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Effect of noise on the neutral direction of chaotic attractor
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A chaotic attractor from a deterministic flow must necessarily possess a neutral direction, as
characterized by a null Lyapunov exponent. We show that for a wide class of chaotic attractors,
particularly those having multiple scrolls in the phase space, the existence of the neutral direction
can be extremely fragile in the sense that it is typically destroyed by noise of arbitrarily small

amplitude. A universal scaling law quantifying the increase of the Lyapunov exponent with noise is

obtained. A way to observe the scaling law in experiments is suggeste2D0® American Institute

of Physics. [DOI: 10.1063/1.1637735

The various effects of noise on deterministic dynamical
systems have been a topic of continuous interest and of
fundamental importance in nonlinear and statistical
physics. Here we focus on how noise affects the Lyapunov
spectrum of a chaotic attractor. Under small noise, the
originally null Lyapunov exponent, which reflects the ex-
istence of a neutral direction in the deterministic case, is
more likely to change as compared with the other non-
zero exponents. The neutral direction may thus be “frag-
ile” in the sense that it can be destroyed by small noise.
We find, however, that there exist two natural classes of
chaotic oscillators, one for which the neutral direction is
robust under noise while another for which the direction

is fragile. The former corresponds to chaotic attractors
with well-defined rotational structure such as the Rssler
attractor, and the latter to attractors with multiple scrolls

in the phase space such as those from the Lorenz system.

We give a physical theory to explain why Rssler-like
chaotic attractors can have a well-defined neutral direc-
tion but it is typically destroyed by arbitrarily small noise
for Lorenz-like attractors. We also find that for the latter,
the increase of the Lyapunov exponent from zero with
noise obeys an algebraic scaling law. For double-scroll
chaotic attractors in the three-dimensional phase space,
the scaling exponent assumes the universal value of two.
Our result, besides its importance from a basic stand-
point, can also be useful for practical applications such as
estimating the internal noise level of chaotic systems. Our
work is also directly relevant to the study of chaotic
phase synchronization.

I. INTRODUCTION

cause physical systems are often under noise, and it is im-
portant to assess how properties of deterministic chaotic
dynamics are affected by noise. Mathematically, this is re-
lated to the structural stability of a dynamical system. In-
deed, there has been a continuous interest in this area of
research !

An elementary fact in nonlinear dynamics is that a cha-
otic attractor arising from a deterministic flow must have a
neutral direction in the phase space along which small dis-
tances are preserved. This neutral direction is, of course, the
direction of the flow itself in the phase space, which is char-
acterized by a null Lyapunov exponent. The purpose of this
paper is to show that for a wide class of chaotic attractors,
particularly those having multiple scrolls in the phase space
(such as the Lorenz attracipthe existence of the neutral
direction can be extremely fragile in the sense that it is typi-
cally destroyed by noise, no matter how weak. h&(0)
=0 be the null Lyapunov exponent in the absence of noise.
We find that\ ; becomes positive as the noise amplitiés
increased from zero. We will show that®(D) obeys the
following algebraic scaling law:

AO(D)~D* for D=0, )

where >0 is the scaling exponent. For double-scroll cha-
otic attractors from three-dimensional flows, the scaling ex-
ponent assumes the value of two. We will argue that the
disturbance caused by noise to the consistency of the mo-
tions of chaotic trajectories on distinct phase-space scrolls,
which exists in the determinstic flow, is the fundamental
mechanism leading to the destruction of the neutral direction
and to the scaling la\l). We will present numerical support
using the classical Lorefzattractor. We note that in dimen-
sion three, the noise-free attractor possesses only one posi-
tive Lyapunov exponent. But as soon as there is small noise,

