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Optimal structure of complex networks for minimizing traffic congestion
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To design complex networks to minimize traffic congestion, it is necessary to understand how
traffic flow depends on network structure. We study data packet flow on complex networks, where
the packet delivery capacity of each node is not fixed. The optimal configuration of capacities to
minimize traffic congestion is derived and the critical packet generating rate is determined, below
which the network is at a free flow state but above which congestion occurs. Our analysis reveals
a direct relation between network topology and traffic flow. Optimal network structure, free of
traffic congestion, should have two features: uniform distribution of load over all nodes and small
network diameter. This finding is confirmed by numerical simulations. Our analysis also makes it
possible to theoretically compare the congestion conditions for different types of complex net-
works. In particular, we find that network with low critical generating rate is more susceptible to
congestion. The comparison has been made on the following complex-network topologies: random,
scale-free, and regular. © 2007 American Institute of Physics. [DOI: 10.1063/1.2790367]

Complex networks are essential for a modern society. Un-
derstanding of dynamics on complex networks with dif-
ferent topologies is not only interesting theoretically, but
also can have impacts in real-world applications. Among
various dynamics, traffic flow has been studied exten-
sively due to the necessity of designing high efficiency,
low cost networks. Examples include communication,
computer, traffic, and power distribution networks. Be-
cause the amount of information and other physical
quantities to be transmitted or transported over the net-
work are ever increasing, congestion detection and opti-
mization have become a topic of recent interest. One of
the open questions, for which a relatively complete un-
derstanding is still lacking, is how the dynamical prop-
erty of congestion depends on the network structure. In
this work, we study traffic-flow dynamics on complex net-
works. Our approach is different from previous ones in
that we focus on the optimal configuration of capacities to
minimize traffic congestion. The critical packet-
generating rate is also determined, below which the net-
work is at a free flow state and above which congestion
occurs. Our analysis reveals a direct relationship between
some controllable parameters of network topology and
traffic-flow performance. Moreover, our results permit a
theoretical comparison of the congestion conditions
among different types of complex networks. Interestingly,
we find that the congestion criticality decreases by the
following order of network topology: random, scale-free,
and regular. This result confirms previously obtained nu-
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merical results on phase transition of traffic-flow dynam-
ics on complex networks.

I. INTRODUCTION

In recent years, tremendous interest has been devoted to
studying statistical and dynamical properties of large-scale
networks with complex structures. This is motivated by the
facts that complex networks occur commonly in nature and
that they are essential for the infrastructure of a modern so-
ciety. Examples of such networks include the Internet, world-
wide web, telecommunication systems, power grid, social
networks, traffic networks, biological networks, such as neu-
ral networks, gene regulatory networks, protein-protein inter-
action networks, etc. The first study on large networks was
done by Erdés and Rényi,1 who analyzed rigorously ran-
domly connected networks. In 1998, Watts and Strogatz2 dis-
covered that the average shortest paths of a regular network
can be drastically reduced and the local structure of the net-
work as measured by clustering coefficient can be main-
tained by randomly changing only a small portion of links.
The resulting networks are called small-world networks,
which are representative of real networks such as social and
linguistic networks. In 1999, Barabdsi and Albert® discovered
that the degree distribution of many complex networks obeys
a power law P(k) ~ k™7, where k is the number of links (or
the degree) of a randomly chosen node and vy is the scale
exponent, henceforth the term scale-free networks. This
means that the probability of finding a set of nodes with a
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large number of links is not exponentially small, indicating
that the degrees are highly heterogeneous, in contrast to ran-
dom networks whose degree distributions are homogeneous.
After those seminal works, extensive research has been car-
ried out, for example, on the following topics: network
growth and self-organization, degree and betweenness distri-
bution, complex network resilience and cascading break-
down, epidemiological process, community structure, and
network stability and synchronization (see Refs. 4—6 and ref-
erences therein). Complex networks have become an active
field in nonlinear science.

Traffic flow in networks has been extensively
studied.”%° However, earlier models assumed regular net-
work topology, such as two-dimensional lattices or Cayley
trees. Recently, there has been a growing interest in traffic
flow on complex networks.”' >’ This is motivated by the fact
that the Internet and many other realistic networks are com-
plex to a significant extent, leading to a pressing need to
investigate the dynamics of traffic flow on these networks.

