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It is believed that both Hebbian and homeostatic mechanisms are essential in neural learning. While
Hebbian plasticity selectively modifies synaptic connectivity according to activity experienced,
homeostatic plasticity constrains this change so that neural activity is always within reasonable
physiological limits. Recent experiments reveal spike timing-dependent plasticity �STDP� as a new
type of Hebbian learning with high time precision and heterosynaptic plasticity �HSP� as a new
homeostatic mechanism acting directly on synapses. Here, we study the effect of STDP and HSP on
randomly connected neural networks. Despite the reported successes of STDP to account for neural
activities at the single-cell level, we find that, surprisingly, at the network level, networks trained
using STDP alone cannot seem to generate realistic neural activities. For instance, STDP would
stipulate that past sensory experience be maintained forever if it is no longer activated. To over-
come this difficulty, motivated by the fact that HSP can induce strong competition between sensory
experiences, we propose a biophysically plausible learning rule by combining STDP and HSP.
Based on the Fokker-Planck theory and extensive numerical computations, we demonstrate that
HSP and STDP operated on different time scales can complement each other, resulting in more
realistic network activities. Our finding may provide fresh insight into the learning mechanism of
the brain. © 2006 American Institute of Physics. �DOI: 10.1063/1.2189969�
earning and adaptation are key to natural selection and
volution, as the successful survival of an individual spe-
ies depends strongly on its abilities to learn new experi-
nces and to adapt the acquired skills to the changing
nvironment. The ability to alter behavior is a result of
hanges in the nervous system. How learning and adap-
ation are carried out in the brain has been among the

ost fundamental issues in neuroscience. Studies on
earning range from molecules and cells through neural
etworks, to animal behavior and psychology, in which
oth experimental and theoretical disciplines play impor-
ant roles. Motivated by the recent experimental observa-
ions on spike timing-dependent and heterosynaptic plas-
icities, we address how neural networks change during
earning and adaptation. By utilizing a physical theory
ased on the Fokker-Planck equation and extensive nu-
erical computations, we establish a biophysically plau-

ible learning rule incorporating both types of neural
lasticity and show that it can result in realistic neural
ctivities at the network level. This work thus represents

n example of how tools from statistical and nonlinear

054-1500/2006/16�2�/023105/10/$23.00 16, 02310

wnloaded 05 Jun 2006 to 129.219.51.205. Redistribution subject to AIP
physics can be applied to addressing interesting problems
in biological sciences.

I. INTRODUCTION

Synaptic plasticity, changes in the synaptic conductance
in response to learning and adaptation, is fundamental to
memory and the development of neural circuits. The classi-
cal Hebbian rule,1 which has been the foundation for re-
search on the role of synaptic plasticity, is based on the in-
tuition that if, in the process of learning or adaptation, input
from one neuron results in the firing of another neuron, then
the synaptic connection between those two neurons is poten-
tiated. This postulate has received support from many experi-
ments showing that synapses can go through not only long-
term potentiation �LTP�, but also long-term depression
�LTD�, depending on the pattern of the neural activity. Mo-
tivated by these observations, several forms of Hebbian
learning have been proposed to induce LTP/LTD in terms of
pre- and/or postsynaptic firing rates, the most representative

being the BCM rule, named after Bienenstock, Copper, and
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unro.2 According to the BCM rule, for instance, LTP
LTD� arises if synaptic inputs result in a postsynaptic firing
ate above �below� a threshold that depends on the postsyn-
ptic activity. While the BCM rule can indeed account for
mportant neural phenomena,3 it is basically a rate-based
ule, i.e., it ignores entirely the timing information of the
ynaptic activity. Recent experiments have indicated that this
iming information can play a critical role in determining the
ynaptic changes in both sign and magnitude.4 In particular,
TP can be observed if the presynaptic action potential is
ollowed by a postsynaptic one, whereas LTD occurs if the
emporal order of the action potentials is reversed. This type
f plasticity, named spike timing-dependent plasticity
STDP�, is believed to be important in shaping the various
ynaptic plasticities required for learning and adaptation.4

In general, Hebbian learning contains a positive-
eedback mechanism. That is, once a synapse is potentiated,
t becomes easier for the presynaptic neuron to make the
ostsynaptic neuron fire, promoting further potentiation of
he synapse. The stability of the Hebbian learning rule is thus
mportant. While modifications such as incorporating a
ostsynaptic-dependent threshold in BCM or introducing de-
endence on the initial synaptic size in STDP can make Heb-
ian learning stable, a wealth of evidence suggests that ho-
eostatic mechanisms are also employed by neural networks

o maintain stability. In particular, a neuron or a network of
eurons has some preset activity level that is dynamically
aintained. For example, chronically reducing inhibition in

ortical networks initially raises firing rates, but over a pe-
iod of days firing rates can return to the control level.5 Simi-
arly, as shown in Ref. 6, interactions among neurons in the
rimary motor cortex can be strengthened at the beginning of
daptation, but usually return to the original level after a few
ays. Another example is the heterosynaptic plasticity �HSP�
ecently reported in Ref. 7, in which LTP or LTD introduced
n one synapse lead to opposite changes in other synapses on
he same postsynaptic neuron, and during the process the
otal synaptic conductance changes little. In this sense, HSP
an prevent the phenomenon of runaway synapses intro-
uced by Hebbian learning, and thus represents a homeo-
tatic mechanism stabilizing neural activities. At present,
owever, the fundamental feature�s� of a neuron or a network
f neurons being dynamically maintained is still not clear.
urthermore, how this mechanism interacts with other regu-

