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Microscopic models based on evolutionary games on spatially extended scales have recently been
developed to address the fundamental issue of species coexistence. In this pursuit almost all exist-
ing works focus on the relevant dynamical behaviors originated from a single but physically rea-
sonable initial condition. To gain comprehensive and global insights into the dynamics of coexist-
ence, here we explore the basins of coexistence and extinction and investigate how they evolve as
a basic parameter of the system is varied. Our model is cyclic competitions among three species as
described by the classical rock-paper-scissors game, and we consider both discrete lattice and
continuous space, incorporating species mobility and intraspecific competitions. Our results reveal
that, for all cases considered, a basin of coexistence always emerges and persists in a substantial
part of the parameter space, indicating that coexistence is a robust phenomenon. Factors such as
intraspecific competition can, in fact, promote coexistence by facilitating the emergence of the
coexistence basin. In addition, we find that the extinction basins can exhibit quite complex struc-
tures in terms of the convergence time toward the final state for different initial conditions. We have
also developed models based on partial differential equations, which yield basin structures that are
in good agreement with those from microscopic stochastic simulations. To understand the origin
and emergence of the observed complicated basin structures is challenging at the present due to the
extremely high dimensional nature of the underlying dynamical system.
© 2010 American Institute of Physics. �doi:10.1063/1.3526993�

Species coexistence is essential to biodiversity, and it is a
fundamental issue in ecological science. Ecosystems con-
sisting of three species subject to cyclic competitions have
become a paradigm to address the coexistence problem.
Early works based on population models provided useful
insights into the dynamics of coexistence at a macroscopic
level, but these models often tended to predict that coex-
istence is structurally unstable. To resolve this dilemma,
microscopic models based on stochastic interactions at
the individual level have been introduced. In this regard,
the classical game of rock-paper-scissors (RPS) has been
used to mimic cyclic competitions at the microscopic level
of interactions. In fact, the past several years have wit-
nessed a growing interest in this direction, addressing the
role of factors in the coexistence such as species mobility,
virus spreading, intraspecific competitions, etc. Inspired
by these works, here we address the species coexistence
problem in the framework of RPS competitions on spa-
tially extended ecosystems from a global standpoint, i.e.,
we are interested in how the basins of coexistence and
extinction depend on factors such as the species mobility,
the interaction range, and the rate of intraspecific com-
petition. An obstacle that needs to be overcome is to find
a suitable representation of the phase space to compute

the basin structure in a meaningful way, as the underly-
ing dynamical system is spatiotemporal and extremely
high dimensional. We find the simplex representation S2
in the three-dimensional space of population densities ef-
fective. We then use two characterizing methods, namely,
final state and the inverse of the convergence time toward
the final state, to map out the structures of the coexist-
ence and extinction basins by using direct simulations of
the microscopic interaction model. In particular, calculat-
ing the final states can reveal the boundaries among the
coexistence and extinction basins, whereas the points
within a basin are indistinguishable. The basins depicted
by the convergence time to reach the final state provide
additional information about the intrinsic difference in-
side each extinction basin. The coexistence basin can
emerge at the central area of S2 surrounded by three
rotationally entangled extinction basins. The convergence
time within each extinction basin increases universally
along the spiral toward the center point. The area of the
coexistence basin in the phase space measures the robust-
ness of species coexistence and the convergence time
within the extinction basins quantifies the degree of ex-
tinction. To provide credence for the validity of the basin
structures, we derive theoretical models based on partial
differential equations, which yield results that agree well
with those from microscopic models. Our results providea�Electronic mail: ryang8@asu.edu.
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insights into the species coexistence problem at a global
level.