In many real-world systems designed for information or
data exchange, traffic congestion can lead to failures or de-
lays of various system functions. Intuitively, traffic conges-
tion could be largely reduced or completely avoided with a
very large average degree of connectivity and/or node capac-
ity for data packet delivery. However, this may not be fea-
sible because of the requirement of potentially high cost. In a
network, traffic congestion occurs as soon as the packet-
generating rate on each node of the network is greater than a
critical value. Network with a smaller critical generating rate
is more susceptible to congestion. A recent work® has shown
that, for two networks with the same average connectivity,
node capacity, and total number of nodes, if their topological
structures are different, the critical packet-generating rate can
be significantly different, indicating that traffic congestion
depends sensitively on network structure. It is found that
scale-free networks and random networks are more tolerant
of traffic congestion than regular networks and Cayley trees.
However, between a scale-free and a random network, the
former is more prone to congestion. These results imply the
existence of some optimal network structure that minimizes
traffic congestion.

In order to better understand the problem of optimal net-
work structure for minimal traffic congestion,lg’28 in this pa-
per we study traffic-flow dynamics on complex networks in a
more general setting. In particular, our study differs from
other works on the same topiclg’23 in that we do not fix the
packet-delivery capacity of each node. We shall determine
the optimal configuration of capacities to minimize traffic
congestion in the network. The critical packet-generating rate
is also determined, below which the network is at a free flow
state, and above which congestion occurs. Our analysis re-
veals a direct relationship between some controllable param-
eters characterizing the network topology and the traffic-flow
performance. Specifically we find that, in order to avoid se-
vere traffic congestion, network structure should have two
features: uniform distribution of load over all nodes and
small network diameter. Our theoretical analysis makes it
possible to compare the critical packet-generating rate
among different types of complex networks. We find that the
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critical rate decreases by the following order of the network
topology: random, scale-free, and regular. These confirm per-
tinent previous numerical results concerning traffic dynamics
on complex networks.”

In Sec. II we present a theoretical analysis to determine
the optimal configuration of delivery capacities. In Sec. III
we provide computer simulation results to support our
analysis. In Sec. IV we give a brief summary and draw
conclusions.

Il. THEORETICAL ANALYSIS

We consider a general model for traffic flow on complex
networks. Each node i generates a data packet with probabil-
ity N; at each time step, which is to be delivered to a ran-
domly selected destination node, say j. The packet is deliv-
ered to its destination along the shortest path between nodes
i and j. At each time step the data packet can be delivered
from one to another if the nodes are connected, such as a pair
of nearest-neighboring nodes. The maximum number of
packets that node i can deliver at each time step is C,, the
delivery capacity. Although traffic-flow rules defined in this
model are simple, they capture the essential characteristics of
traffic flow in real networks. Our aim is to determine the
relationship between the network structure and the critical
packet-generating rate )\,»,max.zg To achieve this, we use a re-
cent finding on the critical packet generating rate of node i,
ie., \;=C,/(B;/N),”> where C, B;, and N are the delivery
capacity, the betweenness of node i, and the total number of
nodes in the network, respectively. Let A=(1/N)=N \?
=NZY C}/B; be the average critical packet-generating rate.
In order to determine the optimal values of C; and Xmax, we
define the following Lagrangian:

N

L=X+6| >, C;-5|, 1)

i=1

where & is a Lagrange multiplier, S=N(1+ B(k)) is the total
capacity of the network, and (k) is the average degree of the
network. The total capacity of the network is proportional to
the network size and (k). This constraint can be justified by
the consideration that, in many network designs, network
size and the degree of connectivity are usually the main fac-
tors determining the cost, and thus they should be limited.
The set of C; maximizes L under the following conditions:

oL

— =0,
From Egs. (1) and (2), we get C,-=—Bf§/2N and o=
~2N2d(k)y/ =Y. B}, which lead to the optimal delivery capac-
ity: CiwopﬁmaI:B?S/ EfilB?. Since \; is a positive number, it is
maximized when )\f is maximized. Thus, we have \; .
=B;SN/ Efi le, where \; ..« is the maximum generating rate
of node i.

i=1,2,...,N. (2)

