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We report a general phenomenon concerning the effect of noise on phase synchronization in
coupled chaotic oscillators: the average phase-synchronization time exhibits a nonmonotonic be-
havior with the noise amplitude. In particular, we find that the time exhibits a local minimum for
relatively small noise amplitude but a local maximum for stronger noise. We provide numerical
results, experimental evidence from coupled chaotic circuits, and a heuristic argument to establish
the generality of this phenomenon. © 2007 American Institute of Physics.
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A remarkable phenomenon in nonlinear physics is that
noise can induce or enhance synchronization in coupled
chaotic oscillators. Recent years have seen efforts to ex-
plore the effect of noise on chaotic phase synchronization,
a “weak” form of synchronization where the oscillators
tend to follow (not to approach) each other in phase but
their amplitudes remain uncorrelated. This form of syn-
chronization can occur more widely than complete syn-
chronization that requires both the phase and the ampli-
tude of the oscillators to approach each other. As a result,
phase synchronization has been increasingly pursued for
potential applications in disciplines ranging from physics
and chemistry to biology and medical sciences. Here we
focus on a measure to characterize phase synchroniza-
tion, the average phase-synchronization time, and study
how noise can affect this time. To understand the behav-
ior of the time is important because, under noise, phase
synchronization can occur only for a finite amount of
time. We find that, in the presence of weak coupling, com-
mon or identical noise can lead to a nonmonotonic behav-
ior in the average phase-synchronization time. In particu-
lar, a little noise will cause the time to decrease as a
function of the noise amplitude but a moderate amount of
noise can maximize the time. We show the nonmonotonic
behavior by using numerical computations and labora-
tory experiments using electronic circuits, and we pro-
vide a heuristic argument that the behavior is a result of
the interplay between deterministic coupling and noise,
and the maximization of the time by noise can be under-
stood as caused by stochastic resonance. We expect the
nonmonotonic behavior in the average phase synchroni-
zation time to be a general phenomenon in nonlinear dy-
namical systems in the presence of noise.
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I. INTRODUCTION

The problem of noise-induced synchronization has been
a subject of interest in statistical and nonlinear physics."2
Consider a system of coupled nonlinear oscillators. In the
weakly coupling regime where synchronization does not oc-
cur, the presence of noise, identical to each oscillator, can
induce synchronization.1 This seemingly counterintuitive
phenomenon can be explained by regarding common noise
as being able to generate effectively mutual coherence. In
particular, if the root-mean-square value of the noise is large
enough, a degree of coherence may be established among the
oscillators. An alternative point of view is to regard the noise
as a common driving force, or a “master,” to each oscillator.
If the driving is strong enough, the evolution of each oscil-
lator tends to follow that of the master to some extent. There
can then be a generalized synchronization between each in-
dividual oscillator and the stochastic driving. Since noise is
identical to all oscillators, the motion of each oscillator tends
to follow that of their common master more or less in the
same manner, leading to effectively coherence among
themselves. More recently, numerical and experimental evi-
dence has been presented for noise-induced phase
synchronization.z’3 That is, common noise can induce phase
coherence among the oscillators while leaving their ampli-
tudes uncorrelated. More specifically, consider two oscilla-
tors and denote their phase variables by () and ¢,(7),
respectively. In the absence of phase synchronization, the
phase difference ®(r)= ¢, (1) — p,(¢), normalized to a 27 in-
terval (say, [—r,7]), tends to distribute uniformly in this
interval. The presence of common noise can make the distri-
bution more focused about zero.” A qualitative explanation
for noise-induced phase synchronization has been proposed
in Ref. 3.
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In this paper, we focus on the average phase-
synchronization time (denoted by 7). Under noise, phase syn-
chronization can be maintained for only a finite amount of
time, so the quantity 7 is physically relevant and useful. We
first present a nonmonotonic behavior of 7through a numeri-
cal study of the coupled chaotic Rossler oscillators under
common noise (of amplitude D). In the presence of coupling,
for small noise, 7 decreases with D and reaches a minimum
at D=Dm.4 However, as D is increased further, 7 can increase
and become maximum for some optimal value of D (say,
Dy,). For D> D, the time decreases with D. About Dy,
the behavior of 7 is indicative of that of a stochastic reso-
nance, but the overall nonmonotonic behavior is quite strik-
ing. Heuristically, this appears to be the consequence of the
complex interplay between nonlinearity and stochasticity. In
order to demonstrate the generality of this behavior, we have
carried out experiments using two different electronic cir-
cuits: coupled Rossler and coupled Chua circuits. Both ex-
periments give strong evidence for the nonmonotonic behav-
ior in 7. We shall then present a heuristic argument to gain
insight. At the present, an analytic theory for the nonmono-
tonic behavior appears difficult, partly due to the presence of
both coupling and common noise.

