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Resonant perturbations are effective for harnessing nonlinear oscillators for various applications
such as controlling chaos and inducing chaos. Of physical interest is the effect of small frequency
mismatch on the attractors of the underlying dynamical systems. By utilizing a prototype of non-
linear oscillators, the periodically forced Duffing oscillator and its variant, we find a phenomenon:
resonant-frequency mismatch can result in attractors that are nonchaotic but are apparently strange
in the sense that they possess a negative Lyapunov exponent but its information dimension mea-
sured using finite numerics assumes a fractional value. We call such attractors pseudo-strange. The
transition to pesudo-strange attractors as a system parameter changes can be understood analytically
by regarding the system as nonstationary and using the Melnikov function. Our results imply that
pseudo-strange attractors are common in nonstationary dynamical systems. © 2006 American In-
stitute of Physics. �DOI: 10.1063/1.2208566�
e learned from freshman physics that for a linear oscil-
ator, resonant forcing with frequency matching the inter-
al frequency of the oscillator can generate oscillations of
rbitrarily large amplitude. For a nonlinear oscillator, re-
earchers have discovered that resonant perturbations
an cause characteristic changes in the system’s
symptotic behavior. For instance, for control of chaos,
esonant forcing of small amplitude can convert a chaotic
ttractor into periodic, and vice versa. But what is the
ffect of frequency mismatch on the attractors of the non-
inear oscillator under resonant perturbation? By ad-
ressing this question, we find a class of attractors that
re not chaotic and in principle are not fractal either, but
hey exhibit a fractal geometry on finite scales. That is,
or such an attractor, although its information dimension
efined in the mathematical limit of infinitesimal scales is
n integer, in finite scales the dimension assumes a frac-
ional value. Physically, this is particularly relevant be-
ause extremely small scales are not accessible due to
oise. In order to understand the dynamical origin of
seudo-strange attractors, we propose to interpret the ef-
ect of frequency mismatch as that due to a time-
ependent parameter, so the resonantly forced system is
ffectively a nonstationary dynamical system where the
arameter sweeps adiabatically through both periodic
nd chaotic regimes. Analysis based on the Melnikov
unction can be used to provide insights into the transi-
ion to pseudo-strange attractors. As nonstationary dy-

amical systems with adiabatic parameter variations are
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relevant to physical and biological situations, we expect
pseudo-strange attractors to be common.

I. INTRODUCTION

Resonant perturbations have proven to be an effective
method for controlling the dynamics of nonlinear
oscillators1–7 in various applications. Early works focused on
the control of chaos; i.e., stabilizing some periodic motions
from chaos. It has been shown that, for a periodically forced
nonlinear oscillator, resonant perturbations of appropriate
strength can cause the originally chaotic attractor to be re-
placed by a periodic attractor.1,2,5 More recently, it has been
demonstrated theoretically and experimentally that resonant
perturbations with time-dependent frequencies and phases
can be used to continuously excite a stable periodic attractor
into a hierarchy of resonant states and eventually to chaos for
both Hamiltonian and dissipative systems.7

The fundamental requirement for resonant perturbation
is frequency match. In physical applications perfect match
may not be achieved. Motivated by this, we investigate the
effect of resonant-frequency mismatch on the dynamics of
the driven nonlinear oscillator. By using the periodically
forced Duffing oscillator as a prototype model, we find a
surprising phenomenon: there can be parameter regimes
where the frequency mismatch results in a type of attractors
distinct from those usually seen in the sense that they are not
chaotic but are observably strange. In particular, for such an
attractor none of the Lyapunov exponents is positive, but the

information dimension measured using finite numerics as-
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umes a fractional value. �While the limiting value of the
imension may be an integer, it is physically nonobservable.�
e call such attractors pseudo-strange attractors.8 As a sys-

em parameter, such as the periodic forcing amplitude,
hanges, there can be transitions from a periodic attractor to
pseudo-strange attractor, and then to a chaotic attractor.
nalytic insights for these phenomena can be obtained by

reating the frequency-mismatch term as an adiabatic phase
ariable and then using the Melnikov function. As we will
how, using this approach the system can be regarded effec-
ively as a nonstationary dynamical system with a time-
ependent parameter,9,10 which may find significant applica-
ions in biological situations such as neuronal networks with
alanced excitatory and inhibitory activity11 and epilepsy.12

ur results suggest that pseudo-strange attractors can be ex-
ected to arise commonly in nonstationary dynamical sys-
ems.