The average maximum generating rate is A,y
=(1/N)Z¥ Njma» Which  becomes Ninax= N’D/=Y B2,
where the betweenness B, satisfies =Y ,B,=N(N—1)D~=ND
for large N (D is the network diameter). To proceed, it is
necessary to determine =¥, B? with respect to N and D. For a
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FIG. 1. (Color online) Algebraic scaling of f(N) with network size N for
random and scale-free networks. For both types of networks, we fix (ky=4
and the simulation results are averaged over 200 realizations. For random
networks, we find r=0.17 and ¢~ 0.74. For scale-free networks with degree
exponent y=3 (see Refs. 1-5), we find r=0.54 and ¢~0.28.

regular network, all nodes have the same betweenness,
B;,eq=DN. Thus, we have S B; =N°D> For a general
complex network, we can write 3% B2=N°D*f(N), where
f(N) is a function that depends on the network structure. For
example, for a scale-free network, it is possible to calculate
Jf(N) for different values of y. To illustrate this, we present
our calculations for y=3.30 First consider the summation
3;k;=2mN, where k; and 2m are the degree of node i and the
average degree of the network, respectively. The summation
can be replaced by an integration, i.e., Sk;=~af{mP(k)dk
~ N, where we have used the degree distributionmlfunction
P(k)=ak™ with constant a, and have assumed that the net-
work diameter satisfies D<<N for large N. Since ki
~NY=1) (Ref. 31) and k,;, is a small constant for scale-free
networks, we have a ~ N for large N. Next, we focus on the
summation =,B;~N>D. It can also be approximated by inte-
gration: X,B;~ f km“B(k)P(k)dk ~ N?. Using the scaling rela-
tion B(k)=bk” with p~1.5 for y=3,">*> we find b~ N for
large N. The sum E,Biz can then be calculated, as follows:
E B ~ B(k)P(k)dk ~ N3N r+Di(y-1), (3)

min

We then get f(N)~N%. This result has been verified by
numerical simulations, as shown in Fig. 1. As is apparent
from the analysis, the function f(N) for different 7y can be
determined in a similar way. Numerically, we find the alge-
braic law f(N)=cN" holds even for random networks, as
shown in Fig. 1.

The average maximum rate over the whole network gen-
erally can be written as

- 1+pk)
max — Df(N) >

k

(4)

where the critical rate Xmax is inversely proportional to the
network diameter D and the scaling function f(N). This
means that, if two structurally distinct networks have the
same average degree, the same node capacity, and the same
system size, the one with smaller value of Df(N) is more
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FIG. 2. (Color online) For random and scale-free networks of degree expo-

nent y=3, (a) Ay Vs network size N for (k)=4 and (b) A, vs the average
degree (k) for N=5000.

robust against traffic congestion. As we will explain, f(N)
has larger values when total load of the network is concen-
trated on a small number of nodes. Therefore, networks with
small diameter and uniform load distribution are more robust
against traffic congestion.

lll. NUMERICAL SUPPORT

In order to characterize the transition from free traffic
flow to congestion, we use the order parameter 7z
=lim, ..(A®)/XAt" where AO=0(r+Ar)—O(r), O(7) is the
total number of packets in the network at time ¢, and (- --)
indicates average over a time window of length Ar. For X
<Xmax, the network is in a free flow state. In this case, we
have A® =0 and =~0. For > Xmax, traffic congestion oc-
curs so that A® increases with Az. In our simulations, scale-
free and random networks are generated by using the general
network model proposed in Ref. 34. Betweenness is calcu-
lated by using the algorithm introduced in Ref. 35. For all

cases considered, 7 is approximately zero when X is small,
but it suddenly increases when X is larger than a critical

value \,,,. Figure 2(a) shows X, versus network size N for
random and scale-free networks, respectively. We see that

)tmax decreases with N, which means that larger networks are
more susceptible to congestion than smaller networks. This
is because packets take longer time to be delivered in a larger
network, which in turn leads to higher chances for the net-
work to be congested. In the extreme case, where network
size is infinite, situations can arise where packets will never
reach their respective destinations in finite time. Hence, the
critical packet generating rate decreases with system size.
This behavior is predicted by our theoretical result Eq. (4),
which says that )tmax is inversely proportional to Df(N) and
therefore decreases with N. Figure 2(b) shows that for both
scale-free and random networks, )tmux increases with the av-
erage degree. This is because an increase in the average de-
gree usually reduces the lengths of shortest paths. Equation
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FIG. 3. (Color online) Comparison of critical generating rate anax from
theoretical prediction (diamonds) and from direct numerical simulation
(squares) for (a) random networks and (b) scale-free networks with degree
exponent y=3. For all networks considered, (k)=4.

