Ri exhibit a counterclockwise pattern of rotation
about the origin. The dynamics on B� can thus be described
by the transition graph in Fig. 4, where Ri→Rj means that
the intersection of the range of Ri under the map F and Rj is
not empty, i.e., F�Ri��Rj��.

The transition graph provides a hint for the occurrence
of multiple coexisting periodic attractors having an arith-
metic periodicity. In particular, from the graph we immedi-

ately find a circulating path �R1→R2→R3→R1� of length 3,
which is the constant difference in the sequence of periods
�2, 5, 8, …	.

B. Chaotic orbits and elliptic islands

There are two distinct types of dynamics on the invariant
trapping set B�: regular and chaotic. The regular dynamics
occur in the KAM islands and in the KAM tori embedded in
the chaotic sea. The KAM islands are associated with mar-
ginally stable periodic orbits whose eigenvalues are equal to
1. A typical phase-space structure of our nonsmooth system
in the Hamiltonian limit is shown in Fig. 5, where the KAM
islands are represented by blank ellipses in the chaotic sea. A
KAM island that contains an elliptic periodic orbit will be
converted into a periodic attractor when the system deviates
from the Hamiltonian limit and becomes weakly dissipative.
As shown in Fig. 5, there are elliptic periodic orbits associ-
ated with any particular KAM-island chain. Several observa-
tions are as follows: �i� there are unstable periodic orbits
associated with every KAM island chain, �ii� a KAM-island
chain of lower periodicity is surrounded by a KAM-island
chain of higher periodicity, and �iii� KAM-island chains of
higher periodicity are located more closely to the boundary
of the invariant set. The periods of elliptic periodic orbits in
Fig. 5 are �2, 5, 8, 11, 14, 17, 20, 23, 26	, which apparently
constitutes an arithmetic sequence. While the detection of
some elliptic periodic orbits of higher periods is possible,
they stay increasingly close to the boundary and thus are
more difficult to visualize. The phase-space structure in Fig.
5 provides a base for the occurrence of a sequence of arith-
metically period-adding bifurcations as the system ap-
proaches the Hamiltonian limit from the weakly dissipative
regime.

FIG. 4. Transition graph characterizing the dynamics on the invariant set B�

under Eq. �1�.
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FIG. 5. �Color online� For Eq. �1� in the Hamiltonian limit ��=−1�, chaotic
sea, elliptic periodic orbits, and KAM island chains. Blue lines indicate the
boundary of the invariant set and markers indicate elliptic periodic orbits in
the KAM islands: red crosses for an unstable period-3 orbit, red filled circles
for a period-2 orbit, blue filled circles for a period-5 orbit, red filled diamond
for a period-8 orbit, red circles for a period-11 orbit, blue filled diamond for
a period-14 orbit, blue filled rectangles for a period-17 orbit, green filled
diamond for a period-20 orbit, red filled triangles for a period-23 orbit, and
blue filled triangles for a period-26 orbit.
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IV. SYMBOLIC DYNAMICS

The existence of arithmetically period-adding attractors
can also be seen by examining the symbolic dynamics of the
system defined based on the transition graph in Fig. 4. In
particular, the dynamical behavior of the system Eq. �1� is
determined by the dynamics of the subsystems, f0 and f1.
The existence of a periodic orbit of period n can be deter-
mined by the following set of 2n equations:

X = f in
�¯ f i2

�f i1
�X�� ¯ �, ij � �0,1	, j = 1, ¯ ,n . �5�

A given orbit �Xm	 can be associated with a symbolic se-
quence �am	 defined as am=0 for Xm�S0 and am=1 for Xm

�S1. Let �p1 , ¯ , pn	 be one of the period-n orbits. Its sta-
bility is determined by the Jacobian matrix DF evaluated at
the orbit, DF=Mi1

Mi2
¯Min

, where Mij
=DF�pj�.

Our interest is, for any integer n�0, in the existence of
an attracting periodic orbit �p1 , ¯ , pk	 of period k=3n+2.
There are three representative closed paths on the transition
graph: �i� R3→R1→R2→R3, �ii� R3→R2→R3, and �iii� R1

→R1, implying the existence of orbits of periods 3, 2, and 1,
respectively. Since the map Eq. �1� is orientation-preserving,
there is a general pattern associated with any periodic orbit
of period k=3n+2: it must circulate the first path n times and
then the second path once. For example, a period-8 orbit
comes from the following closed path:

�6�

�7�

In the symbolic representation, the three paths can be de-
noted by �0, 0, 1�, �0, 1�, and �0�, respectively. A periodic
orbit of period k=3n+2 can be represented by

�8�

�9�

The corresponding Jacobian matrix DF is

DF = M0M1�M0M0M1�n.