atory mechanisms is not well understood either.
This study is motivated by the two recent experimental

iscoveries on Hebbian and homeostatic mechanisms: STDP
nd HSP. A question of interest is, if both STDP and HSP
ake place in a neural circuit, how do they interact with and
ossibly complement each other so as to modify the neural
ircuit for learning and adaptation? To be as general as pos-
ible, we shall investigate the effects of STDP and HSP on
andomly connected neural networks. At the present, how-
ver, the molecular mechanism underlying LTP/LTD is still
ot well understood, hindering a universal formulation of the
TDP rule. To overcome this difficulty, we shall employ a

heoretical analysis based on stochastically dynamic pro-
esses and the Fokker-Planck paradigm to propose an imple-

entation of STDP that is compatible with rate-based BCM

wnloaded 05 Jun 2006 to 129.219.51.205. Redistribution subject to AIP
and is also able to generate realistic synaptic distributions.
Our study shows that �1� STDP alone produces broadened
unimodal or bimodal weight distributions, weak competition
between recurrent connections in networks, and activity-
induced learning; �2� Networks trained using STDP alone
cannot produce realistic activities, e.g., past sensory experi-
ence is maintained forever if it is no longer activated; �3�
HSP can induce strong competition between sensory experi-
ences; �4� HSP and STDP operating on different time scales
can complement each other to generate more realistic net-
work activities.

In Sec. II, we detail our physical theory based on the
Fokker-Planck paradigm to model STDP and HSP. Section
III presents results of extensive numerical computations us-
ing random neural networks. A discussion is given in Sec. IV.

II. PHYSICAL THEORY OF SYNAPTIC PLASTICITY

The learning rule studied in this paper consists of two
components—STDP and HSP. STDP is local and homosyn-
aptic in the sense that only the synapses experiencing the
spiking activities are modified, which can be modeled as

�g = G��t�g� , �1�

where �g is the percentage change in synaptic conductance g
due to a pair of pre- and postsynaptic spikes separated by
time �t �positive �t implies that presynaptic spike precedes
postsynaptic spike and negative one for the reverse order�.
On the other hand, HSP is nonlocal and heterosynaptic in the
sense that modification of one synapse may be accompanied
by changes in other synapses on the same neuron. Based on
the observation in Ref. 7, our idealized HSP rule reads

�HSP
dḡ

dt
= − ḡ + ggoal, �2�

where �HSP is the time constant of HSP, ḡ is the sum of
presynaptic conductances of one neuron, and ggoal is the de-
sired value of the total conductance. In reality, STDP and
HSP operate on different time scales: minutes and hours,
respectively.

A. Theoretical formulation

Consider one typical synapse connecting two neurons in
a network and its weight changes according to STDP/HSP
and the pre-/postsynaptic spike timings. Since inputs from
thousands of presynaptic neurons cause the firings of the
postsynaptic neuron, weight changes of the synapse under
consideration can be modeled as a random walk with other
synaptic inputs as background noise. In the limit of small
��g�, which is the case of STDP/HSP, the probability of ob-
serving a synaptic weight g at time t, or P�g , t�, can be de-
scribed by the following Fokker-Planck equation:8–10

�P�g,t�
�t

= −
�

�g
�A�g�P�g,t�� +

1

2

�2

�g2 �B�g�P�g,t�� , �3�
where the drift A�g� and the diffusion B�g� are
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A�g� = �
−�

�

�gPg��g�g�d�g ,

�4�

B�g� = �
−�

�

�g2Pg��g�g�d�g ,

nd Pg��g �g� is the probability for the event g→g+�g.
ote that P�g , t=�� is confined to the region �0,ggoal� due to

he approximate reflecting boundary conditions imposed. Be-
ause the amplitude of �g is small, the diffusion term B�g� is
mall. As a result, the final P�g , t=�� will concentrate near
here the drift term A�g� vanishes.

To find A�g�, one can write �g=�g1+�g2, where �g1 is
aused by STDP and �g2 is caused by HSP. The interaction
etween these two drift forces is weak due to the fact that
hey operate on different time scales. Thus, it is natural to
ssume these two drift forces are independent �this is true for
he asymptotic solutions�. We have

A�g� =� � ��g1 + �g2�Pg��g1,�g2�g�d�g1d�g2

=� �g1Pg��g1�g�d�g1 +� �g2Pg��g2�g�d�g2

�A1�g� + A2�g� , �5�

here A1�g� and A2�g� are the drift terms due to STDP and
SP, respectively.

. A1„g… for different implementations of STDP

Substituting Eq. �1� into the expression of A1�g� in Eq.
5�, we obtain

A1�g� = �
−�

�

G��t�g�Pt��t�g�d�t , �6�

here Pt��t �g�= Pg��g �g�G���t �g� is the probability that
he effective pair of pre- and postsynaptic spikes is separated
y time �t at a synapse with conductance g. Two basic ques-
ions that determine G��t �g� and Pt��t �g� are �1� whether
elative change in synaptic weight due to a pair of spikes
epends on the weight itself8,9,11 and �2� how pre- and
ostsynaptic spikes in long spike trains pair together to in-
uce the change.12,13 It is possible, however, to address these
wo questions by investigating the functional consequences
f all possible answers and examining how well these con-
equences are consistent with existing knowledge, e.g., broad
onductance distributions �Fig. 1�e� in Ref. 14 and Fig. 1�b�
n Ref. 15� and dependence on firing rates �the BCM rule2�.