I. INTRODUCTION

Species diversity is ubiquitous in nature. Uncovering the
factors that support biodiversity is a fundamental problem in
interdisciplinary science. Essential to biodiversity is species
coexistence, a problem that has been investigated experimen-
tally, computationally, and theoretically.1–9 In this regard,
empirical observations from experimental studies suggested
nonhierarchical, cyclic competitions among species as an im-
portant mechanism for species coexistence, the essential fea-
tures of which can be captured by the childhood game “rock-
paper-scissors” �RPS�.10 In a RPS game, three strategies
form a cyclic loop and any strategy can defeat the one next to
it in the loop. Indeed, cyclic competitions of the RPS nature
have been found in different contexts in ecosystems and in
laboratory experiments as well. Typical examples include co-
licinogenic microbes’ competition,11 mating strategies of
side-blotched lizards in California,12 and competition among
mutant strains of yeast13 and coral reef invertebrates.14 In
computational and theoretical exploration of species coexist-
ence, the RPS game has been a paradigm,15 where it was
found that the incorporation of spatial structure is absolutely
necessary to model the competition dynamics in real
ecosystems.15,16 This is due to the fact that, for well-mixed
populations under global interactions, macroscopic popula-
tion models based on ordinary differential equations �ODEs�
predicted that species coexistence is unstable in the RPS
game.1 That is, stochastic effects and small external pertur-
bation can typically destroy species coexistence, in contrast
to empirical observations. Computational studies have shown
that, when a spatial structure is introduced into the RPS
game, species coexistence can become stable and robust,
which is consistent with experimental observations.16–18 For
example, in both simulations and E. coli experiments,16 it
was found that local interactions and dispersal enable coex-
istence of all three species in the RPS game, while coexist-
ence is lost when the ecological processes take place over
large scale so that the spatial structure is effectively averaged
out. Notice that two features appear in the RPS game model
when spatial structures are taken into account: �1� the under-
lying dynamics becomes spatiotemporal as the RPS compe-
titions now occur in space and �2� the model becomes micro-
scopic as competitions must now be treated at the level of
species individuals, in contrast to the macroscopic popula-
tion models described by ODEs.

Spatially extended RPS game models thus provide a
powerful, microscopic paradigm to address various funda-
mental issues associated with species coexistence in realistic
ecosystems. For example, when competitions are deemed to
occur on space, the issue of species mobility becomes
important.19,20 Indeed, mobile behaviors ranging from bacte-
ria run to animal migration play an important role in species
coexistence. In the work of Reichenbach et al.,19,20 a critical
mobility value has been identified, below which species sta-
bly coexist in the form of moving spiral waves on spatially
extended scales, whereas above the critical mobility, the

wavelength of the spiral waves exceeds the size of the un-
derlying spatial structure, resulting in extinction of two spe-
cies with only one surviving species.19,20 The formation of
moving spiral waves induced by stochastic interactions at a
microscopic level is a surprising finding, since these waves
arise mostly in models based on partial differential equations
�PDEs�. This finding has stimulated a series of subsequent
works. For example, in Refs. 21 and 22, instability of the
spatial patterns and the effect of noise were investigated. In
Ref. 23, it was found that breaking the conservation law was
crucial for the formation of spiral waves. In Ref. 24, a zero-
one behavior was revealed in that the weakest species has the
highest survival probability. The effect of zero-sum and non-
zero sum in the payoff matrix in the RPS game was investi-
gated in Refs. 25 and 26, respectively. It was reported in Ref.
27 that intraspecific epidemic spreading can promote species
coexistence, whereas interspecies epidemic spreading tends
to suppress species coexistence. In Ref. 28, it was reported
that intraspecific competition can effectively promote biodi-
versity. The RPS game has also been extended to more than
three species in Ref. 29 and to spatial small-world networks
in the presence of shortcuts.30,31 In a fairly recent work,32

entropy production has been used to characterize nonequilib-
rium behavior in the RPS game.

In a recent Rapid Communication,33 we proposed to ex-
plore the concept of attraction basin in spatially extended
RPS game dynamics. This was motivated by the consider-
ation that basin structure provides a more comprehensive
characterization of the nonequilibrium dynamics in the RPS
game. In contrast to most previous works where computa-
tions and analysis were carried out with respect to a single
initial configuration with identical species densities, basin
structure obtained from all possible initial densities of spe-
cies can yield a “global” picture of the coexistence dynamics.
In Ref. 26, the authors studied the fixation probability in the
deterministic RPS game, which depends on the initial densi-
ties of three species, with respect to both zero-sum and non-
zero sum assumptions in finite populations. A graphical rep-
resentation analogous to the method in Ref. 33 was exploited
to characterize the fixation probability. This issue, however,
is somewhat different from species coexistence in mobile
populations. In nonlinear dynamics, the basins of attraction
and the boundaries among different basins are a fundamental
problem.34 The purpose of this paper is to provide a more
extensive treatment of the problem of basins in spatially ex-
tended RPS game models of mobile species. In particular, we
propose a different method to explore basins by resorting to
the convergence time for different initial configurations. This
time not only can distinguish the boundaries among extinc-
tion and coexistence basins but also reveal the intrinsic dif-
ference within each extinction basin. Such a difference can-
not be detected using the final state characterization
method.33 Going beyond the model in Ref. 33 that treated
mobile populations under cyclic competition on lattice, here
we consider two additional types of model extension: �i� mo-
bile populations with intraspecific competitions and �ii�
populations dispersing on a continuous geographical space
with adjustable interaction ranges. Results of basins are ob-
tained from both microscopic, stochastic simulations and
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models based on PDEs, and a good agreement between the
two types of results is demonstrated with respect to the struc-
tures of the coexistence and extinction basins. We note that
the area of the coexistence basin in the phase space provides
a meaningful measure of biodiversity, which is unable to be
quantified when identical initial densities are used, as in most
previous works. In all cases considered in this paper, the
extinction basins show a universal rotational structure toward
the central point in the phase space. The investigation of
basins leads to quantitative insights into the evolutionary dy-
namics in spatial RPS game under various conditions.