~The behavior of a deterministic chaotic system undefe system exhibits two positive Lyapunov exponents. Thus
noise is a fundamental problem in nonlinear and statisticajhe nhenomenon we report here represents an interesting case
physics, and in applied mathematics as well. This is S0 beynere arbitrarily weak noise can induce high-dimensional
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chaos with more than one positive Lyapunov exponent even
for well-known low-dimensional chaotic systems.
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original eigenvector in the neutral directiddirection of the
flow) at e remains to be a neutral direction at the perturbed
pointe’. There can, of course, be small deviations from the
neutral direction, but they will be averaged out by noise as
the trajectory moves in region “R.” This is in fact the reason
why the neutral direction associated with a single-scroll cha-
otic attractor, such as the Bsler attractot; can persist un-
der noise. When a trajectory is in the switching region “S,”
noise of arbitrarily small amplitude can alter the local eigen-
spacein a significant way For instance, when the trajectory
FIG. 1. Schematic illustration of a double-scroll chaotic attractor and theis at pointa, noise can kick it to point. Such a perturbation
associated dynamical consistency, e.g., paifft) can only go tob (d). has two effects. First, since the local eigenspaces at the two
points are distinct, the neutral eigenvectoaatvhen carried
over by the trajectory perturbed & will not be in the neu-

B e e, vecion s The vecor ypcaly i e  com-
five Lyélpunov expognent induced by noise. The prefactor?hunem in the unstable direction atand its length will conse-
determines how drastic this effect can be, in terms of the%Iuently be stretched exponentially. Thus the length of the

. . . heutral vector on the attractor, when it is perturbed in the
relative magnitude of the noise-induced exponent to the Iargéwitching region as described, will generally increase expo-

est Lyapunov exponent of th? system. _For example, for th%entially, causing the originally null Lyapunov exponent to
classical Lorenz system, we find numerically that the prefac;

. o become positive. Second, the noisy perturbation that moves
g%g‘r%?ouu;i&od" versus the largest exponent which is on th?he trajectory froma to c, is in fact inconsistentwith the

In Sec. Il we aive a phvsical theory to explain the be_deterministic dynamics because, in the absence of noise, the
havior of .thé nulﬁJ Lya En)c/)v ex oner):t undgr noise fortrajectory would move passing poibt This effect can in
- yap exp . fact be observed in numerical experiments by computing the
Rossler- and Lorenz-like chaotic attractors, and derive th

. . . ; : efrequency of switching as a function of the noise amplitude.
scaling '?‘W(l.)- Nur_nerl_cal support IS provided in Sec. lll, As we will show, this effect should be relatively easy to be
and a brief discussion is presented in Sec. IV.

observed and quantified in laboratory experiments.
Let fY(D) and fR(D) be the frequencies of visits of a
Il. THEORY typical trajectory to the L and R scrolls, respectively, under

For convenience, we consider a double-scroll chaotic atnise of amplitudeD, and letf(D) be the probability that

tractor in the three-dimensional phase space, which arisd3€ trajectory experiencesconsistentperturbations in the
from a dynamical system described lx/dt=F(x), as

