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A chaotic attractor from a deterministic flow must necessarily possess a neutral direction, as
characterized by a null Lyapunov exponent. We show that for a wide class of chaotic attractors,
particularly those having multiple scrolls in the phase space, the existence of the neutral direction
can be extremely fragile in the sense that it is typically destroyed by noise of arbitrarily small
amplitude. A universal scaling law quantifying the increase of the Lyapunov exponent with noise is
obtained. A way to observe the scaling law in experiments is suggested. ©2004 American Institute
of Physics. @DOI: 10.1063/1.1637735#

The various effects of noise on deterministic dynamical
systems have been a topic of continuous interest and of
fundamental importance in nonlinear and statistical
physics. Here we focus on how noise affects the Lyapunov
spectrum of a chaotic attractor. Under small noise, the
originally null Lyapunov exponent, which reflects the ex-
istence of a neutral direction in the deterministic case, is
more likely to change as compared with the other non-
zero exponents. The neutral direction may thus be ‘‘frag-
ile’’ in the sense that it can be destroyed by small noise.
We find, however, that there exist two natural classes of
chaotic oscillators, one for which the neutral direction is
robust under noise while another for which the direction
is fragile. The former corresponds to chaotic attractors
with well-defined rotational structure such as the Rössler
attractor, and the latter to attractors with multiple scrolls
in the phase space such as those from the Lorenz system.
We give a physical theory to explain why Ro¨ssler-like
chaotic attractors can have a well-defined neutral direc-
tion but it is typically destroyed by arbitrarily small noise
for Lorenz-like attractors. We also find that for the latter,
the increase of the Lyapunov exponent from zero with
noise obeys an algebraic scaling law. For double-scroll
chaotic attractors in the three-dimensional phase space,
the scaling exponent assumes the universal value of two.
Our result, besides its importance from a basic stand-
point, can also be useful for practical applications such as
estimating the internal noise level of chaotic systems. Our
work is also directly relevant to the study of chaotic
phase synchronization.

I. INTRODUCTION

The behavior of a deterministic chaotic system under
noise is a fundamental problem in nonlinear and statistical
physics, and in applied mathematics as well. This is so be-

cause physical systems are often under noise, and it is im-
portant to assess how properties of deterministic chaotic
dynamics are affected by noise. Mathematically, this is re-
lated to the structural stability of a dynamical system. In-
deed, there has been a continuous interest in this area of
research.1–11

An elementary fact in nonlinear dynamics is that a cha-
otic attractor arising from a deterministic flow must have a
neutral direction in the phase space along which small dis-
tances are preserved. This neutral direction is, of course, the
direction of the flow itself in the phase space, which is char-
acterized by a null Lyapunov exponent. The purpose of this
paper is to show that for a wide class of chaotic attractors,
particularly those having multiple scrolls in the phase space
~such as the Lorenz attractor!, the existence of the neutral
direction can be extremely fragile in the sense that it is typi-
cally destroyed by noise, no matter how weak. Letl (0)(0)
50 be the null Lyapunov exponent in the absence of noise.
We find thatl0 becomes positive as the noise amplitudeD is
increased from zero. We will show thatl (0)(D) obeys the
following algebraic scaling law:

l (0)~D !;Da for D*0, ~1!

wherea.0 is the scaling exponent. For double-scroll cha-
otic attractors from three-dimensional flows, the scaling ex-
ponent assumes the value of two. We will argue that the
disturbance caused by noise to the consistency of the mo-
tions of chaotic trajectories on distinct phase-space scrolls,
which exists in the determinstic flow, is the fundamental
mechanism leading to the destruction of the neutral direction
and to the scaling law~1!. We will present numerical support
using the classical Lorenz12 attractor. We note that in dimen-
sion three, the noise-free attractor possesses only one posi-
tive Lyapunov exponent. But as soon as there is small noise,
the system exhibits two positive Lyapunov exponents. Thus
the phenomenon we report here represents an interesting case
where arbitrarily weak noise can induce high-dimensional
chaos with more than one positive Lyapunov exponent even
for well-known low-dimensional chaotic systems.a!Electronic mail: yclai@chaos1.la.asu.edu
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Note that the prefactor in Eq.~1! depends on system
details, whose magnitude determines the value of the posi-
tive Lyapunov exponent induced by noise. The prefactor thus
determines how drastic this effect can be, in terms of the
relative magnitude of the noise-induced exponent to the larg-
est Lyapunov exponent of the system. For example, for the
classical Lorenz system, we find numerically that the prefac-
tor is about 0.04, versus the largest exponent which is on the
order of unity.