A potential utility of our result is the following. Given a
system of coupled chaotic oscillators, there may be two ways
to achieve high-quality phase synchronization in terms of
maximizing the average synchronization time: either to
eliminate noise as much as possible or to supply common
noise to drive the system into resonance. The latter may be
relevant, say, to coupled biological systems where noise is
inevitable but phase synchronization may be used for infor-
mation transmission and processing.

In Secs. IT and III we present numerical and experimen-
tal evidence for the nonmonotonic behavior of the phase syn-
chronization time, respectively. In Sec. IV, we provide a heu-
ristic argument. A brief summary is given in Sec. V.

Il. NUMERICAL EVIDENCE

We consider the following system of coupled chaotic
Rossler oscillators:

Xip==w2y12— 212+ Klxy = x15),
Yi2= w1 2%1 5+ 015y, + D), (1)

Z~1,2 = 04 + (xl’z - 8.5)11,2,

where ©;=0.99, 0,=0.97, and &(¢) is a Gaussian random
process of zero mean and unit variance: (&(r))=0 and
(&) &(t')y=8(r—1"). Because the Rossler attractor possesses
a proper structure of rotation, the phase variables are simply
gbl,z:tan‘l(yl,z/xl,z). In the absence of noise, phase synchro-
nization occurs® for K> K.=0.02. For K=0, the average
phase-synchronization time 7 is small. As K approaches K,
the time increases rapidly.6 For K=K, the time becomes
infinite. Noise can induce 27 phase slips even for K=K,
making 7 finite.” To calculate 7, we integrate the stochastic
differential equation Eq. (1) by using a standard second-
order routine® and obtain time series of length 7=10°. In this
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FIG. 1. For the coupled Rossler system for K=0.020 75, time evolution of
the phase difference for D=0.015 (upper trace) and D=0.07 (lower trace),
where T is the average period of the chaotic oscillation.

time interval, there are typically about a dozen of 2m-phase
slips in the range of noise amplitude considered. The average
synchronization time is obtained by using an ensemble of
2000 independent trajectories. Figure 1 shows, for k
=0.020 75, time evolutions of the phase difference for D
=0.015 (upper trace) and D=0.07 (lower trace). We observe
that for larger noise, the time intervals of phase synchroni-
zation appear longer. Figure 2 shows the dependence of 7 on
D, which exhibits a nonmonotonic behavior.

lll. EXPERIMENTAL SUPPORT
A. Coupled Réssler circuits

Our first experimental system consists of two mutually
coupled, nearly identical Rossler circuits’ driven by a com-
mon noise source, as shown schematically in Fig. 3. A single
Rossler circuit consists of five operational amplifiers
(opamps, TLO82 or TL084 in our experiments), three capaci-
tors, a diode (1N4007), a number of resistors, and a potenti-
ometer R. The nonlinearity in the circuit (piecewise linear
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FIG. 2. For the coupled Rossler system, the average phase-synchronization
time 7 vs the amplitude D of common noise for K=0.020 75. The unit for 7
is the average period of the chaotic oscillation.
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FIG. 3. Experimental circuit diagram of two mutually coupled Rossler os-
cillators driven by a common noise source.

function) is introduced by the opamp U4 along with the three
resistors and the diode N. Different periodic and chaotic be-
haviors can be observed by tuning the potentiometer R. Mu-
tual coupling between the two circuits is realized through the
potentiometer R,, the value of which can be adjusted. Com-
mon noise is generated by a commercial signal generator
(SRS-DS345) and is applied to the inputs of opamps U3 and
U3’ through the 10 K() resistors.

Initially, coupling is removed and noise is absent. In this
case, two circuits are independent oscillators. The potentiom-
eters R and R’ are adjusted (=10 K(2) so that the circuits
exhibit a similar chaotic attractor, which can be observed by
using the voltage signals x(¢) and y(r) [or x'(z) and y'(z)].
The circuits are then connected via the potentiometer R,.
Voltage signals y(¢) and y'(¢) are digitally recorded using a
data acquisition system (National Instrument, PXI-6115
DAQ Board) at the sampling frequency of 40 KHz. While
the attractors in the x(¢)-y(z) planes are apparently chaotic,
the voltage signals are topologically equivalent to a sinu-
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FIG. 4. Nonmonotonic behavior in the average phase-synchronization time
observed from the experimental circuit system of two coupled Rossler os-
cillators for R.=9.6 K(), where 7 is in the unit of average period of the
voltage oscillations.