For the first question, two types of STDP learning rules
ave been proposed in the literature. The first type is weight-
ndependent �or additive� STDP, which can be modeled as

�g1 = G��t�g� = � cpe−�t/�p, �t � 0,

− cde�t/�d, �t � 0,
	 �7�

here cp, cd, �p, and �d are constants. If g is outside the
egion of �0,gmax� due to the learning process, g is forced to
e boundary values. The second type is weight-dependent �or

ultiplicative� STDP, mathematically represented by

wnloaded 05 Jun 2006 to 129.219.51.205. Redistribution subject to AIP
�g1 = G��t�g� = �cpe−�t/�p�1 − g� , �t � 0,

− cdge�t/�d, �t � 0,
	 �8�

where g is the normalized value with respect to a constant
gmax; cp, cd, �p, and �d are constants. The following param-
eter set is used in numerical simulations: cp=0.001, cd

=0.003, and �p=�d=20 ms.
Many pairing rules have been proposed to address the

second question. Among them, all-to-all and nearest-
neighbor pairing rules have been widely used. The all-to-all
rule assumes every presynaptic spike interacts with every
postsynaptic spike, as shown in Fig. 1�a�. An alternative to
the above simple scheme is a nearest-neighbor interaction, in
which only the first presynaptic event after a given postsyn-
aptic event can produce depression, and only the first
postsynaptic spike after a given presynaptic event can pro-
duce potentiation, as shown in Fig. 1�b�. There could also be
other forms of pairing rules, such as postsynaptic-centric or
presynaptic-centric rules. In this study, we propose a latest-
neighbor pairing rule, which is motivated by a dynamical
model of long-term synaptic plasticity.16 In particular, build-
ing on the current understanding of the molecular mecha-
nism of synaptic plasticity, Abarbanel et al. proposed in Ref.
16 that synaptic plasticity is the result of interactions be-
tween two processes: one due to presynaptic activities and
another due to postsynaptic activities. The prediction of this
model has been shown to be in good agreement with many
experiments. If we assume that the idea of having two pro-
cesses is correct, and also assume the presynaptic �postsyn-
aptic� process will be reset by any new presynaptic �postsyn-
aptic� event, then at any time instant only the latest-neighbor
pairs of pre- and postsynaptic spikes contribute to the plas-

FIG. 1. Pairing rules. �a� All-to-all. �b� Nearest neighbor. �c� Latest
neighbor. The solid line represents LTP pairs and the dotted lines are for
LTD pairs.
ticity, because the current states of the pre- and postsynaptic
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rocesses are determined totally by these two spikes, respec-
ively. This pairing rule is illustrated in Fig. 1�c�.

Next, we will consider six possible implementations of
TDP based on two possible G��t �g� and three possible

Pt��t �g� due to the three pairing rules discussed above. The
nalysis of weight-dependent G��t �g� with latest-neighbor
airing rule will be given in detail, while other implementa-
ions will be discussed briefly.

. Weight-dependent STDP with latest-neighbor
airing rule

Two factors contribute to Pt��t �g�. One is the causal
ontribution due to the direct and indirect interactions be-
ween the presynaptic and postsynaptic neurons, which de-
end on the details of the network model. Another is non-
ausal due to the random coincidence of the two spike trains.
or the latest-neighbor pairing rule, the noncausal factor can
e found as follows. Suppose the interspike intervals �ISIs�
f pre- and postsynaptic spike trains are independent of each
ther and follow the distribution �i�T� and �o�T�, respec-
ively. As shown in Fig. 1�c�, all pairs of pre- and postsyn-
ptic spikes that lead to LTP can be found by looking at each
nterspike interval �ISI� in the presynaptic spike train: the
airs connecting the leading presynaptic spike with each of
he postsynaptic spikes within the ISI are the LTP pairs.
imilarly, all pairs of pre- and postsynaptic spikes that lead

o LTD can be located by examining each ISI in the postsyn-
ptic spike train, i.e., the pairs connecting the leading
ostsynaptic spike with each of the presynaptic spikes within
he ISI are the LTD pairs. Thus, to find the probability of
bserving a latest-neighbor pair with positive �t, we first
onsider an ISI with duration T in the presynaptic spike train.
ecause the pre- and postsynaptic spikes are not correlated

since we are examining the noncausal factor�, all pairs with
ositive �t�T have equal probability that is proportional to
he product of the pre- and postsynaptic mean firing rates.
airs with �t�T will have zero probability. Thus, we have

prob��t�0 � �t � T� = �i�o,

�9�
and prob��t��t � T� = 0,

here �i and �o are the mean firing rates of pre- and postsyn-
ptic neurons, respectively. Averaging over all possible ISIs
n the presynaptic spike train yields

prob��t��t � 0� = �
0

�t

0 · �i�T�dT + �
�t

�

�i�o�i�T�dT

= �i�o�
�t

�

�i�T�dT . �10�

he probability for the case of negative �t can be obtained
imilarly,

prob��t��t � 0� = �i�o�
��t�

�

�o�T�dT . �11�

igure 2 illustrates this result for the case of Poisson spike

rains.

wnloaded 05 Jun 2006 to 129.219.51.205. Redistribution subject to AIP
For STDP with latest-neighbor pairing rule, we thus
have

Pt��t�g� 
 C��t�g� + �i�o�
��t�

�

��T�dT , �12�

where ��T�=�i�o��T� if �t�0��0�; the term C��t �g� rep-
resents the causal factor, and the second term the noncausal.