In Sec. II, we give a physical theory to explain the be-
havior of the null Lyapunov exponent under noise for
Rössler- and Lorenz-like chaotic attractors, and derive the
scaling law~1!. Numerical support is provided in Sec. III,
and a brief discussion is presented in Sec. IV.

II. THEORY

For convenience, we consider a double-scroll chaotic at-
tractor in the three-dimensional phase space, which arises
from a dynamical system described bydx/dt5F(x), as
shown schematically in Fig. 1. The classical Lorenz attractor,
perhaps the best known chaotic attractor, belongs to this
type. The left- and right-hand side scrolls are denoted by ‘‘L’’
and ‘‘R,’’ respectively. A typical trajectory visits both scrolls
in time, and it tends to stay in one scroll executing chaotic
motion for a time, switch to the other scroll, wander chaoti-
cally for some time there, switch back, and so on. Switchings
occur in the region denoted by ‘‘S’’ in which there is an
unstable steady state.13 A key feature to notice is that in the
deterministic case, the way that switchings occur must be
consistentwith the natural dynamics. For instance, a trajec-
tory moving to pointa near the switching region must go to
point b after the switching. It cannot go to pointc. Similarly,
under the dynamics pointc can only move to pointd. An-
other aspect of the dynamical consistency is that the relative
frequencies with which a trajectory visits ‘‘L’’ and ‘‘R’’ ap-
pear to be constant, as can be easily verified numerically.

Our idea is that noise can disturb the dynamical consis-
tency and consequently destroy the neutral direction. To see
how, we note that, depending on the location of a trajectory,
the effect of noise can be quite different. When the trajectory
is not in the switching region, noise can perturb its position,
say from pointe ( f ) to point e8 ( f 8) or vice versa. As
shown in Fig. 1, perturbations at such locations will have
little effect on the local eigenspace. Taking a pair of original
and perturbed points (e,e8) as an example, we see that the

original eigenvector in the neutral direction~direction of the
flow! at e remains to be a neutral direction at the perturbed
point e8. There can, of course, be small deviations from the
neutral direction, but they will be averaged out by noise as
the trajectory moves in region ‘‘R.’’ This is in fact the reason
why the neutral direction associated with a single-scroll cha-
otic attractor, such as the Ro¨ssler attractor,14 can persist un-
der noise. When a trajectory is in the switching region ‘‘S,’’
noise of arbitrarily small amplitude can alter the local eigen-
spacein a significant way. For instance, when the trajectory
is at pointa, noise can kick it to pointc. Such a perturbation
has two effects. First, since the local eigenspaces at the two
points are distinct, the neutral eigenvector ata, when carried
over by the trajectory perturbed toc, will not be in the neu-
tral direction atc. The vector typically will have a compo-
nent in the unstable direction atc and its length will conse-
quently be stretched exponentially. Thus the length of the
neutral vector on the attractor, when it is perturbed in the
switching region as described, will generally increase expo-
nentially, causing the originally null Lyapunov exponent to
become positive. Second, the noisy perturbation that moves
the trajectory froma to c, is in fact inconsistentwith the
deterministic dynamics because, in the absence of noise, the
trajectory would move passing pointb. This effect can in
fact be observed in numerical experiments by computing the
frequency of switching as a function of the noise amplitude.
As we will show, this effect should be relatively easy to be
observed and quantified in laboratory experiments.