soidal signal, and thus correspond to a proper rotation. The
Hilbert transform is used to construct the corresponding ana-
Iytic signal, which gives the phase variable.’ Using the sig-
nals y(z) and y’(¢) from both Réssler circuits, the phase dif-
ference ®(r) can be obtained for any fixed noise level, which
typically contains 2m-phase slips. This yields the average
phase-synchronization time. Long voltage signals (60 s) typi-
cally containing between 700-1200 phase slips are acquired
and the experiment is repeated three times to reduce the sta-
tistical variation. An example of the nonmonotonic phenom-
enon is shown in Fig. 4 for R.=9.6 K(), where the average
phase-synchronization time is plotted versus the common-
noise amplitude. We find that the nonmonotonic phenom-
enon can be readily generated in this experimental system.

B. Coupled Chua circuits

To show that the nonmonotonic behavior of the average
phase-synchronization time is a general phenomenon inde-
pendent of the type of chaotic oscillators, we have conducted
another experiment with two mutually coupled, nearly iden-
tical Chua circuits'® under common noise, as shown sche-
matically in Fig. 5. A single Chua circuit consists of an in-
ductor, two capacitors, a potentiometer R, six resistors, and a
nonlinear diode constructed using two operational amplifiers
(TLO84 and TL082). The mutual coupling between the two
circuits is realized using the potentiometer R,., and the com-
mon noise is applied to the inductor of each circuit using the
operational amplifier U5 as a buffer.

The equations of the complete circuit are given
by Lidi /dt=—vc +&(1), Cdvc /di=i, —(ve,—ve,)/R,
Czdvczldt=(vcl—vcz)/R—f(vcz)—(vcz—v’cz)/RC, lei,"l/dt
=—v¢ +&(0), Cdvg ldi=i; —(ve —ve )/R', and Codvg /dt
=(U’CI—U’C2)/R’—f’(v'Cz)—(v’Cz—v’éz)/Rc, where &(¢) denotes
the common noise added to the circuit, and f(-) and f'(-)
represent the current-voltage relation of the nonlinear diode,
as  follows:  f(x)=mex+[(m—mg)(|x+B,|-[x-B,|)]/2
and f'(x)=m{x+[(m{-m{)(|x+B,|-|x—B,[)]/2, where B,
=1.0V, my=R[-R,/(R\R3)—Rs/(R4Rs)], m;=R[-1/R,
—R,/(RR5)] for the first circuit, and similar equations for
the second circuit. Initially, the coupling is removed and
noise is absent as for the Rossler circuits. The potentiometers
R and R’ are chosen (=1.73 K{() such that each circuit ex-
hibits a double-scroll chaotic attractor, which can be ob-
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FIG. 5. Circuit diagram of two mutually coupled Chua circuits driven by
common noise source. The circuit parameters are L;=L;=18 mH, C,=C}
=100 nF, C,=C,=10 nF, R;=R|=R,=R}=20.4 KQ, R;=R}=3.39 KQ, R,
=R,=R5=R{=205 ) and Rg=R;=2.0 KQ.

served by using the voltage signals v, (t) and v, (¢) from the
two capacitors. The circuits are then connected via the po-
tentiometer R, to which the coupling strength is inversely
proportional. Voltage signals v¢ (1) and Ucz(l) are digitally
recorded using a data acquisition system at the sampling fre-
quency of 100 KHz. While the attractor in the vc ()
—Ucz(t) plane exhibits the double-scroll characteristic, one of
the voltage signals is topologically equivalent to a sinusoidal
signal and thus corresponds to a proper rotation. The average
phase-synchronization time can be calculated by using long
voltage signals (80 s) that typically contain between 600 and
1000 phase slips. An example of the nonmonotonic phenom-
enon is shown in Fig. 6 for R.=1.2 K. Similar plots can be
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FIG. 6. Nonmonotonic behavior in the average phase-synchronization time
observed from our experimental system of Chua circuits for R.=1.2 K(,
where 7 is in the unit of average period of the voltage oscillations. Inset: 7
for 0=sD=<0.2.
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obtained for different sets of parameter values. This result
suggests that the nonmonotonic behavior is a robust and gen-
eral phenomenon.