switching region S, wheré-(D) + fR(D)+ fS(D)=1. (If the

shown schematically in Fig. 1. The classical Lorenz attractort"@€ctory simply passes through the switching region in a
perhaps the best known chaotic attractor, belongs to thi¥&Y cqns‘!szent W't‘b t?e deterministic flow, we regard it as
type. The left- and right-hand side scrolls are denoted by “L"egher in “L" or in “R." ) In the noise-free case, we have
and “R,” respectively. A typical trajectory visits both scrolls | (0)=0 so the LyapuLnov egpogents F?f the chaotic attractor
in time, and it tends to stay in one scroll executing chaotic®@" be ng|tten ag;=f-(0)A; + (0 (i=1,2,3), where
motion for a time, switch to the other scroll, wander chaoti-Mi” @1d ;" are the average rates of change of infinitesimal
cally for some time there, switch back, and so on. Switching¥/€ctors along the corresponding eigendirections when the
occur in the region denoted by “S” in which there is an trajectory is in the left and right sc_ro_II, resp_ectlvely(.) In par-
unstable steady stat2A key feature to notice is that in the ticular, theLnuII taprogent can be trivially written as’(0)
deterministic case, the way that switchings occur must b& M 2(0)=f"(0)A3+7(0)A;=0. Under noise, when the tra-
consistenwith the natural dynamics. For instance, a trajec-Ctory is perturbed inconsistently in the switching region,
tory moving to pointa near the switching region must go to thel neutral vector is stre_tched e>_<ponent|ally there. In the
pointb after the switching. It cannot go to poiat Similarly, ~ tYPical case where there is a dominant unstable steady state
under the dynamics poirt can only move to poind. An- I the switching region, the rate is mainly de_termlned by the
other aspect of the dynamical consistency is that the relativiargest eigenvalue of the steady state. RetO be the
frequencies with which a trajectory visits “L” and “R” ap- Lyapunov exponent associated with this eigenvalue. We have
pear to be constant, as can be easily verified numerically.
Our idea is that noise can disturb the dynamical consis-
tency and consequently destroy the neutral direction. To see
how, we note that, depending on the location of a trajectory,
the effect of noise can be quite different. When the trajectoryNote thatfS(D) is proportional to the probability that a tra-
is not in the switching region, noise can perturb its positionjectory falls in the switching region, which is proportional to
say from pointe (f) to pointe’ (f’) or vice versa. As the probability that a trajectory crosses the stable manifold of
shown in Fig. 1, perturbations at such locations will havethe dominant unstable steady state. In the three-dimensional
little effect on the local eigenspace. Taking a pair of originalphase space, a noisy trajectory near the unstable steady state
and perturbed pointse(e’) as an example, we see that the can be found in a sphere of radibscentered at the steady

Ao(D)=fH DN+ FRDINF+ESDIA=ESDIN. (2
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FIG. 2. For the classical Lorenz chaotic attractor under additive n@se, FIG. 3. For the classical Lorenz attractor under additive noise, scaling of the

the originally null Lyapunov exponent vs the noise amplitu@i@;scaling of  switching frequencyA s with the noise. This scaling law is experimentally
this exponent with noise, where the dashed line indicates the theoreticalljhore accessible.
predicted slope of 2.

Ill. NUMERICAL SUPPORT

state. Since the dimension of the stable manifold of the un-  We now present numerical support for the scalings laws
stable steady state is 2, we ha¥D)~D?, which gives the (1) and (3). We consider the classical Lorenz system with
scaling law(1). additive noise:dx/dt=10(y—x)+D&,(t), dy/dt=28x—y
SincefS(D) is the probability of inconsistent perturba- —xz+ D&,(t), and dz/dt=—(8/3)z+xy+Dés(t), where
tions, which cause changes in the frequencies of visit to “L” £,(t) (i=1,2,3) are Gaussian random variables of zero mean
and “R”relative to those in the deterministic case, we expectand unit standard deviation. Figuréa2shows the originally
to see a corresponding change in the frequency that a trajegull Lyapunov exponent versus the noise amplitude, where it
tory switches from “L" to “R” and vice versa. In computa- can be seen that the null exponent starts to increase as soon
tions, the switching frequepcﬁS(D) can be obtained as as the noise is turned on, indicating the destruction of the
follows. Construct a Poincareurface of section and use neutral direction of the noisy chaotic flow. The algebraic
symbolsl andr to denote, on the section, the location of the scaling law(1) is shown in Fig. 2b), where the dashed line
trajectory point in the left and right scrolls, respectively. A indicates the slope of 2. The noise scaling of the experimen-
symbolic string of lengtiN can then be generated associatedtally accessible quantitp B5(D) is shown in Fig. 3, where
with a long trajectoryo;05,...,0, Wherea; is eitherl or  the scaling exponent is also 2. Numerical computations re-
r. Let Ng be the number of times in the symbolic string thatveal the same scaling laws with the Lorenz system under
pairs of two different symbolglr or rl) are observed. We multiplicative noise, as shown in Figs(a# and 4b).
then haveBs(D) =limy_...Ns/N and the scaling relation Our heuristic argument suggests thAi3¢(D) and
AB<(D)=B4D)— B«0)~fD)~D*, 3) \%(D) dgpt_and mainly on‘s(l?), the switching fr_equ_ency.
The deviation of the numerically computed noise-induced
where a=2 for three-dimensional flows. In experiments exponent\°(D) from the predicted behavidt) occurs for
where the system equations are not available, the scaling layg|atively large value oD. This is so because our heuristic
(3) can be obtained relatively easily. In contrast, it may beanalysis leading to Eq(1) is valid only in the small noise
difficult to observe the scaling lawl) in experiments, as regime. We observe, however, that the numerical results of
estimating a Lyapunov exponent close to zero from time seA g(D) argee with the predicted scaling lai8) even for
ries to a required precision is difficult. Because both the!arge values ofD. This is expected because the quantity
noise-induced exponent and the switching frequency are prox g(D) itself is in fact the switching frequency. The rela-
portional to the probabilityf (D), we see that relatio3) tively large fluctuations oA B<(D) in the small noise regime
can be considered as an indirect way to verify the scaling lav, Figs. 3 and &) come from the finite numerics as, when
(1) in laboratory experiments. the noise amplitude is small, it is more difficult to calculate