In Sec. II, we describe the spatial RPS model of mobile
individuals and two methods for computing attraction basins.
In Secs. III and IV, we apply the basin characterizations to
RPS games under intraspecific competitions on lattice and
games on continuous geographical space, respectively. Con-
clusions are presented in Sec. V.

II. BASINS OF THE COEXISTENCE AND EXTINCTION

A. Model of RPS games in spatially extended
ecosystems

The cyclic competition model with mobile individuals
was originally proposed in Ref. 3 and 19, where each site of
a square lattice with periodic boundary condition can be oc-
cupied by an individual from one of the three species or left
empty so that the system has a finite carrying capacity. Inter-
actions and dispersing behaviors among neighboring sites are
described by the following set of rules:

AB→
�

A � , BC→
�

B � , CA→
�

C � , �1�

A � →
�

AA, B � →
�

BB, C � →
�

CC , �2�

A � →
�

� A, B � →
�

� B, C � →
�

� C , �3�

where A, B, and C denote the three cyclically competing
species, � represents empty sites, and � denotes any species
or empty sites. Relation �1� denotes the cyclic competitions,
i.e., one species preys on a less-predominant species in the
cycle �e.g., A can kill B, B outcompetes C, C in turn outcom-
petes A, leaving behind empty sites�. Relations �2� represent
reproduction of an individual at a neighboring empty site at
rate �. Relation �3� defines migration by position exchange
between two neighboring individuals or between one indi-
vidual and one of its neighboring empty sites. Migration oc-
curs at rate �. To be concrete, at each time step, a randomly
chosen individual interacts with or moves to one
of its nearest neighbors at random. For the pair of neighbor-
ing sites, cyclic competition, reproduction, and migration oc-
cur at the probabilities � / ��+�+��, � / ��+�+��, and
� / ��+�+��, respectively, so the rates of competition, repro-
duction, and migration are normalized. Whether an interac-
tion can successfully occur is determined by the states of
both sites. For example, if reproduction is chosen but there
are no empty sites, the reaction fails. According to the theory
of random walk,35 individual mobility M is defined as M
=��2N�−1, to which the number of sites explored by one

mobile individual per unit time is proportional. An actual
time step is defined when each individual has interacted with
others once on average. In other words, in one actual time
unit, N pairwise interactions will have occurred.

In Ref. 33, we introduced the concept of attraction basin
in the RPS game. Let n0 be the fraction of empty site. For
example, we can fix n0 to be 10% of the N lattice sites. Since
the initial densities of the three species satisfy na+nb+nc

=1−n0, all possible combinations of na, nb, and nc define a
triangular region. The phase space at time T=0 can thus be
represented by the simplex S2 defined by this triangle. There
are four possible final states, corresponding to three extinc-
tion states, each converging to one of the three single spe-
cies, and a coexistence state. In the phase space S2, the co-
ordinates of a point denote a combination of the initial
densities of the three species, and we can use four different
colors to represent the final states. The basins can thus be
defined by regions in S2, within which initial densities con-
verge to the same final state. Alternatively, the basins can be
characterized by the convergence time tc for each point in S2.
Note that different initial states in the same basin cannot be
distinguished by the final state, but their convergence times tc

can be quite different. For computational convenience, we
use the quantity 1 / tc to distinguish different points in S2.