In Sec. II, we present numerical evidence for pseudo-
trange attractors in the resonantly forced Duffing oscillator.
n Sec. III, we explain the origin of the attractors in the
ontext of nonstationary dynamical systems and elucidate the
ransition to a pseudo-strange attractor and further to a cha-
tic attractor. An additional example is provided in Sec. IV
nd a brief summary is presented in Sec. V.

I. PSEUDO-STRANGE ATTRACTORS
N RESONANTLY FORCED DUFFING SYSTEMS

We consider a periodically forced Duffing oscillator un-
er resonant perturbations with frequency mismatch, given
y

d2x

dt2 = x − x3 − �
dx

dt
+ � cos��t� + � cos��� + ���t� , �1�

here � is the dissipation parameter, � and � are the peri-
dic forcing amplitude and frequency, respectively, ��� is
he amplitude of the resonant perturbation, � is the resonant
requency which is rotationally related to �, and ��

�� ,�� is the resonant-frequency mismatch. For the peri-
dically forced Duffing oscillator, if the forcing amplitude is
mall, the attractor is usually periodic. A chaotic attractor can
rise for large forcing amplitude.13 Utilizing the phase-space
ariables x, y�dx /dt, and z=�t, Eq. �1� becomes

dx

dt
= y ,

dy

dt
= x − x3 − �y + � cos z + � cos�� + ��

�
z� , �2�

dz

dt
= � .

o gain insights, we choose �=0.4, �=�=1.0, �=0.28, �
0.05, and ��=5�10−4. Figure 1�a� shows a typical time

eries x�t� from Eq. �1�, where we see that x�t� exhibits pe-
iodic and chaotic behaviors that occur intermittently in time.
igure 1�b� shows the underlying attractor on the strobo-
copic section zn=2	n, where n=0,1 , . . .. The largest non-

rivial Lyapunov exponent of the attractor is calculated to be
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�−0.054�0, indicating that the attractor is nonchaotic.
However, the attractor apparently possesses a fractal-like ge-
ometry. To gain quantitative insight, we calculate the infor-
mation dimension as shown in Fig. 2; i.e., the plot of the
information sum I���=	i ln i versus ln �, where � is the
size of the grid of boxes used to cover the attractor, and i is
the natural measure in the ith box. The slope of the fit is
d1=1.33±0.01, so that the information dimension of the at-
tractor in the full phase space is D1=1+d1=2.33±0.01, a
fractional value within the feasible numerical resolution.

The above fractional value of the information dimension
is obtained using finite numerics. The following argument
suggests that, if the asymptotic Lyapunov exponent is nega-
tive, the “true” information dimension of the attractor should
be an integer. Note Fig. 1�a�, which suggests that the attrac-
tor contains two measures, one chaotic and one periodic. For

�0, the measure associated with the periodic orbit is
“thicker” in the sense that it weighs over the fractal measure
associated with the chaotic set. Consider the dimension spec-
trum Dq. 14 For q�1, the thicker measure dominates in the
limit that the phase-space scale � tends to zero. However, to
resolve this numerically requires box-counting and calcula-

FIG. 1. For the resonantly forced Duffing oscillator Eq. �1�: �a� time series
x�t� and �b� attractor on the stroboscopic section in the phase space �Eq. �2��.

FIG. 2. For the resonantly forced Duffing oscillator Eq. �1�, linear scaling
between I��� and ln �. The slope of the fit is approximately 1.33±0.01 and

the “apparent” information dimension of the attractor is 2.33±0.01.
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ion of the natural measure on prohibitively small scales.
hus, although the asymptotic value of the information di-
ension is likely to be that associated with the periodic orbit,

n numerically or physically accessible scales the dimension
s approximately that associated with the chaotic set, which
s typically a fractional value �hence the name pseudo-
trange attractors�.

II. UNDERSTANDING BASED ON NONSTATIONARY
YNAMICAL SYSTEMS

To better understand the origin of pseudo-strange attrac-
ors, we rewrite Eq. �1� as

d2x

dt2 = x − x3 − �
dx

dt
+ � cos��t� + � cos��t + ��t�� , �3�

here ��t���� · t is a time-dependent phase variable. Our
dea is to treat ��t� as a bifurcation parameter of the system
nd to examine the attractors of the system as the parameter
aries. Because of the dependence of � on time, the under-
ying dynamical system is effectively nonstationary. A typi-
al �-bifurcation diagram is shown in Fig. 3�a�, where the
arameter setting is the same as that for Fig. 1. The corre-
ponding Lyapunov bifurcation diagram is shown in Fig.
�b�. We see that, when � is varied in its natural range
0 ,2	�, the asymptotic attractor can be either periodic or
haotic. In particular, there is an interval of � values for
hich 
 is negative, indicating that the attractor is periodic,

nd for the complementary � interval 
 is mostly positive,
ignifying chaotic attractors.4 While there are periodic win-
ows in the chaotic windows in the chaotic region, as indi-
ated by the dips of 
 to negative values, there are chaotic
addles �nonattracting chaotic invariant sets� coexisting with
he periodic attractors in these windows. Because of the slow