(4) predicts that the critical generating rate is proportional to
the average degree. Again the simulation results are consis-
tent with our theoretical analysis.

To compare Eq. (4) with numerical results in a more

quantitative way, in Fig. 3 we show values of )tmax from
direct numerical simulations and from Eq. (4) for random
[Fig. 3(a)] and scale-free networks [Fig. 3(b)]. In both cases,
a reasonably good agreement is observed, especially when N
is large.

Previous numerical simulations have shown that scale-
free networks are more vulnerable to traffic congestion than
random networks with the same number of nodes and aver-
age degree.33 Our result confirms this fact and provides a
theoretical explanation. In particular, say we consider the
ratio r=AR_/\SF where r>1 means that scale-free (SF)
network is more easily congested than random (R) network.
Since Dge~1InN/InIn N, fsp(N)~N*3* (for scale-free net-
work with degree exponent y=3; see Refs. 1-5) and Dy
~1In N, fr(N) ~N®17 for networks with size N and (k)=4, the

ratio r can be written as
r~ (N*In N/In In N)/(N® In N) =N°37/InIn N.  (5)

We see that r is always greater than 1 for large N. The same
results hold for (k)>4. This is because f(N) is larger in a
scale-free network than in a random network. Although the
network diameter D shows the opposite behavior, the differ-
ence of D between two types of networks is insignificant to
affect the value of f(N).

Figure 4 shows the order parameter 7 versus the packet-

generating rate X for networks of different diameters, as the
networks are changed from regular to small-world and to
random by a continuous rewiring process with rewiring
probability p.2 When p is small, the network is small-world.
For p=1, all links are randomly changed and the network
becomes completely random. As p is increased, N and (k) are

fixed, but D is reduced. We thus expect Xmax to decrease with
p, as confirmed by Fig. 4. We see that random networks are
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FIG. 4. (Color online) Order parameter 7 vs the packet-generating rate \ for
networks of different diameters. Circles, squares, asterisks, and diamonds
correspond to results for p=0 (regular network), p=0.01 (small-world net-
work), p=0.1 (partially random network), and p=1 (random network), re-
spectively. For each data point, the network size is N=2000 and 50 realiza-
tions are averaged.

apparently more robust against congestion than regular net-
works. This can also be seen by considering the ratio r
=\"=1/\P=0 From Eq. (4) and using D=N/2 for p=0, we
see that the ratio becomes r~(N/2)/(N*!71nN)
~NO83/In N>1 for large N.

As shown in Fig. 1, f(N) has relatively larger values
when the total load of the network is concentrated on a small
number of nodes, as for a scale-free network. In order to
avoid severe traffic congestion, network structure should
have the following two features: (1) total load in the network
should be distributed uniformly over all nodes as much as
possible and (2) network diameter should be small. One in-
tuitive but efficient method to generate such a network from
a network model with p=1 in Fig. 4 is as follows. Instead of
detaching a link from each node and connecting it to a ran-
domly selected node without taking into consideration the
degree of the newly connected node, we detach all links
connected to next nearest neighbors and connect them to a
randomly selected node which has less than k links. As a
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FIG. 5. (Color online) Order parameter 7 vs the packet-generating rate \ for
classical random networks (circles), and for the new random networks pro-
posed in this paper (asterisks). Network parameters are p=1, N=3000, and
(ky=4. For each data point, 30 realizations are averaged.
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result, each node in the network will have exactly k links,
and thus the load of the network is distributed uniformly. We
expect this network to be less congested than the random
network with p=1 in Fig. 4. This has indeed been observed,
as shown in Fig. 5, where the onset of traffic congestion
occurs for larger value of \ for our uniform random network.

IV. DISCUSSION

In conclusion, we have presented a theoretical analysis
and simulation results for traffic flow processes on complex
networks. Our motivation comes from the desire to under-
stand the influence of network structure on the traffic dynam-
ics. We have obtained the optimal configuration of node ca-
pacity for data delivery in complex networks and the
maximum packet-generating rate above which traffic conges-
tion occurs. Our analysis reveals that traffic congestion de-
pends on factors such as network size, network diameter,
average degree, and load distribution. Our finding suggests
that, in order to mitigate or avoid traffic congestion, load
should be uniformly distributed in the network and the net-
work diameter should be small. Our results have practical
implications for designing computer networks and other
communication networks where minimizing traffic conges-
tion is a central goal.
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