Let f L(D) and f R(D) be the frequencies of visits of a
typical trajectory to the L and R scrolls, respectively, under
noise of amplitudeD, and let f S(D) be the probability that
the trajectory experiencesinconsistentperturbations in the
switching region S, wheref L(D)1 f R(D)1 f S(D)51. ~If the
trajectory simply passes through the switching region in a
way consistent with the deterministic flow, we regard it as
either in ‘‘L’’ or in ‘‘R.’’ ! In the noise-free case, we have
f S(0)50 so the Lyapunov exponents of the chaotic attractor
can be written asl i5 f L(0)l i

L1 f R(0)l i
R ( i 51,2,3), where

l i
L and l i

R are the average rates of change of infinitesimal
vectors along the corresponding eigendirections when the
trajectory is in the left and right scroll, respectively. In par-
ticular, the null exponent can be trivially written asl (0)(0)
[l2(0)5 f L(0)l2

L1 f R(0)l2
R50. Under noise, when the tra-

jectory is perturbed inconsistently in the switching region,
the neutral vector is stretched exponentially there. In the
typical case where there is a dominant unstable steady state
in the switching region, the rate is mainly determined by the
largest eigenvalue of the steady state. Letl̄.0 be the
Lyapunov exponent associated with this eigenvalue. We have

l2~D !' f L~D !l2
L1 f R~D !l2

R1 f S~D !l̄' f S~D !l̄. ~2!

Note thatf S(D) is proportional to the probability that a tra-
jectory falls in the switching region, which is proportional to
the probability that a trajectory crosses the stable manifold of
the dominant unstable steady state. In the three-dimensional
phase space, a noisy trajectory near the unstable steady state
can be found in a sphere of radiusD centered at the steady

FIG. 1. Schematic illustration of a double-scroll chaotic attractor and the
associated dynamical consistency, e.g., pointa (c) can only go tob (d).
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state. Since the dimension of the stable manifold of the un-
stable steady state is 2, we havef S(D);D2, which gives the
scaling law~1!.

Since f S(D) is the probability of inconsistent perturba-
tions, which cause changes in the frequencies of visit to ‘‘L’’
and ‘‘R’’ relative to those in the deterministic case, we expect
to see a corresponding change in the frequency that a trajec-
tory switches from ‘‘L’’ to ‘‘R’’ and vice versa. In computa-
tions, the switching frequencybS(D) can be obtained as
follows. Construct a Poincare´ surface of section and use
symbolsl andr to denote, on the section, the location of the
trajectory point in the left and right scrolls, respectively. A
symbolic string of lengthN can then be generated associated
with a long trajectory:s1s2 ,...,sN , wheres i is eitherl or
r . Let NS be the number of times in the symbolic string that
pairs of two different symbols~lr or rl ! are observed. We
then havebS(D)5 limN→`NS /N and the scaling relation

DbS~D ![bS~D !2bS~0!; f S~D !;Da, ~3!

where a52 for three-dimensional flows. In experiments
where the system equations are not available, the scaling law
~3! can be obtained relatively easily. In contrast, it may be
difficult to observe the scaling law~1! in experiments, as
estimating a Lyapunov exponent close to zero from time se-
ries to a required precision is difficult. Because both the
noise-induced exponent and the switching frequency are pro-
portional to the probabilityf S(D), we see that relation~3!
can be considered as an indirect way to verify the scaling law
~1! in laboratory experiments.

In deriving Eq.~3!, we implicitly assumed that the prob-
ability of inconsistent perturbation does not depend on the
position of the trajectory~e.g., in the symbolic string!. While
in actuality the probability of switching between the scrolls
depends on the location of the trajectory in the switching
region, this has little effect on Eq.~3! because the quantity of
interest here is theaverageswitching frequency in the long-
time limit.