IG. 3. For the resonantly forced Duffing oscillator Eq. �3�: �a� bifurcation
iagram with the phase variable � as the bifurcation parameter and �b� the
argest Lyapunov exponent 
 vs the phase �. We see that different choices
f the phase can lead to completely different attractors: periodic or chaotic.
he dashed line in �b� is the maximal value of the Melnikov function as a

unction of �.
wnloaded 13 Sep 2006 to 129.219.51.205. Redistribution subject to AIP
phase modulation ����t in time, the system “selects” peri-
odic and chaotic behavior in different time intervals. Pseudo-
strange attractors are generated if a trajectory spends rela-
tively more time near some periodic attractors than near
chaotic attractors.

We imagine that, as a system parameter �e.g., the forcing
amplitude �� changes through a critical value, there is a tran-
sition from a periodic attractor to a pseudo-strange attractor.
How does this transition occur? To gain insight, we calculate
the Melnikov function,13 a time-dependent distance function
between the stable and the unstable manifold. A zero of this
function indicates homoclinic tangencies and, homoclinic in-
tersections can occur if this function is positive. Since the
Smale horseshoe �chaotic� dynamics is a consequence of ho-
moclinic intersections, chaos exists �at least locally� when
such intersections occur. The Melnikov criterion is, however,
necessary but not sufficient for chaos. That is, chaotic dy-
namics may arise when the Melnikov function is positive,
although the underlying chaotic set may be globally attract-
ing, or nonattracting such that there is only transient chaos.
For Eq. �3�, a standard procedure13 yields the following
Melnikov distance:

M�t0� = −
4�

3
+ A� sin��t0� + B� sin��t0 + �� , �4�

where

A = A��� = 
2	� sech�	�

2
� ,

and

B = B��� = 
2	� sech�	�

2
� .

If ��0 and

max0�t0�2	�A� sin��t0� + B� sin��t0 + ��� �
4�

3
,

M�t0� has simple zeros, implying that homoclinic intersec-
tions can occur and, hence, chaos is likely. For instance, if
�=�, we have A=B and

M�t0� � −
4�

3
+ A
�2 + 2�� cos��� + �2 � M��� . �5�

In Fig. 3�b�, the maximal Melnikov distance M��� as a func-
tion of � is plotted �the dashed curve�. We see that there is a
qualitative agreement between the behaviors of M��� and of
the maximum Lyapunov exponent. In particular, the regions
where M��� is positive correspond to regions where the larg-
est Lyapunov exponent is positive. The correspondence is
only approximate because the Melnikov function takes into
account only the first-order correction in the underlying per-
turbation treatment. Also note that, when there are periodic
windows in the chaotic region, the Melnikov function is still
positive and, hence, it cannot be used to distinguish periodic
windows from chaotic attractors. From Eq. �5�, we see that
the maximal value of the Melnikov function as a function of

the forcing amplitude � is
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Mm��� = M�� = 0� = −
4�

3
+ A����� + �� . �6�

s � is increased, pseudo-strange attractors can occur when
Mm��� becomes positive. The transition point �s is thus given
y

�s =
4�

3A���
− � . �7�

ecause of the perturbative nature of the Melnikov theory,
he value of the transition point given by Eq. �7� is approxi-

ate.
As � is increased through �s, the attractor from the

riven system Eq. �1� suddenly acquires a chaotic component
o become a pseudo-fractal set, but the largest nontrivial
yapunov exponent remains negative. There is then an in-
rease in the “apparent” fractal dimension from 1 for ���s

o a fractional value above 1 for ���s. Numerically, we
btain �s�0.243, which agrees with the prediction given by
q. �7�.