In Ref. 19, a critical mobility Mc= �4.5�0.5��10−4 was
derived for identical initial densities of three subpopulations.
For M �Mc, species can stably coexist, while for M �Mc

only one species can survive finally and coexistence is lost.
We investigate basins of coexistence and extinction in the
two regions separated by Mc by varying M. Numerical simu-
lations are implemented for a large time T that scales with
the system size N. To make an unbiased comparison with
previous works, we assume equal reaction probabilities for
reproduction and competition rates, i.e., �=�=1. The mobil-
ity M is thus the only control parameter of the system. In our
simulations, square lattices of 100�100 sites are used and
the simulation time is chosen to be T=5000 to ensure that the
final state can be reached from any initial point in S2.

B. Basin structure from microscopic simulations

Figures 1�a�–1�e� show the basin structures in S2 for dif-
ferent values of M for both regimes of M �Mc and M
�Mc. The basins for all values of M exhibit rotational sym-
metry around the center point of S2. For M �Mc, e.g., �a�
M =5�10−5, �b� M =1�10−4, and �c� M =3�10−4, there ex-
ists a coexistence basin at the central area of S2 and three
extinction basins are rotationally entangled around the coex-
istence basin. As M is increased, the coexistence basin
shrinks toward the center point together with the expansion
of the three extinction basins. This indicates that population
mobility tends to inhibit coexistence for M �Mc, as the area
of the coexistence basin decreases by increasing M. In pre-
vious works that focused on identical initial densities of spe-
cies �corresponding to the a single point in S2, its center�, the
effect of mobility on the coexistence cannot be revealed in
this parameter region where species can always coexist. The
basins thus provide a global picture of the coexistence prob-
lem. At the boundaries among different basins, the final state
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depends sensitively on the initial state and small initial per-
turbations can drive the system to an entire different final
state. As soon as M exceeds the critical value Mc, coexist-
ence basin vanishes, as exemplified by Fig. 1�d� for M =1
�10−3. We see that, in this case, the phase space S2 is shared
exclusively by three extinction basins. The center point is
where all three basins meet. At this point, the final conver-
gence state is hard to be predicted due to the presence of
stochastic effect and the sensitivity of final state to small
variations in the initial densities. Further increase of M, e.g.,
�e� M =5�10−3 leads to the same structure of extinction ba-
sins as shown in Fig. 1�d� for M =1�10−3. We can expect
the same basin structures for very large values of M, which
correspond to the well-mixed and globally interacting case
without the restriction of lattice links. Our finding is thus
consistent with the known result that global interactions can
exclude the coexistence in the RPS game.

Basin structures obtained by using the inverse 1 / tc of
convergence time in the phase space S2 are shown in Figs.
1�f�–1�j�, corresponding to panels �a�–�e�, respectively. We

see that 1 / tc offers a detailed characterization of the different
states within each extinction basin, where 1 / tc decreases
along the rotational structure of the basin toward the central
area. An interesting behavior is that the boundaries of basins
can be identified solely based on tc in the sense that there is
sharp transition in 1 / tc from one extinction basin to another
when crossing the boundary. For the coexistence basin, since
species can always coexist, tc in the basin tends to 	 and 1 / tc

equals zero, so all points appear identical in the coexistence
basin. The boundary between the coexistence and extinction
basins is thus unequivocal since tc in the extinction basins
are always finite.

C. Basin structure from PDE model

The PDEs can be derived by a continuous approximation
for the three reactions among geographically neighboring in-
dividuals. Let na�r , t�, nb�r , t�, and nc�r , t� be the densities of
populations A, B, and C at time t and site r= �r1 ,r2� in the
two-dimensional space, respectively. Neighbors are located

FIG. 1. �Color online� Basin structures of mobile individuals with cyclic competition on lattice for different values of mobility by using the characterizations
of final state and convergence time. Panels �a�–�e� are the basins obtained by using the final state for M =5�10−5, 1�10−4, 3�10−4, 1�10−3, and
5�10−3, respectively. Panels �f�–�j� are the basins obtained by using the convergence time. The mobility values in �f�–�j� are the same as those in �a�–�e�,
respectively. Panels �a��– �j�� are the basins obtained by the PDEs under the same set of mobility values as in �a�–�j�. The final state is represented by one of
the four colors at each point from stochastic simulations using 30 random realizations of the cyclic competition dynamics, under the same initial condition,
on a given 100�100 square lattice. In �a�–�e� and �a��– �e��, blue �dark-gray�, yellow �white�, and red �gray� at three sides denote the three single-species
states composed of species A, B, and C, respectively. Green �light-gray� at the center denotes the coexistence of species in the steady state. For each
realization, the simulation consists of 5000�N time steps. We have checked that 5000�N time steps are sufficient long for the system reaching a steady state.
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at r�
r ·ei, where �ei� �i=1,2� are the base vectors of the
two-dimensional lattice. We have, for the average value of an
arbitrary population a�r , t�, the following evolutionary equa-
tion:

�tna�r,t� =
1

z
�

�,i=1

2

�2��na�r � 
r · ei,t� − na�r,t��

+ �na�r � 
r · ei,t��1 − na�r,t� − nb�r,t�

− nc�r,t�� − �nc�r � 
r · ei,t�na�r,t�� , �4�

where z is the number of nearest neighbors of each lattice
site. On the right-hand side of the equation, the first term
denotes the exchange process, where the neighbors moving
into a site and the individual at this site moving out to its
neighbors will induce an increase and a decrease in na�r�,
respectively. The second term describes the increase in na�r�
due to reproduction, and the third term characterizes the de-
crease in na�r� due to competition. We set the length of the
lattice to unity and, hence, the distance between two nearest
neighbors is 
r=1 /	N. For N→	 and lattice size fixed to 1,

r→0. Thus, r can be treated as a continuous variable. Us-
ing Taylor expansion to the second order, we have

na�r � 
r · ei,t� = na�r,t� � 
r�ina�r,t� + 1
2
r2�i

2na�r,t�

+ O�
r2� .

The first term on the right-hand side of Eq. �4� becomes

2�

z
�

�,i=1

2

�na�r � 
r · ei,t� − na�r,t�� =
�

2

r2�i

2na�r,t� .

By rescaling the exchange rate � with the system size N and
the fixed �diffusion� constant M according to

� = 2MN , �5�

we have

�

2

r2 = M . �6�

For other terms in Eq. �4�, only the zeroth-order contribu-
tions to na�r , t� in the expansion of na�r�
r ·ei , t� are impor-
tant in the large system-size or the 
r→0 limit. These con-
siderations lead to the following set of PDEs:

�tna = M�2na + �na�1 − �� − �ncna,

�tnb = M�2nb + �nb�1 − �� − �nanb, �7�

�tnc = M�2nc + �nc�1 − �� − �nbnc,

where �=na�r , t�+nb�r , t�+nc�r , t� is the local species den-
sity and 1−� denotes the density of empty sites. Basin struc-
tures in the PDE model can be obtained by numerically solv-
ing the equations for random initial species densities.
Specifically, for an arbitrary density, at t=0, for any given
site only one quantity of na�rx ,ry�, nb�rx ,ry�, and nc�rx ,ry� is
equal to 1 and the other two are 0, the probability of which is
determined by the initial densities of na, nb, and nc alto-
gether. For the PDEs, extinction is defined when the density
of any species is less than 1 /N. The species preyed by the

extinction species is the exclusive survivor. The definition
takes into account the physical meaning of survival in that
the number of survival species cannot be less than 1.

The results of basins from the PDE model are shown in
Figs. 1�a��–1�j��, which correspond to the stochastic simula-
tion results in Figs. 1�a�–1�j�, respectively. We see that the
results from the PDE model are in good agreement with
simulations in terms of both the basin structures and the
areas of the coexistence and extinction basins for different
values of the individual mobility. The stochastic fluctuations
in the basins obtained from the PDE model are a result of the
initial randomness of species densities �na�rx ,ry�, nb�rx ,ry�,
and nc�rx ,ry�� used in the numerical solution of the PDEs.

Our exploration of basin structures in terms of the final
convergence state, the inverse of the survival time, and the
PDE model thus provides a more complete picture concern-
ing the emergence and loss of biodiversity in the spatial RPS
game in the presence of individual mobility.