In deriving Eq.(3), we implicitly assumed that the prob- accurately the deviation of the switching frequency from that
ability of inconsistent perturbation does not depend on thgn the deterministic case.

position of the trajectorye.g., in the symbolic stringWhile
in actuality the probability of switching between the scrolls

depends on the location of the trajectory in the switchinglv' DISCUSSION

region, this has little effect on E3) because the quantity of In summary, we have discovered that noise can have a
interest here is thaverageswitching frequency in the long- metamorphic effect on one of the fundamental properties of
time limit. chaotic attractors with multiple scrolls in the phase space in
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attractors are fragile under noise implies a possible difficulty
to define the phase and to study phase synchronizéfién
exist9 in such systems under noise. To our knowledge this
remains an open problem that warrants future attention, as
the Lorenz-type of chaotic attractors is common in nonlinear
dynamical systems.
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1Some pioneering works in this direction are the following. The effect of
noise on period-doubling transition to chaos was studied by Crutchfield

‘ . . . . et al. (Refs. 2 and B where a renormalization-group approach was used

:3.6 2.4 22 _2 1.8 16 14 to analyze the scaling behavior of the Lyapunov exponent near the tran-

log,. D sition (Ref. 3. The effect of noise on type-I intermittency was investigated
10 by Hirschet al. (Ref. 4. The influence of noise on periodic attractors for

the Lorenz system was studied by Fedcheetaal. (Ref. 5. Noise-
induced chaos in a system with homoclinic points was discussed by An-
ishchenko and HerzelRef. 6 and the opposite phenomenon of noise
stabilization of chaotic dynamics was studied by Her@eéf. 7). The
problem of noise-induced chaos also has similarities with the problem of
noise activation of excitable systerfRef. 8. Transition to noisy chaos

for dynamical systems in periodic windows has recently been investigated
(Ref. 9, which is relevant to problems in, for instance, laser phy@Res.

10) and biology(Ref. 11).
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FIG. 4. For the classical Lorenz chaotic attractor under multiplicative noise:
dx/dt=10(y—x) +Dx&;(t), dy/dt=28x—y—xz+Dyé,(t), and dz/dt

= —(8/3)z+xy+Dzés(t), where &(t) (i=1,2,3) are Gaussian random
variables of zero mean and unit standard deviati@hscaling of the origi-
nally null Lyapunov exponent with noise, arih) noisy scaling of the
switching frequency. The dashed lines indicate the theoretical slope of 2.
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