Since

M0M1 = 
 0 a

− b2/a b
�

and

M0M0M1 = 
− �a2 + b�b/a + ab a2 + b

0 ab
� ,

an explicit form of the matrix DF can be obtained through
induction,

DF = 
 0 an+1bn

�− 1�n+1b2�n+1�a−�n+1� �− 1�nb2n+1a−n� .

Its eigenvalues are

�� =
1

2
� �− 1�nb2n+1

an �b4n+2

a2n + �− 1�n+14b3n+2� .

For −1�b�0 and �a � �1, we have ��� � �1. The orbit, if it
exists, is then stable, corresponding to an attractor.

In the Hamiltonian limit, the eigenvalues become

�i =
1

2
� �− 1�n+1

an � 4 − a−2ni� ,

where ��i � =1 if a�−2−n. That is, a periodic attractor be-
comes an elliptic periodic orbit, as in smooth dynamical
systems.

V. PROOF OF EXISTENCE OF PERIODIC ORBITS

To be concrete, we fix a=−2 and �=−1, and provide a
rigorous analysis for the existence of periodic attractors of
arithmetically increasing periods.

A. Fixed points

We start by considering the existence and the stability of
the fixed point p1. A fixed point p1 is determined by X
= f0�X� for X�S0 and X= f1�X� for X�S1, which yields

p1 = � 1

b − 3
,

b

b − 3
� . �10�

However, there are no solutions of X= f1�X� for X�S1. Since
p1�S0, the stability of the fixed point is determined by the
eigenvalues of the Jacobian matrix M0 evaluated at p1, which
are −1�1+b. Thus, the fixed point p1 is a saddle in the
relevant parameter range b� �−1,0�.

B. Period-2 attractors

To find period-2 orbits for the piecewise linear system
Eq. �1�, we note that the only possible case is �0, 1�, as �1, 0�
represents the same case in a binary representation, and �0, 0�
and �1, 1� are not possible because there are no period-2
orbits in a linear system. An orbit p2= �x2 ,y2� corresponding
to �0, 1� has been found, where

x2 =
b − 2

2�b2 − b + 1�
� 0 and y2 =

�b2 + b�
b2 − b + 1

.

Since DF�p2�=M1M2, its eigenvalues are

�i =
b � 3�b�i

2
,

which are complex number of magnitude ��i � = �b�. Thus, for
the relevant parameter range b� �−1,0�, the period-2 orbit
always exists, and it is an attractor. The period-2 orbit corre-
sponds to the closed path R3→R2→R3 in the symbolic
representation.

C. Period-5 attractors

By examining the 25 symbolic sequences that can possi-
bly lead to periodic orbits of period-5, we have found only
two such orbits.

Proposition 1. If b�b5, there exists a stable period-5
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orbit with starting point s5= �sx5 ,sy5� corresponding to a bi-
nary sequence (0, 0, 1, 0, 1) and an unstable orbit u5

= �ux5 ,uy5� corresponding to a binary sequence �0, 0, 0, 0, 1�,

where the value b5 ��−0.794 856 938 437 98� is a zero of
the polynomial 2b4+4b3+5b2+10b+6 in the interval
�−1,0�,

s5 = �2b4 + 4b3 + 3b2 + b + 2

2b5 + b3 − 2
,
2b5 + 5b4 + 8b3 + 4b2 − 2b

2b5 + b3 − 2
� �11�

for sx5�0 and sy5�0, and

u5 = �2b4 + 6b3 + 15b2 + 17b + 2

2b5 + b3 − 4b2 − 16b − 2
,
2b5 + 6b4 + 18b3 + 34b2 + 22b

2b5 + b3 − 4b2 − 16b − 2
� �12�

for ux5�0 and uy5�0.
Proof. Starting from the point s5 under the binary sequence �0, 0, 1, 0, 1�, we get the following iterated points:

s5
1 � f0�s5� = �b4 − b3 − 2b2 − 4b − 2

2b5 + b3 − 2
,
2b5 + 4b4 + 3b3 + b2 + 2b

2b5 + b3 − 2
� ,

s5
2 � f0�s5

1� = �2b4 + 4b3 + 5b2 + 10b + 6

2b5 + b3 − 2
,
b5 − b4 − 2b3 − 4b2 − 2b

2b5 + b3 − 2
� ,

s5
3 � f1�s5

2� = �2b4 − b3 + 2b2 + 2b + 4

2�2b5 + b3 − 2�
,
2b5 + 4b4 + 5b3 + 10b2 + 6b

2b5 + b3 − 2
� ,

s5
4 � f0�s5

3� = �2b4 + 5b3 + 8b2 + 4b − 2

2b5 + b3 − 2
,
2b5 − b4 + 2b3 + 2b2 + 4b

2�2b5 + b3 − 2� � ,

s5 = f1�s5
4� = �2b4 + 4b3 + 3b2 + b + 2

2b5 + b3 − 2
,
2b5 + 5b4 + 8b3 + 4b2 − 2b

2b5 + b3 − 2
� .

As stipulated by the dynamics, the points will constitute a period-5 orbit if they are in their respectively proper regions,

s5 � S0, s5
1 � S0, s5

2 � S1, s5
3 � S0, and s5

4 � S1.

Since the polynomial 2b5+b3−2 is negative on the interval �−1,0�, for the existence of such a periodic orbit, we obtain the
following conditions:

b4 − b3 − 2b2 − 4b − 2 � 0, 2b4 + 4b3 + 5b2 + 10b + 6 � 0, 2b4 − b3 + 2b2 + 2b + 4 � 0,

2b4 + 5b3 + 8b2 + 4b − 2 � 0, 2b4 + 4b3 + 3b2 + b + 2 � 0,

which are all satisfied on the interval �−1,b5�, where b5 is a zero of 2b4+4b3+5b2+10b+6 on the interval �−1,0�
�b5�−0.794 856 938 437 98�. Thus, for b�b5, the orbit that starts from s5 is a periodic orbit of period 5. The corresponding
Jacobian matrix DF�s5� is

DF = M1M0M1M0M0 = 
2b2 + b3/2 − b2

4b2 − 2b2�
and the eigenvalues are

�i =
1

2
�b3

2
�b6

4
+ 4b5� .

The magnitudes of eigenvalues �i are �b5�. We thus obtain ��i � �1 for b� �−1,b5� and, hence, the orbit is stable.
Similarly, by iterating the point u5, we obtain

u5
1 � f0�u5� = �2b4 + 5b3 + 8b2 + 4b − 2

2b5 + b3 − 4b2 − 16b − 2
,
2b5 + 6b4 + 15b3 + 17b2 + 2b

2b5 + b3 − 4b2 − 16b − 2
� ,

u5
2 � f0�u5

1� = �2b4 + 4b3 + 5b2 + 10b + 6

2b5 + b3 − 4b2 − 16b − 2
,
2b5 + 5b4 + 8b3 + 4b2 − 2b

2b5 + b3 − 4b2 − 16b − 2
� ,
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u5
3 � f0�u5

2� = � b4 − b3 − 2b2 − 6b − 10

2b5 + b3 − 4b2 − 16b − 2
,
2b5 + 4b4 + 5b3 + 10b2 + 6b

2b5 + b3 − 4b2 − 16b − 2
� ,

u5
4 � f0�u5

3� = �2b4 + 6b3 + 18b2 + 34b + 22

2b5 + b3 − 4b2 − 16b − 2
,
b5 − b4 − 2b3 − 6b2 − 10b

2b5 + b3 − 4b2 − 16b − 2
� ,

u5 = f1�u5
4� = �2b4 + 6b3 + 15b2 + 17b + 2

2b5 + b3 − 4b2 − 16b − 2
,
2b5 + 6b4 + 18b3 + 34b2 + 22b

2b5 + b3 − 4b2 − 16b − 2
� .

The orbit �u5 ,u5
1 ,u5

2 ,u5
3 ,u5

4� will be a periodic orbit if the
following conditions are satisfied:

u5 � S0, u5
1 � S0, u5

2 � S0, u5
3 � S0, and u5

4 � S1.

�13�

Since 2b4+5b3+8b2+4b−2�0 for b� �−1,0�, the value
2b5+b3−4b2−16b−2 should be positive in order to satisfy
u5

1�S0. We obtain that 2b5+b3−4b2−16b−2�0 for b
� �−1,c�, where c�−0.129 320 649 810 92. The conditions
in Eq. �13� thus become

2b4 + 4b3 + 5b2 + 10b + 6 � 0,

b4 − b3 − 2b2 − 6b − 10 � 0,

2b4 + 6b3 + 18b2 + 34b + 22 � 0,

2b4 + 6b3 + 15b2 + 17b + 2 � 0.