If both C��t �g� and ��T� are known, we could solve for
P�g , t� from Eq. �3�. However, C��t �g� and ��T� also de-
pend on the weight distribution P�g , t�. Given an initial
weight distribution P�g , t=0�, synaptic weights in a large
network may evolve in a complicated way and, hence, Eq.
�3� has to be solved self-consistently. To gain insight into the
problem, we assume, with time-invariant external inputs to
the network, the random process can achieve an asymptotic
steady state, at which C��t �g� and ��T� for each network
neuron are invariant �Assumption I�. Furthermore, we as-
sume spike trains are Poisson �Assumption II�,

��T� = �e−�T, �13�

where � is the firing rate of the pre- or the postsynaptic
neuron. To obtain a simple form for C��t �g�, we also assume
there is only one-way connection and no other indirect con-
nections �e.g., common inputs� between two neurons exist
�Assumption III�. We will relax these three assumptions and
discuss the corresponding consequences.

Under Assumption III, we have C��t �g�=0 if �t�0,
since the pre- and postsynaptic events are not correlated, and
C��t �g��0 if �t�0, representing the effect that a presyn-
aptic spike always enhances the probability of postsynaptic
firing. Although the shape of C��t �g� depends on the details
of the system model, in general, C��t �g� is small and can be
assumed to be proportional to g and �i.

10 The integration of

FIG. 2. Probability prob��t�. Points are obtained from simulation with two
Poisson spike trains ��i=25 Hz, �o=100 Hz�. The solid curve is the theo-
retical prediction.
C��t �g� inside the STDP learning window is
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� C��t�g�e�t/�dt 
 �i	g , �14�

here �=�p=�d, and 	 is a small positive constant propor-
ional to the correlation between the input and the output
pike trains, or equivalently, to the correlation among all in-
uts. This is reasonable considering that dozens of coincident
resynaptic spikes are needed to evoke a postsynaptic firing
nd more correlated inputs result in higher probability of
ostsynaptic firing and hence higher correlation between pre-
nd postsynaptic activities. These considerations lead to

A1�g�
�i�o

= cp�1 − g�� 1

�i + 1/�p
+

	g

�o
� −

cdg

�o + 1/�d
, �15�

here the first term on the right-hand side of the equation
epresents the strength of LTP, and the second the LTD.

The dependence of A1�g� on input correlation is illus-
rated in Fig. 3�a� for three values of 	. Let g* be the point
here LTP and LTD are balanced, i.e., A1�g*�=0. We see that

he position of g* moves to the right as 	 increases; so does
he final weight distribution �Fig. 3�b��. This indicates that
he correlation between inputs can be encoded into the syn-
ptic strength due to the STDP learning rule, similar to other
TDP implementations.8,9 If the constraint on connections is
emoved, e.g., network neurons can have recurrent connec-
ions and/or common inputs, C��t �g� will become more
omplicated. For example, C��t �g��0 even if �t�0. As a
onsequence, the integration of C��t �g� inside the STDP
earning window can be positive or negative for different
eurons in the network, which results in different LTP/LTD-
alancing positions for different synapses. Especially for the
ase of two neurons with recurrent connections, competition
etween the two synapses can be induced. As we will show

IG. 3. �a� A1�g� for 	=0.02,0.2,0.4, respectively �from left to right�. Input
nd output firing rates are 5 Hz. �b� Final weight distribution P�g� due to

1�g� in �a� estimated from 200 runs. �c� Qualitative consistency with BCM.
he drift term A1�g�, or the expected value of �g, depends on output firing

ate �o. Three curves correspond to different initial synaptic weights �from
op to bottom, g=0.25,0.3,0.35�. �d� The dependence of g* on �io= ��i

1/�p� / ��o+1/�d�.
wnloaded 05 Jun 2006 to 129.219.51.205. Redistribution subject to AIP
later in a simulation example, this effect becomes more and
more evident as the correlation among external inputs in-
creases.

To find the dependence of A�g� on input and output fir-
ing rates, we assume 	=0 in Eq. �15� and obtain

g* = 1 +
cd��i + 1/�p�
cp��o + 1/�d��−1

, �16�

which suggests that synaptic weights are also sensitive to
input and output firing rates, as shown in Fig. 3�d�. If the
distribution of neuron firing rate is broad, the weight distri-
bution in the network must be broad, too �unlike the distri-
bution in Fig. 3�b��. Although the diversity in cross correla-
tions between pre- and postsynaptic neurons can broaden the
weight distribution too, it is not likely to be the major cause
because neurons in reality are only weakly correlated. The
diversity of the firing rate is partially caused by induced
competition between neurons, which can be understood as
follows. If the firing rate of the postsynaptic neuron �excita-
tory� increases, for example, g will increase according to Eq.
�16� and at the same time local inhibition will be strength-
ened due to the increased excitation to the local inhibitory
neurons. The increased local inhibition will lower the firing
rates of local excitatory neurons. The lost excitation of
postsynaptic neuron will be less than that of the presynaptic
neuron because of increased g, causing the ratio �i /�o to
decrease and g to increase further. As a consequence of this
chain reaction, one neuron becomes less active because an-
other become more active, naturally introducing neural com-
petition. It is also important to note that the STDP with
latest-neighbor pairing rule is compatible13 with rate-based
Hebbian learning rules. For example, the BCM rule2 has the
form