III. BASINS OF SPATIAL RPS DYNAMICS
UNDER INTRASPECIFIC COMPETITION

In nature, intraspecific competitions are quite
common.36–39 Individuals within the same species do com-
pete for essential life-sustaining resources such as food, wa-
ter, light, opposite sex, etc. Intraspecific competitions can
have a significant impact on species diversity in both
predator-prey-like interaction and cyclic competition sys-
tems. Intraspecific competition is also quite common in vari-
ous food chains. Here we explore the basin structure in the
presence of intraspecific competitions, which can be incor-
porated in the game model in Sec. II as follows:

AA→
p

A � , BB→
p

B � , CC→
p

C � , �8�

where � represents empty sites. Due to the competition of
two neighboring individuals in the same species, one indi-
vidual will die at random and leave its site empty at rate p.
Intraspecific competition occurs with the probability p / �p
+�+�+�� and the rates of interspecies competition, repro-
duction, and motion are normalized by p+�+�+� as well.
We set the summation of intraspecific competition, interspe-
cific competition, and reproduction rates to be 2, i.e., p+�
+�=2 so that the dependence on the mobility probability �
is the same as compared to models in Sec. II.

Using the continuous approximation, we can derive a
PDE model from the four types of reactions for the spa-
tiotemporal dynamics of RPS game under intraspecific
competition.28 The model is given by

�tna = M�2na + �na�1 − �� − �ncna − �p/2�nana,

�tnb = M�2nb + �nb�1 − �� − �nanb − �p/2�nbnb, �9�

�tnc = M�2nc + �nc�1 − �� − �nbnc − �p/2�ncnc.

Numerical solution of the PDEs yields two dynamical re-
gions in the parameter space, as shown in Fig. 2, where
region I corresponds to coexistence and region II to extinc-
tion. In each region, we select two groups of parameter com-
binations �M , p� to explore the basin structures. The chosen
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points are marked in Fig. 2. Results from direct stochastic
simulations are shown in Fig. 3. For the two points in the
extinction region ��a� and �c��, we observe three entangled
extinction basins that meet at the center of the phase space

S2, which is similar to the basins in the absence of intraspe-
cific competition in Sec. II. In this region, intraspecific com-
petition is not sufficient to induce coexistence. In contrast, in
the coexistence region ��e� and �g��, a large area of the co-
existence basin dominates the central area of S2. In particu-
lar, for strong intraspecific competition �large value of p�, the
phase space S2 is almost exclusively a coexistence basin and
the extinction basins almost vanish �Fig. 3�g��. Such a domi-
nation of the coexistence basin is general for large values of
p, indicating that coexistence is strongly promoted by in-
traspecific competitions. The inverse of the convergence time
1 / tc identifies the boundaries among different extinction ba-
sins and between the extinction and the coexistence basin.
Within each extinction basin, 1 / tc decreases along the rota-
tional direction of the basins toward the central area, which
is similar to the situation without intraspecific competition.
Another feature is that the rising of the coexistence basin
when p exceeds the critical value 0.7 is quite sharp. That is,
for p�0.7 in the extinction region, the coexistence basin
does not exist. For p�0.7, a vast area of the coexistence
basin arises and dominates the phase space S2 associated
with the loss of the extinction basins. In this regard, the
phase transition from extinction to coexistence at the critical
value p=0.7 is of the first order.

IV. BASINS OF RPS DYNAMICS ON CONTINUOUS
SPACE

Most existing models based on stochastic interactions
assume discrete lattices as the underlying spatial structure,
on which cyclic competition, reproduction, and movement
occur among neighboring sites. In such a case, the underly-
ing geographical space is discrete. In realistic ecosystems,
the intrinsic geographical space can be continuous. In this
section, we study RPS dynamics with individuals dispersing
on a continuous space, which allows the effect of nonlocal
interactions on species coexistence to be studied in terms of
the basin structures. In our model, we assume that individu-
als of the three species are randomly dispersed on a square
cell of linear size L=1 under periodic boundary conditions.
A competition occurs only if the geographical distance be-
tween two cyclic individuals is less than the interaction ra-
dius R, as schematically illustrated in Fig. 4. At each simu-
lation step, an individual is randomly selected. For example,
in Fig. 4�a�, an individual belonging to species A is chosen.
After this, within the interaction range, the A individual ran-
domly kills an individual belonging to B which is next to A
in the cyclic competition loop. At the same time, the A indi-
vidual reproduces itself at the position of the B individual. If
the A individual cannot find any B individual within the
range, no interaction occurs. The rate of killing is �. Note
that the absolute value of the rate � only affects the evolution
speed of the system but does not influence the convergence
toward the final state. The radius R of interaction range is
thus the sole physical parameter in the model.