It can be checked that all the inequalities are satisfied for b
� �−1,b5�. There is then a second period-5 orbit for b
� �−1,b5�. The product of the Jacobian matrices evaluated at
the orbital points is

DF�u5� = M1M0M0M0M0

= 
 b2�4 + b�/2 − b2

b3 + 12b2 + 16b − 8b − 4b2� ,

which gives the eigenvalues

�� = −
4b2 − b3 + 16b � bb4 + 8b3 − 16b2 + 128b + 256

4

with 3��+�6 and 0��−�1 on interval �−1,b5�. This
period-5 orbit is thus unstable �a saddle�. �

We remark that at the critical bifurcation point b5, the
iterating points s5

2 and u5
2 are the same and are on the border.

Proposition 1 thus indicates that a point on the border line
breaks up; two points drift apart. As a result, two periodic
orbits of period-5 appear as b is decreased through b5, one
stable and another unstable. There is a saddle-node bifurca-
tion at b5.

D. Periodic attractor of period 8

By examining the 28 symbolic sequences that can possi-
bly lead to periodic orbits of period-8, we have found four
such orbits. Their corresponding symbolic codes are �0, 0, 1,
0, 0, 1, 0, 1� for a stable orbit, and �0, 0, 0, 0, 0, 0, 0, 1�, �0,
0, 1, 0, 0, 0, 0, 1�, and �0, 0, 0, 0, 0, 1, 0, 1� for unstable
orbits.

Proposition 2. For b�b8, there exist a stable period-8
orbit with starting point s8= �sx8 ,sy8� corresponding to the
binary sequence �1, 0, 1, 0, 0, 1, 0, 0� and an unstable
period-8 orbit u8= �ux8 ,uy8� corresponding to the binary se-
quence �0, 0, 1, 0, 0, 1, 0, 0�, where the value
b8��−0.931 205 981 564 08� is a zero of the polynomial
4b7+8b6+8b5+15b4+14b3+30b2+12b−12 in the interval
�−1,0�,

sx8 =
4b7 + 8b6 + 8b5 + 15b4 + 14b3 + 30b2 + 12b − 12

4b8 − b5 + 4
, �14�

sy8 =
b�2b7 − 2b6 − 5b5 − 8b4 − 8b3 − 16b2 − 8b + 4�

4b8 − b5 + 4
, �15�

ux8 =
4b7 + 8b6 + 8b5 + 15b4 + 14b3 + 30b2 + 12b − 12

4b8 − b5 − 16b3 − 64b2 + 4
, �16�

and

uy8 =
b�b8 + 3b7 + 9b6 + 27b5 + 79b4 + 173b3 + 199b2 + 85b�

4b7 + 10b6 + 15b5 + 16b4 + 32b3 + 16b2 + 4
.

�17�

At the critical bifurcation point b8, two starting points s8 and
u8 are the same.

Proof. Similar to the proof of Proposition 1.
Note that �1,0 ,1 ,0 ,0 ,1 ,0 ,0�= �0,0 ,1 ,0 ,0 ,1 ,0 ,1� and

�0,0 ,1 ,0 ,0 ,1 ,0 ,0�= �0,0 ,1 ,0 ,0 ,0 ,0 ,1� in the symbolic
representation. Proposition 2 shows that there is a saddle-
node bifurcation at b8.

E. Periodic attractor of period 11

By examining the 211 symbolic sequences that can pos-
sibly lead to periodic orbits of period-11, we have found four
such orbits. Their symbolic codes are �0, 0, 1, 0, 0, 1, 0, 0, 1,
0, 1� for stable orbits, and �0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1�, �0,
0, 1, 0, 0, 1, 0, 0, 0, 0, 1�, and �0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1�
for unstable orbits.
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Proposition 3. For b�b11, there exist a stable period-8
orbit with starting point s11= �sx11,sy11� corresponding to the
binary code �1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0� and an unstable
period-8 orbit u11= �ux11,uy11� corresponding to the binary

code �0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0�, where the value
b11��−0.971 920 725 938 61� is a zero of the polyno-
mial 8b10+16b9+16b8+32b7+33b6+66b5+66b4+132b3

+68b2−24b+24 in the interval �−1,0�,

sx11 =
8b10 + 16b9 + 16b8 + 32b7 + 33b6 + 66b5 + 66b4 + 132b3 + 68b2 − 24b + 24

8b11 + b7 − 8
, �18�

sy11 =
b�4b10 − 4b9 − 10b8 − 15b7 − 16b6 − 32b5 − 32b4 − 64b3 − 32b2 + 16b − 8�

8b11 + b7 − 8
, �19�

ux11 =
8b10 + 16b9 + 16b8 + 32b7 + 33b6 + 66b5 + 66b4 + 132b3 + 68b2 − 24b + 24

8b11 + b7 − 64b4 − 256b3 − 8
, �20�

and

uy11 =
b�8b10 + 20b9 + 30b8 + 33b7 + 64b6 + 64b5 + 128b4 + 64b3 − 32b2 + 16b − 8�

8b11 + b7 − 64b4 − 256b3 − 8
. �21�

At the critical bifurcation point b11, two starting points s11

and u11 are the same.
Proof. Similar to the proof of Proposition 1.
Note that

�1,0,1,0,0,1,0,0,1,0,0� = �0,0,1,0,0,1,0,0,1,0,1�

and

�0,0,1,0,0,1,0,0,1,0,0� = �0,0,1,0,0,1,0,0,0,0,1�

in the symbolic representation. Proposition 3 shows that
there is a saddle-node bifurcation at b11.

F. Periodic orbits of higher periods

We have so far considered the existence and stabilities of
periodic orbits of periods 1, 2, 5, 8, and 11. Propositions 1, 2,
and 3 indicate that these periodic orbits are created by
saddle-node bifurcations. The symbolic codes for the stable
and the unstable orbits are

TABLE I. Existence and stability of periodic orbits, and critical bifurcating
point of attracting periodic orbits.

Period Existence Stability Bifurcation point

1 Exist Unstable
2 Exist Stable b2�0
3 Exist Unstable
4 Not Exist
5 Exist Stable/Unstable b5�−0.794 8
6 Not Exist
7 Exist Unstable
8 Exist Stable/Unstable b8�−0.931 2
9 Exist Unstable

10 Exist Unstable
11 Exist Stable/Unstable b11�−0.971 9
12 Exist Unstable
13 Exist Unstable
14 Exist Stable/Unstable b14�−0.987 5
15 Exist Unstable
16 Exist Unstable
17 Exist Stable/Unstable b17�−0.994 2
18 Exist Unstable
19 Exist Unstable
20 Exist Stable/Unstable b20�−0.997 2
21 Exist Unstable
22 Exist Unstable
23 Exist Stable/Unstable b23�−0.998 65
24 Exist Unstable
25 Exist Unstable
26 Exist Stable/Unstable b26�−0.999 3

0 2 4 6 8 10
−10

−8

−6

−4

−2

0

the number of attractor

ln
(|

b+
1|

)

FIG. 6. �Color online� The number of attractors vs ln��b+1 � � as the Hamil-
tonian limit is approached.
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respectively. We have analyzed the existence and the stabili-
ties of periodic orbits of period up to 26. The results are
summarized in Table I.

G. Scaling of the number of attractors

As the Hamiltonian limit is approached �i.e., �b+1 � →0�,
the number of attractors increases. Numerically we find that
this number scales with �b+1� as ln��b+1 � �, as shown in Fig.
6. It appears difficult at the present to obtain this scaling law
theoretically.

VI. CONCLUSIONS

We have addressed the problem of multistability in
piecewise smooth dynamical systems. The two facts that mo-
tivate our work are �i� multistability has been an interesting
topic in nonlinear dynamics4–8 and �ii� nonsmooth dynamical
systems arise commonly in physical and engineering appli-
cations and they permit behaviors that usually find no coun-
terparts in smooth systems.10–16 By considering a generic
class of piecewise smooth dynamical systems that have been
the paradigm for studying nonsmooth dynamics and by fo-
cusing on the weakly dissipative regime and the Hamiltonian
limit, we find that multistability, in the form of multiple co-
existing periodic attractors, is quite common and we identify
the saddle-node bifurcation as the mechanism to create vari-
ous periodic attractors. While saddle-node bifurcations are
common in smooth dynamical systems, a striking phenom-
enon for piecewise smooth systems is that, as the Hamil-
tonian limit is approached, the periods of the newly created
periodic attractors follow an arithmetic sequence. We have
provided physical analyses, numerical computations, and
mathematical proofs to establish our finding. To our knowl-
edge, the phenomenon of arithmetically period-adding bifur-
cations has no counterpart in smooth dynamical systems.

Nonsmooth dynamical systems are of particular interest
in physical and engineering applications.2,3 From the stand-
point of dynamics, they often permit interesting and surpris-
ing phenomena. Our work is a further illustration of this fact

with respect to the problem of multistability. We hope our
finding will stimulate further research in this interesting area
of nonlinear dynamics.
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