�g
dg

dt
= �i�o��o − 
� , �17�

where �g is a time constant, and 
 is a variable threshold used
to induce and stabilize LTP/LTD. In general, it is assumed
that 
 depends on the activity of the postsynaptic neuron and
increases faster than the postsynaptic firing rate to prevent g
from having unrealistically large values. To compare STDP
with BCM, we can rewrite Eq. �15� as

dg

dt
= �i�oF��o,
� ,

�18�


 =
cdg

cp�1 − g�
��i + 1/�p� − 1/�d,

where F�x ,y��0 for x�y, and F�x ,y��0 for x�y. If �i is
fixed, the threshold 
 depends on g. As shown in Fig. 3�c�, 

increases with g. Because increasing g can cause only a
slight increase in �o, 
 will increase much faster than �o.
Note that the constraint gmax and the term �1−g� in Eq. �8�
are not essential for weight-dependent STDP, but they ensure
a faster convergence. It can thus be seen that this learning
rule is able to induce LTP/LTD and stabilize synaptic modi-
fications as BCM, but with higher temporal accuracy. Al-

though spike trains in reality are not perfectly Poissonian
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e.g., having refractory phase�, the above general conclusions
hould still hold qualitatively.

Assumption I in our model is that an asymptotic steady
tate can be achieved under invariant external inputs to the
etwork. It is not clear how good this assumption is. Thus,
e have carried out numerical simulations using a random
etwork model, with results in good agreement with our the-
retical analysis. The simulation results will be shown in
ec. III.

. A1„g… from alternative implementations of STDP

In the following, the correlation between pre- and
ostsynaptic neurons is assumed to be zero since it is small
n reality. Similar to the derivation of Eq. �10�, the probabil-
ty that pre- and postsynaptic spikes are separated by �t for
he all-to-all rule is

prob��t� = �i�o. �19�

or the nearest-neighbor rule, the probability is the reverse
f the one for the latest neighbor,

prob��t��t � 0� = �i�o�
��t�

�

�o�T�dT .

�20�

prob��t��t � 0� = �i�o�
��t�

�

�i�T�dT .

or weight-independent STDP paired with the all-to-all rule,
e have

A1�g�
�i�o

= cp�p − cd�d, �21�

hich implies that all synapses are either depressed to zero
r potentiated to a maximum value depending on the sign of

p�p−cd�d. This appears unrealistic.
For weight-independent STDP paired with the nearest-

eighbor rule, we have

A1�g�
�i�o

=
cp

�o + 1/�p
−

cd

�i + 1/�d
, �22�

hich also implies an unrealistic bimodal distribution.
For weight-independent STDP paired with the latest-

eighbor rule, we obtain

A1�g�
�i�o

=
cp

�i + 1/�p
−

cd

�o + 1/�d
, �23�

hich also implies an unrealistic bimodal distribution.
For weight-dependent STDP paired with the all-to-all

ule, we find

g* = 1 +
cd�p

cp�d
�−1

, �24�

hich does not depend on the firing rates. So, this implemen-
ation is not compatible with rate-based Hebbian rules such
s the BCM rule.

For weight-dependent STDP paired with the nearest-

eighbor rule, we have
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g* = 1 +
cd��o + 1/�p�
cp��i + 1/�d� �−1

, �25�

which implies that the larger �o is, the smaller g*. This con-
tradicts the BCM rule.

There can be many other possible implementations of
STDP. Here, we only wish to emphasize that any meaningful
implementation should be consistent with existing knowl-
edge. It can be seen that some implementations, such as ones
discussed above, are not realistic. In the rest of this paper,
only weight-dependent STDP with latest-neighbor pairing
rule will be considered.

C. A2„g… and A„g…

The drift force caused by HSP can be written as

A2�g� =
1

�HSP
ggoal

N
− �

−�

�

gP�g,t = ��dg� , �26�

where N is the total number of input synapses. We see that
A2�g� does not depend on g in the asymptotic state since the
second term on the right-hand side is the mean, which does
not depend on g. For simplicity, we write A2�A2�g�.

Under the three assumptions made in Sec. II B 1, A1�g�
is given by Eq. �15�. Finally, we have

A�g�
�i�o

= cp�1 − g�� 1

�i + �p
+

	g

�o
� −

cdg

�o + �d
+

A2

�i�o
. �27�

Comparing Eqs. �15� and �27�, we see that A�g� is approxi-
mately a shifted version of A1�g�, as shown in Fig. 4�a�. The
amplitude of this shift is proportional to A2 /�i�o. If A2 is
fixed and �i�o is large, i.e., sensory inputs are activated, the
influence of HSP can be negligible. If �i�o is small, i.e., the
neuron undergoes spontaneous activities, the influence of
HSP cannot be neglected and the mean of the weight distri-

FIG. 4. Influence of HSP on A�g�. �a� The drift term A�g� for �i=�o

=1 Hz,5 Hz, respectively. 	=0.02, �HSP=1000 s, ggoal /N=0.15. The dotted
curve is A1�g� �STDP� with �i,o=5 Hz. �b� P�g� due to A�g� in �a� is esti-
mated from 200 runs.
bution is shifted.

 license or copyright, see http://chaos.aip.org/chaos/copyright.jsp



c
i
s
q
t
t
t
c
n
t

I

t
r
o
n
t
0
e
t
i
r
n
m
d
s

w
a
a
s
b
c
l
e
a
m
a
h
m
e

023105-7 Neural mechanism for learning Chaos 16, 023105 �2006�

Do
Another important feature that HSP introduces is the
ompetition between inputs. Suppose there are two groups of
nputs: one is strong and another is weak. The relative
trength may be induced by different firing rates, the fre-
uencies of activation, correlations, and so on. According to
he relative strength of their drift forces produced by STDP,
he additional drift force produced by HSP will be allocated
o the two groups. That is, the two groups of inputs have to
ompete for the total available weight or the control of the
euron. Thus, we see that HSP naturally introduces compe-
ition among neurons.