We calculate the basins in the simplex S2 by using dif-
ferent initial densities of three species. Because of the ab-
sence of empty sites in the continuous space, the range of S2

is unity. Basin structures for different values of R obtained
from stochastic simulations are shown in Fig. 5. In particular,
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FIG. 2. �Color online� Dependence of extinction probability on the intraspe-
cific competition rate p and mobility M, where regions I and II denote
coexistence and extinction, respectively. Simulation results are obtained by
averaging over 50 random initial configurations on a lattice of size of
100�100. The boundary between regions I and II is obtained by PDE
model equation �9�. We select four sets of parameter combinations to ex-
plore the basin structures, as indicated by the four open circles.

FIG. 3. �Color online� Basins of mobile individuals under interspecies and
intraspecific competitions on lattices for ��a� and �b�� M =1�10−3 and
p=0.1, ��c� and �d�� M =1�10−3 and p=0.2, ��e� and �f�� M =5�10−5 and
p=0.1, and ��g� and �h�� M =1�10−3 and p=0.8. Panels �a�, �c�, �e�, and �g�
are obtained by the final state criterion, and panels �b�, �d�, �f�, and �h� are
calculated according to the convergence time. Other simulation parameters
are the same as for Fig. 2.
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we observe that the area of the coexistence basin is a non-
monotonic function of R. When R is increased to 0.045, co-
existence is lost, as shown in Fig. 5�a�, and there is an en-
tangled and disordered region in the central area where small
deviations in the initial densities can lead to completely dif-
ferent final extinction states. This behavior is distinct from
those in the lattice models treated in Secs. II and III. Except
the central region, three extinction basins exhibit a rotational
symmetry around the central point, similar to the behavior in
the lattice models. As R reaches 0.07 �Fig. 5�c��, a small

coexistence basin re-emerges at the center and the degree of
rotation of the three extinction basins is reduced as compared
to that in Fig. 5�a�. This behavior is contrary to the existing
result from lattice models in the literature that local interac-
tions promote the coexistence while it is lost at larger inter-
action scale. For larger interaction range, e.g., R=0.1 �Fig.
5�e��, coexistence basin vanishes again and the rotational de-
gree of extinction basins is reduced further. We have exam-
ined that for R larger than 0.1, the phase space S2 is shared
exclusively by three extinction basins. The phase-space
structures obtained by the convergence-time tc in Figs. 5�b�,
5�d�, and 5�f� are consistent with those from the final state
criterion. In particular, the characteristics of the behavior of
tc in each extinction basin are qualitatively similar for
discrete-lattice and continuous-space models. While the ba-
sin structures exhibit some small difference for small �Figs.
5�a�� and large �Figs. 5�e�� values of R, extinction is the
exclusive outcome in these cases.

V. CONCLUSION

In conclusion, we have studied basins of species coex-
istence and extinction in three spatial RPS game models: �1�
mobile species on lattice, �2� mobile species on lattice under
intraspecific competition, and �3� mobile species on continu-
ous space. Two criteria are used to characterize the basin
structures in the phase space S2: the final state and the con-
vergence time. We have found that for all three models, three
extinction basins spirally entangle around the center point in
S2. About the center, a coexistence basin can emerge, de-
pending on the parameters of the underlying spatiotemporal
dynamical system. The boundaries among basins can be dis-
tinguished by the final convergence state and the fine struc-
ture within each single basin can be resolved by the conver-
gence time, which exhibits a general behavior in that it
increases along the spiral of the basin toward the central
area, signifying a dependence of the degree of extinction
�within the same basin� on initial configurations. There is a
sharp transition in the convergence time at the boundary be-
tween two extinction basins, so the boundary can also be
identified by this time. In the coexistence basin, the conver-
gence time tends to infinity, separating the coexistence from
extinction basins in a straightforward manner.

For each model, a set of PDEs can be derived to capture
the basic features of the spatiotemporal evolutionary dynam-
ics, and we find that the PDEs can generate basin structures
that are consistent with those from microscopic stochastic
simulations. While our computational efforts establish a
plausible picture for the basin structures associated with the
evolutionary dynamics of cyclically competing species on
spatially extended scales and thereby provide deeper insights
into the species coexistence problem, the dynamical origin of
the emergence of the basin structure revealed in this paper is
not understood at the present. Further efforts in this direction
are required.