IV. HEURISTIC ARGUMENT

To obtain a qualitative understanding of phase synchro-
nization under both coupling and common noise, we con-
sider a prototype model of two mutually coupled, phase-
coherent chaotic attractors. The phase dynamics of each
attractor in such a model can be described by
d=w+g[r(n],>" where w is the average frequency of the
chaotic oscillation, r(¢) represents the chaotic amplitude, and
the function g describes the influence of r(z) on the phase
dynamics. For two coupled oscillators with coupling con-
stant K and without noise, we can write

<;7’1,2=w1,2+81,2[”1,2(f)]+Kh(¢2,1,¢1,2), (2)

where £ is a 2m-periodic function in each of its arguments
and we assume that w; # w,. A simple choice for the cou-

pling term A(¢, |, ) is
h(¢2,l’ ¢1,2) =sin(¢, — ¢y). (3)

Equation (2) is representative of typical systems in the study
of chaotic phase synchronization such as the system of
coupled phase-coherent Rossler attractors.” In the coupled
system, the time evolution of the phase difference ®(r) be-
tween the two oscillators is determined by K. For a phase-
coherent chaotic attractor, the dependence of the frequency
on the amplitude is typically weak,” so g,[ry(1)]=g,[r(1)].
The equation for ® can thus be written as

® ~ Aw-2K sin @, (4)

where Aw=w,—w;. Equation (4) describes the motion of a
heavily damped particle in the potential V(®) given by

—dV/d® =Aw-2K sin ®,

which possesses an infinite number of local minima sepa-
rated by 27 in the phase variable ®.” Because of chaos and
noise, the values of the potential minima fluctuate with time.
A particle starting near a potential well can be trapped for a
finite amount of time and hoppings of the particle between
adjacent potential wells correspond to 2a-phase slips. The
probability for a hopping event to occur is given by the
Kramers formula: P~¢ 2FTP) where AE is the average
height of the potential barrier and T(D) denotes the effective
“temperature” that depends on the common noise amplitude
in the following way: T(D)~D? The average phase-
synchronization time is given by

T(D) . eAE/T(D) . (5)

To explain the behavior of 7{(D) we have to know the explicit
form of the potential-barrier height AE, but it depends on
details of the system and in general cannot be obtained ana-
Iytically.

For D=0, the interaction is purely deterministic. Al-
though K is finite and small, on average the height of the
potential barrier is large despite chaotic fluctuation. In this
case, we expect 7to be large. As D is turned on, the height of
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the potential barrier is reduced due to random noise, making
particle hopping easier. We should thus see a decrease in 7 as
D is increased from zero. This trend continues until for D
=D,,, where common noise begins to induce coherence. The
value of 7 reaches a local minimum for D=D,,. This mini-
mum value cannot be arbitrarily small because, for any small
time interval there is still coupling and, consequently, the
height of the potential barrier is not zero. As D is increased
from D,,, the coherence induced by common noise becomes
stronger, making AE larger. For D=D,,, 7 then increases
with D. This trend cannot continue indefinitely because for
large noise, the increase of the “temperature” T(D) with D
becomes dominant. Thus, although the effective potential
wells become deeper, random fluctuations are enhanced as
well. The interplay between these two factors is similar to
what happens typically in a stochastic resonance:'> as D in-
creases, 7 can reach a maximum value for D=D,, > D,, and
then decreases. Summarizing, we expect to observe the fol-
lowing behavior in the average phase-synchronization time
as a function of the common-noise amplitude: as D is in-
creased from zero, 7 first decreases and reaches a minimum
at D,,. The time then increases with D and reaches a maxi-
mum at Dy >D,,. For D> D, 7 decreases continuously
with D.

V. DISCUSSION

In summary, we have presented a phenomenon in noisy
phase synchronization: a nonmonotonic relation between the
average phase-synchronization time and the amplitude of the
common noise. We have provided numerical and experimen-
tal evidence for the nonmonotonic behavior. Our heuristic
argument suggests that the local minimum occurring at the
relatively small noise amplitude is due to the dynamical
competition between the deterministic coupling and the ef-
fective coupling due to the common noise, and the local
maximum at a larger noise amplitude is generated by a
mechanism similar to stochastic resonance. Previous works
have demonstrated that in settings different from ours, quan-
tities such as the effective diffusion coefficient or the signal-
to-noise ratio also exhibit a nonmonotonic behavior with re-
spect to the noise intensity.n’15 It would be interesting to
relate our finding to these and to work out a more quantita-
tive theory to explain the nonmonotonic behavior. Practi-

Chaos 17, 013105 (2007)

cally, the behavior suggests that fine tuning of the noise
strength is required if one attempts to achieve robust phase
synchronization by applying common noise. Noise-induced
phase synchronization is a recently discovered phenomenon
that has a number of potential applications.2 We expect our
finding to be useful for applications of phase synchroniza-
tion.
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