III. NUMERICAL SUPPORT

We now present numerical support for the scalings laws
~1! and ~3!. We consider the classical Lorenz system with
additive noise:dx/dt510(y2x)1Dj1(t), dy/dt528x2y
2xz1Dj2(t), and dz/dt52(8/3)z1xy1Dj3(t), where
j i(t) ( i 51,2,3) are Gaussian random variables of zero mean
and unit standard deviation. Figure 2~a! shows the originally
null Lyapunov exponent versus the noise amplitude, where it
can be seen that the null exponent starts to increase as soon
as the noise is turned on, indicating the destruction of the
neutral direction of the noisy chaotic flow. The algebraic
scaling law~1! is shown in Fig. 2~b!, where the dashed line
indicates the slope of 2. The noise scaling of the experimen-
tally accessible quantityDbS(D) is shown in Fig. 3, where
the scaling exponent is also 2. Numerical computations re-
veal the same scaling laws with the Lorenz system under
multiplicative noise, as shown in Figs. 4~a! and 4~b!.

Our heuristic argument suggests thatDbS(D) and
l0(D) depend mainly onf S(D), the switching frequency.
The deviation of the numerically computed noise-induced
exponentl0(D) from the predicted behavior~1! occurs for
relatively large value ofD. This is so because our heuristic
analysis leading to Eq.~1! is valid only in the small noise
regime. We observe, however, that the numerical results of
DbS(D) argee with the predicted scaling law~3! even for
large values ofD. This is expected because the quantity
DbS(D) itself is in fact the switching frequency. The rela-
tively large fluctuations ofDbS(D) in the small noise regime
in Figs. 3 and 4~b! come from the finite numerics as, when
the noise amplitude is small, it is more difficult to calculate
accurately the deviation of the switching frequency from that
in the deterministic case.

IV. DISCUSSION

In summary, we have discovered that noise can have a
metamorphic effect on one of the fundamental properties of
chaotic attractors with multiple scrolls in the phase space in

FIG. 2. For the classical Lorenz chaotic attractor under additive noise,~a!
the originally null Lyapunov exponent vs the noise amplitude;~b! scaling of
this exponent with noise, where the dashed line indicates the theoretically
predicted slope of 2.

FIG. 3. For the classical Lorenz attractor under additive noise, scaling of the
switching frequencyDbS with the noise. This scaling law is experimentally
more accessible.
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the sense that the neutral direction of the flow is fragile as it
can be destroyed by arbitrarily weak noise. We have obtained
universal scaling laws for the Lyapunov exponent and the
switching frequency; the latter is experimentally more acces-
sible. We have utilized the setting of three-dimensional flows
to describe our findings, both for convenience and for the
consideration that these attractors are well studied.15 It is
surprising that noise can cause such a fundamental modifi-
cation to the flow, which to our knowledge, has not been
noticed previously.

Besides its theoretical value, our scaling law16 can pos-
sibly be useful for applications such as assessing the strength
of internal noise in a chaotic system through the measure-
ment of a near-zero Lyapunov exponent. For instance, one
can measure the exponent in the absence of external noise
and perform the same measurements for a set of systemati-
cally varying levels of the external noise. From the behavior
of the exponent versus the external noise level, the strength
of the internal noise can be estimated. Our result is also
relevant to chaotic phase synchronization. In particular, the
neutral direction in a chaotic flow is of considerable recent
interest because it characterizes thephaseof the flow. When
chaotic oscillators are coupled, phase synchronization17 can
occur, as have been identified in many physical, chemical,
and biological systems.18 The observation that the neutral
direction can be preserved under noise for single-scroll cha-
otic attractors such as those from the Ro¨ssler oscillator sug-
gests that the concept of phase and consequently, phase syn-
chronization, are robust for such systems, which has indeed
been observed and studied extensively.18 Our result that the
neutral directions in the Lorenz-type of double-scroll chaotic

attractors are fragile under noise implies a possible difficulty
to define the phase and to study phase synchronization~if it
exists! in such systems under noise. To our knowledge this
remains an open problem that warrants future attention, as
the Lorenz-type of chaotic attractors is common in nonlinear
dynamical systems.
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