II. NUMERICAL SIMULATIONS

Our model network consists of 240 excitatory:60 inhibi-
ory neurons. The excitatory:inhibitory ratio is set to be 4:1,
epresenting the statistics of neurons in local neural networks
f brain. The network receives inputs from 100 excitatory
eurons that generate Poisson spike trains. The probability
hat a neuron is connected with another through a synapse is
.3, which is a little higher than values obtained by many
xperimental studies. For example, it was shown in Ref. 17
hat the connection rate among thick tufted layer 5 neurons
n rat visual cortex is about 11.6%. Although the connection
ate of 0.3 might be higher than reality, the equivalent con-
ection rate after learning should be much lower because
any synapses during the learning process could be largely

epressed. Each network neuron is modeled by the following
et of ordinary differential equations:18

dV

dt
= − �17.81 + 47.58V + 33.8V2��V − 0.48�

− 26R�V + 0.95� + IS + I ,

�28�
dR

dt
= �1/�R��− R + 1.29V + 0.79 + 3.3�V + 0.38�2� ,

here V is the membrane potential, R is the recovery vari-
ble with time constant �R=5.6 ms for excitatory neurons
nd 2.1 ms for inhibitory neurons, and current Is is due to the
ynaptic inputs from neurons modeled in the network. The
ackground current I to each neuron is modeled as synaptic
urrent due to uncorrelated Poissonian spike trains. In simu-
ation, I results in a firing rate of about 1 Hz �7 Hz� for
xcitatory �inhibitory� neurons when IS=0. These equations
re a simplified version of the Hodgkin-Huxley equations for
ammalian cortical neurons, being able to produce a good

pproximation to spike shapes, firing rates, and bursting be-
avior throughout the physiological range. Each synapse is
odeled by the following set of ordinary differential

quations:18
wnloaded 05 Jun 2006 to 129.219.51.205. Redistribution subject to AIP
df

dt
= �1/�syn��− f + Hvs�Vpre − ��� ,

�29�
dS

dt
= �1/�syn��− S + f� ,

where f is an intermediate variable for the synaptic potential
S, �syn is the time delay of the synapse, Hvs�x� is the Heavi-
side step function,

Hvs�x� = �1 if x � 0,

0 if x � 0.
	 �30�

Vpre is the membrane potential of the presynaptic neuron, and
� is the threshold for synaptic conductance change. The cur-
rent into the postsynaptic neuron is IS=−gS�V−Esyn�, where
Esyn is the synaptic reversal potential, g controls the synaptic
conductance, and V is the postsynaptic membrane potential.
In our simulations, gmax=1.0 �i.e., 1000 pS�. For excitatory
synapses, we set �syn=2.0 ms, �=−0.3 �i.e., −30 mV�, and
Esyn=0. For inhibitory synapses, we use �syn=0.5 ms, �
=−0.4 �i.e., −40 mV�, and Esyn=−0.75 �i.e., −75 mV�. More
details about the parameter selection can be found in Ref. 18.
Using this parameter set of neurons and synapses, the total
current into a postsynaptic neuron due to one excitatory pr-
esynaptic action potential �AP� is 1.5 times of the one due to
inhibitory AP. The networks are in random state with aver-
aged firing rate for excitatory neurons of 1 Hz and inhibitory
ones of 7 Hz when the input neurons are silent; E -E
�excitatory-excitatory� synapses are initialized by a uniform
distribution between 0 and gmax, all other types of synapses
are gmax and are not plastic.

While there are well-established learning rules for E -E
synapses, learning rules involving inhibitory neurons have
not been well established. Thus, in this study, only E -E syn-
apses are plastic; all others are assumed to be constant. In
reality, STDP and HSP operate on different time scales. To
make simulation feasible, however, we assume a smaller
time scale, �HSP=10 s, for HSP in Eq. �2�.

A. Self-organization

Although sensory experience is important to refining
neural circuits, spontaneous activities are believed to be criti-
cal to the circuit formation during early development.19 So,
we first study how STDP learning rules sculpt the neural
network from spontaneous activities. In this simulation,
E -E synapses are initialized by a uniform distribution be-
tween 0 and gmax, as shown in Fig. 5�a�. All other types of
synapses are gmax. Then, the synapses between excitatory
network neurons are allowed to undergo self-organization
due to the spontaneous activities while input neurons are
kept silent. The firing rates of network neurons become ap-
proximately invariant after 60 s. Simulation runs until
1000 s, at which steady state is assumed to be achieved. As
shown in Fig. 5�b�, the final distribution of network synaptic
conductances has a peak at g=0.25, which is consistent with
the prediction on the single postsynaptic neuron model by
the Fokker-Planck theory with zero correlation �Eq. �16��.