We now discuss the transition from a pseudo-strange to a
haotic attractor as the forcing amplitude � is increased fur-
her. The dynamical mechanism for pseudo-strange attractors
mplies that the transition is necessarily smooth in the sense
hat, as � changes through the transition point �c, the largest
ontrivial Lyapunov exponent passes through zero smoothly.
or a given value of �, let �t1��� , t2���� be the time interval
or which the Melnikov function is negative, and let
0 , t1���� and �t2��� ,TM� be the intervals for which the func-
ion is positive, where TM �2	 /��. Thus, for t

�t1��� , t2����, the finite-time largest nontrivial Lyapunov
xponent is negative and Fig. 3�b� indicates that the variation
f the negative exponent is smooth �in fact, almost constant�.
e write 
−�t��0. For t� �0, t1���� or t� �t2��� ,TM�, the

xponent is positive. In these two intervals, there are periodic
indows but in such a case, we ignore the periodic attractor
ut instead focus on the coexisting chaotic saddle. In so do-
ng, the Lyapunov exponent can also be regarded as
mooth,15 and we write 
+�t��0. In principle, 
+�t� and
−�t� also depends on the bifurcation parameter �, but if we
ocus on a small interval of � about the transition, the depen-
ence is relatively weak, comparing with the dependences of

1��� and t2��� on �. The largest nontrivial Lyapunov expo-
ent of the asymptotic attractor can then be expressed as

��� �
1

TM
�

t1���

t2���


−�t�dt + 
0

t1���


+�t�dt + 
t2���

TM


+�t��dt

=
1

TM
��
−��t2��� − t1���� + �
+��TM − t2��� + t1����� , �8�

here �
−� and �
+� are the average values of 
−�t� and 
+�t�
n their respective intervals, and the symmetry of the
yapunov exponent with respect to �=	 in Fig. 3�b� has
een used. Let �c be the transition point for which 
���=0.
ecause of the smooth dependences of t1��� and t2��� on �,
e can expand these quantities near the transition point to
he first order. This yields

wnloaded 13 Sep 2006 to 129.219.51.205. Redistribution subject to AIP

��� � �� − �c� �9�

for � in the vicinity of the transition point �c. The transition
is thus smooth. Numerical evidence for �9� is shown in
Fig. 4.

IV. PSEUDO-STRANGE ATTRACTORS IN A SYSTEM
WITH FRACTAL BASIN BOUNDARIES

We now consider a variant of the resonantly driven Duf-
fing oscillator where the double-well potential is replaced by
a single well:4

d2x

dt2 + 0.3
dx

dt
+ x3 = 10 cos��t� + 0.075 cos��� + ���t� . �10�

Choosing �=1.0 and �=3.0, and treating ��t���� · t as a
bifurcation parameter, we obtain the bifurcation and the
Lyapunov bifurcation diagram similar to those in Fig. 3. An
example of pseudo-strange attractor is shown in Fig. 5�a�,
where ��=0.007 and the two-dimensional stroboscopic sec-
tion is defined by the driving frequency �. The largest non-
trivial Lyapunov exponent is estimated to be 
�−0.12. Fig-
ure 5�b� shows the scaling of the information sum. The
apparent value of the information dimension is estimated to
be D1�2.74±0.01. These results point to a pseudo-strange
attractor.

For system equation �10�, there are choices of the phase
variable that lead to two coexisting, limit-cycle attractors,
whose basins of attraction are separated by fractal
boundaries.16 Figure 6�a� shows, for �=5.0, the two attrac-
tors in the two-dimensional plane �x�t� ,y�t�=dx�t� /dt� �not
on a stroboscopic section�, one represented by the solid
curve while another by the dashed curve. The fractal basin
boundaries separating their basins are shown in Fig. 6�b� on
the stroboscopic section defined by the resonant frequency
�. We note that for other choices of values of � in the 2	
interval, chaotic attractors can occur. Thus intervals of � for
which the attractors are limit cycles can be viewed as peri-
odic windows, where there is a chaotic saddle that gives rise
to the observed fractal basin boundaries. In this sense, there
is chaos, attracting or nonattracting, for almost every value
of � in the 2	 interval. This is unlike the forced Duffing
system equation �1�, where there is a relatively large interval

FIG. 4. For the periodically forced Duffing oscillator Eq. �1�: largest
Lyapunov exponent vs the bifurcation parameter � as it passes through �c for
which the exponent becomes positive. The transition from a pseudo-strange
to a chaotic attractor is apparently smooth, as characterized by Eq. �9�.
 license or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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f � for which there is no chaos �Fig. 3�. Thus, our modified
ystem equation �10� can be viewed as quite different from
he forced Duffing system equation �1� in detail. Our point is,
espite the difference, pseudo-strange attractors are common.

IG. 5. For the single-well, forced Duffing oscillator equation �10� for
�=0.007: �a� attractor on the two-dimensional stroboscopic section de-
ned by the driving frequency � and �b� scaling of the information sum I���
ith ln �. Within the feasible numerical resolution, the information dimen-

ion is estimated to be D1�2.74±0.01.

IG. 6. For �=5.0 in the modified forced Duffing oscillator equation �10�:
a� two coexisting limit-cycle attractors and �b� fractal basin boundaries

etween their basins of attraction.

wnloaded 13 Sep 2006 to 129.219.51.205. Redistribution subject to AIP
V. CONCLUSION

In summary, we find that small frequency mismatch in a
resonantly driven nonlinear oscillator can generate pseudo-
strange attractors that, to our knowledge, have not been no-
ticed previously. The attractors are nonchaotic in that they
possess no positive Lyapunov exponent, but their geometries
examined on finite, accessible scales are apparently fractal.
Our finding may be important because, in any physical situ-
ation noise is inevitable, so that scales smaller than one de-
termined by the noise level are inaccessible and the fractal
geometry needs to be examined on finite scales. In this sense,
the value of the “true” fractal dimension, mathematically de-
fined on infinitesimal scales, is irrelevant. The mechanism
for the pseudo-strange attractors can be explained in the con-
text of nonstationary dynamical systems where a parameter
sweeps adiabatically through periodic and chaotic regimes.
Because of this connection, we expect these attractors to be
common in nonstationary dynamical systems.

ACKNOWLEDGMENTS

Y.C.L. acknowledges the great hospitality of the Na-
tional University of Singapore, where part of this work was
done during a visit. He is supported by AFOSR under Grant
Nos. F49620-03-1-0290 and FA9550-06-1-0024.

1R. Lima and M. Pettini, Phys. Rev. A 41, 726 �1990�.
2L. Fronzoni, M. Giocondo, and M. Pettini, Phys. Rev. A 43, 6483 �1991�.
3Y. Braiman and I. Goldhirsch, Phys. Rev. Lett. 66, 2545 �1991�.
4A figure similar to Fig. 3 has been used to demonstrate that chaos in a
nonlinear oscillator can be converted to periodic motion by properly se-
lecting the phase of a weak resonant driving force �Z. Qu, G. Hu, G. Yang,
and G. Qin, Phys. Rev. Lett. 74, 1736 �1995��.

5F. Cuadros and R. Chacón, Phys. Rev. E 47, 4628 �1993�; R. Chacón,
Phys. Rev. E 51, 761 �1995�; Phys. Rev. Lett. 86, 1737 �2001�; Europhys.
Lett. 54, 148 �2001�.

6S. M. Booker, P. D. Smith, P. V. Brennan, and R. J. Bullock, IEEE Trans.
Circuits Syst., I: Fundam. Theory Appl. 49, 639 �2002�.

7Y.-C. Lai, A. Kandangath, S. Krishnamoorthy, J. A. Gaudt, and A. P. S. de
Moura, Phys. Rev. Lett. 94, 214101 �2005�.

8In dynamical systems, there can be strange nonchaotic attractors, attractors
that are geometrically strange but with nonpositive Lyapunov exponents
�Ref. 17�. So far such attractors have been identified in quasi-periodically
forced systems �Ref. 14� and in dynamical systems under noise �Ref. 18�.
There has been no consensus as to whether strange nonchaotic attractor
can occur in periodically forced, deterministic dynamical systems.

9J.-L. Chen, F.-J. Kao, and I.-M. Jiang, Phys. Lett. A 218, 268 �1996�.
10L. H. Juárez, H. Kantz, O. Martinez, E. Ramos, and R. Rechtman, Phys.

Rev. E 70, 056202 �2004�.
11C. van Vreeswijk and H. Sompolinsky, Science 274, 1724 �1996�.
12See, for example, S. J. Schiff, Nat. Med. �N.Y.� 4, 1117 �1998�.
13J. Guckenheimer and P. J. Holmes, Nonlinear Oscillations, Dynamical

Systems, and Bifurcations of Vector Fields �Springer-Verlag, Berlin, 1983�.
14E. Ott, Chaos in Dynamical Systems, 2nd ed. �Cambridge University

Press, Cambridge, 2002�.
15Y.-C. Lai, U. Feudel, and C. Grebogi, Phys. Rev. E 54, 6070 �1996�.
16C. Grebogi, S. W. McDonald, E. Ott, and J. A. Yorke, Phys. Lett. A 99,

415 �1983�; S. W. McDonald, C. Grebogi, E. Ott, and J. A. Yorke, Physica
D 17, 125 �1985�.

17C. Grebogi, E. Ott, S. Pelikan, and J. A. Yorke, Physica D 13, 261 �1984�.
18X. Wang, M. Zhan, C. H. Lai, and Y.-C. Lai, Phys. Rev. Lett. 92, 074102
�2004�.

 license or copyright, see http://chaos.aip.org/chaos/copyright.jsp