This can be understood since network neurons are weakly
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orrelated and inputs to each neuron should be Poissonian
uring spontaneous activities. This result is quite similar to
he one based on the single postsynaptic neuron model,8 in
hich multiplicative noise is added in the STDP learning

ules to mimic experimental observations.

. Correlation-based learning, dependence
n firing rate, and neural competition

In this simulation, E -E synapses are initialized by a uni-
orm distribution between 0 and gmax, and all other types of
ynapses are gmax. After the first 100 s, during which the
etwork undergoes spontaneous activities with input neurons
t silence, the input neurons are activated at 30 Hz. Firing
ates of network neurons become approximately invariant
fter 1000 s. The simulation runs until 2000 s, at which we
ssume the learning process achieves the asymptotic steady
tate.

Figure 6�a� shows the firing rate distribution of the ex-
itatory network neurons with independent inputs, or C=0.
oughly speaking, network neurons can be divided into two
roups according to firing rates, higher or lower than 1 Hz.
he total weights of afferent synapses on neurons from dif-

erent groups are also different, corresponding to the two
roups shown in Fig. 6�b�. This is the result of competition
etween neurons. The dependence of g* on firing rate is
hown in Fig. 7 �dots�. A closer examination shows that the
ata points, obtained from neurons with firing rate higher
han 1 Hz, appear close to the theoretical prediction �Eq.
16�� �not shown in this figure�. The small deviations are
ainly caused by the fact that the ISI distributions are not

IG. 5. Self-organization of network excitatory synapses through STDP. �a�
he initial distribution of E -E synaptic conductance. �b� The final distribu-

ion of E -E synaptic conductance with a peak at 0.25.

IG. 6. Simulation 2. Distributions of firing rate and summation of weights.
a� Histogram of firing rates of excitatory network neurons. The inset plot is
n a semilogarithmic scale. �b� Histogram of , the total E -E synaptic
eights converging on one excitatory network neuron. In simulation, inputs
re independent with firing rate 30 Hz.

wnloaded 05 Jun 2006 to 129.219.51.205. Redistribution subject to AIP
perfectly exponential �with refractory period�, while Eq. �16�
assumes they are perfectly exponential. Figure 8�a� shows
the results of weight distributions for uncorrelated inputs.
The broad weight distributions are due to the broad firing
rate distribution. The two peaks in the weight distribution of
network synapses signify weak competition between net-
work synapses. This may not be surprising if one realizes the
existence of reciprocal connections between a pair of neu-
rons. If the forward synapse is strengthened �or weakened�,
the backward synapse must be weakened �or strengthened� at
the same time since changes in both synapses are induced by
the same pair of spikes. Repeating such experiences can fi-
nally result in different balancing positions for the reciprocal
connections. That is, the strength ratio of LTP and LTD in
Eq. �15� is different for the pair of synapses, resulting in
different values for g*. Figures 8�b� and 8�c� show the results
for inputs with increasing correlations. Apparently, the mean
of input conductances is proportional to the correlation be-
tween inputs, as predicted by the theory �Eq. �15��. For net-
work synapses, although the shapes of their distributions are

FIG. 7. Dependence of g* on firing rate. The solid curve is given by Eq. �16�
with �io= ��i+1/�p� / ��o+1/�d�. The dots are obtained in a numerical
simulation.

FIG. 8. Learning input correlations. Duration of the simulation is 2000 s.
The firing rate of inputs is 30 Hz. �a� Correlation among inputs is C=0.
Upper panel: the final distribution of E -E network synaptic conductance.
Lower panel: the final distribution of E -E input synaptic conductance.

�b� C=0.09. �c� C=0.36.
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lightly different from the one due to spontaneous activities,
t can still be seen that the mean is proportional to the input
orrelation. The distance between the two peaks also in-
reases as input correlation increases as a result of increased
ompetition.

. Cooperative learning

Synapses are initialized by using distributions obtained
n simulation 1. Duration of the simulation is 120 s. Figure 9
hows the result for the cases where there are two indepen-
ent input groups. In the first case, the cross correlation is
=0.09 for group 1 and c=0.36 for group 2. For the second
ase, the cross correlation inside each group is the same,
=0.25. The firing rate of input spike trains is 30 Hz. Com-
aring with Fig. 8, it can be seen that there is cooperative
earning between the two groups. For example, without co-
perative learning, the two groups in the first case �upper
anels� should have different means. In particular, the mean
alue of group 1 in the first case would be smaller than that
f the group in the second case since it has weaker correla-
ion �0.09�0.25�.

. Synaptic competition

Synapses are initialized by using distributions obtained
n simulation 1. In simulations, the inputs are divided into
wo groups. The first group is activated during the first 40 s,
hile the second is activated during the second 40 s. The

imulation results for the network trained by STDP only are
hown in the middle of Fig. 10. It can be seen that the means
f the final distributions of two groups are the same, similar
o the case in Fig. 9. The distribution of the first group is
nchanged during the second 40 s because its firing rate is

IG. 9. Cooperative learning. Upper panels correspond to the case where
here are two independent groups of external inputs with correlations C
0.09 and C=0.36, respectively. Lower panels are for the case where two

ndependent groups of external inputs have C=0.25 and C=0.25, respec-
ively. They have the same firing rate of 30 Hz. �a� The final distribution of
-E network synaptic conductance. The final distribution of E -E input syn-

ptic conductance in group 1 �b� and group 2 �c�.
ero and STDP never updates the weights. This is not real-

wnloaded 05 Jun 2006 to 129.219.51.205. Redistribution subject to AIP
istic since memory can be forgotten and new sensory expe-
rience can overwrite the old one. Thus, competitive learning
is lacking in STDP.

The simulation results for the network trained by STDP
and HSP are shown in the bottom of Fig. 10, where ggoal

=30 is used. We see that the shapes of the distributions are
similar to the ones trained by STDP only. The only differ-
ences are the pronounced double peaks in network synapses
and the suppression of the first group of input synapses, as
expected due to the competition of limited total weights. Ap-
parently, HSP enhances the competition between network
and input synapses, regardless of whether they are activated
or not. At the same time, HSP does not prevent STDP learn-
ing because of the different time scale of these two learning
rules.

IV. DISCUSSION

Because of our limited understanding of the mechanisms
for LTP/LTD, many possible implementations of STDP
have been proposed. For example, STDP has been assumed
to be weight dependent, weight independent, or a combina-
tion of both;20 the integration of STDP may use all-to-all
pairing, nearest-neighbor pairing, or latest-neighbor pairing,
etc. Our theoretical and numerical studies at the network
level reveal that weight-dependent STDP with the latest-
neighbor pairing rule can generate stable and more realistic
distributions of synaptic conductance, induce correlation-
based learning and strong competition among network neu-
rons, and is compatible with rate-based Hebbian rules.

The major difficulty in the current theoretical analysis
using the Fokker-Planck theory lies in the fact that the exact
form of causal factor C��t �g� in Eq. �12� is unknown for
recurrent networks. To overcome this difficulty, usually some
restrictions have to be made upon the network models. For
example, Refs. 8–10 use a nonrecurrent network model,

FIG. 10. Competition between inputs. Top: the network receives two groups
of inputs. Group 1 is on during the first 40 s, while group 2 is on during the
second 40 s. Upper three panels: final distributions using STDP only. Lower
three panels: final distributions using both STDP and HSP.
which has a simple form of C��t �g�, similar to this paper.
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eference 21 studies a recurrent network in synchronized
tate, e.g., 3-cycle state, which also has a simple form of
��t �g� with values at a few discrete positions. In this paper,
e start from nonrecurrent networks and solve the Fokker-
lanck equation in a way similar to Refs. 8–10. Based on

his closed-form solution for nonrecurrent networks, we dis-
uss, qualitatively, how recurrent connections would change
he form of C��t �g� and weight distributions, and then pro-
ide supporting evidence from numerical simulations.

The closed-form solution for nonrecurrent networks also
elps us in studying the consequences of different STDP
airing rules and how compatible they are with existing
nowledge, similar to Ref. 13. Here, it should be noted that
he nearest-neighbor rule suggested in Ref. 13 is different
rom the latest-neighbor rule proposed in this paper �and also
ifferent from the nearest-neighbor rule discussed in this pa-
er�. The nearest-neighbor rule in Ref. 13 assumes there is a
alcium saturation in postsynaptic neuron, so the first suc-
eeding postsynaptic spike overrides the effect of subsequent
pikes. For example, there is no second LTP pair in Fig. 1�c�
ccording to this rule. If this saturation does exist, then the
uestion is when the dynamics of a postsynaptic calcium
hannel recovers from the saturation. Implicitly assumed by
he rule of Ref. 13, it recovers suddenly and completely right
fter the next presynaptic spike. In fact, as suggested in Ref.
2, saturations exist in both pre- and postsynaptic parts and
he dynamics recover from saturations exponentially with
ifferent time constants. So, in this sense, the latest-neighbor
airing rule with exponentially recovered saturations at both
re- and postsynaptic sides is more realistic. As argued in
ef. 13, on the other hand, the exponentially recovered satu-

ation has little effect on the properties of plasticity rules. So,
or simplicity, we have proposed a plain latest-neighbor pair-
ng rule for STDP in this paper. Further discussion about the
TDP pairing rules can be found in the literature, e.g.,
efs. 23–25.

As a homosynaptic rule, STDP assumes that events hap-
ening in one synapse will not influence directly the other
ynapses targeting on the same postsynaptic neuron. This
omosynaptic nature results in the lack of competitive learn-
ng between synapses converging on one neuron. In situa-
ions where strong competition is needed, e.g., developing
electivity, some heterosynaptic mechanism is necessary.7

SP operates on a time scale different from STDP, which
llows the coexistence of the activity-induced learning and
ompetitive learning. Our results demonstrate that combining
TDP and HSP can produce a biophysically plausible learn-

ng rule that better characterizes the learning mechanism of
he brain.

Apparently, the plasticity model studied in this paper is
implified and idealized. In reality, there are not only much
ore complicated heterosynaptic interactions at work,7,26 but

lso complicated homosynaptic dynamics. For example,
TDP may require multiple pairings and have complicated
airing rules, take place with delays, and take different prop-
rties at different locations on the dendritic tree.27 Further-
ore, the details of STDP largely depend on the system be-

ng studied. While some of these assumptions made in this

tudy will change the weight distributions, such as pairing

wnloaded 05 Jun 2006 to 129.219.51.205. Redistribution subject to AIP
rules, some will not. For example, an action delay of STDP
much shorter than the mean interspike intervals would not
change the learning process. Even when they are compa-
rable, its effect should be only a delay on the learning pro-
cess and have little influence on the asymptotic weight dis-
tributions. It will be interesting to investigate the effect of
network structure on weight distributions.
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