ACKNOWLEDGMENTS

This work was supported by US AFOSR under Grant
No. FA9550-10-1-0083, by NSF under Grant No. CDI-

FIG. 4. �Color online� Schematic illustration of continuous-space model.
Three subpopulations, A, B, and C represented by red, yellow, and blue,
respectively, dominate each other in a cyclic manner. �a� An individual
belonging to A randomly selects an individual B within its selection range R,
where B is next to A in the cyclic competing loop. �b� The A individual kills
the B individual and at the same time replicates itself. If within the interac-
tion range, an individual cannot find any inferior individual, nothing
happens.

FIG. 5. �Color online� Basins of cyclically competing subpopulations on
continuous geographical space for ��a� and �b�� interaction radius
R=0.045, ��c� and �d�� R=0.07, and ��e� and �f�� R=0.1. Panels �a�, �c�, and
�e� are obtained according to the final-state criterion while panels �b�, �d�,
and �f� are calculated according to the convergence-time criterion. The num-
ber of individuals is fixed at 3000 and the size of the square cell is 1�1.
Each point in the phase space is obtained by 100 different realizations. The
initial positions of individuals in the geographical space are random.

045116-7 Basins of coexistence and extinction Chaos 20, 045116 �2010�

Downloaded 24 Jan 2011 to 129.219.247.33. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/about/rights_and_permissions



1026710, by a seed grant from the National Academies Keck
Futures Initiative �NAKFI� on Complex Systems, by BBSRC
under Grant Nos. BB-F00513X and BB-G010722, and by
the Scottish Northern Research Partnership.

1R. M. May, Stability and Complexity in Model Ecosystems �Princeton
University Press, Princeton, NJ, 1973�.

2R. M. May, Science 186, 645 �1974�.
3R. M. May and W. J. Leonard, SIAM J. Appl. Math. 29, 243 �1975�.
4M. C. Boerlijst and P. Hogeweg, Physica D 48, 17 �1991�; 88, 29
�1995�.

5M. C. Boerlijst and P. Hogeweg, J. Theor. Biol. 176, 199 �1995�.
6G. Szabó and G. Fath, Phys. Rep. 446, 97 �2007�.
7M. Perc and A. Szolnoki, New J. Phys. 9, 267 �2007�.
8S. A. Levin, Am. Nat. 108, 207 �1974�.
9Y.-C. Lai and Y.-R. Liu, Phys. Rev. Lett. 94, 038102 �2005�.

10J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dy-
namics �Cambridge University Press, Cambridge, 1998�.

11T. L. Czárán, R. F. Hoekstra, and L. Pagie, Proc. Natl. Acad. Sci. U.S.A.
99, 786 �2002�.

12B. Sinervo and C. M. Lively, Nature �London� 380, 240 �1996�.
13C. E. Paquin and J. Adams, Nature �London� 306, 368 �1983�.
14J. B. C. Jackson and L. Buss, Proc. Natl. Acad. Sci. U.S.A. 72, 5160

�1975�.
15L. A. Dugatkin, Cooperation Among Animals �Oxford University Press,

Oxford, UK, 1997�.
16B. Kerr, M. A. Riley, M. W. Feldman, and B. J. M. Bohannan, Nature

�London� 418, 171 �2002�.
17E. Fehr and U. Fischbacher, Nature �London� 425, 785 �2003�.
18B. C. Kirkup and M. A. Riley, Nature �London� 428, 412 �2004�.

19T. Reichenbach, M. Mobilia, and E. Frey, Nature �London� 448, 1046
�2007�.

20T. Reichenbach, M. Mobilia, and E. Frey, J. Theor. Biol. 254, 368 �2008�.
21T. Reichenbach and E. Frey, Phys. Rev. Lett. 101, 058102 �2008�.
22T. Reichenbach, M. Mobilia, and E. Frey, Phys. Rev. Lett. 99, 238105

�2007�.
23M. Peltomäki and M. Alava, Phys. Rev. E 78, 031906 �2008�.
24M. Frean and E. R. Abraham, Proc. R. Soc., London, Ser. B 268, 1323

�2001�; M. Berr, T. Reichenbach, M. Schottenloher, and E. Frey, Phys.
Rev. Lett. 102, 048102 �2009�.

25J. C. Claussen and A. Traulsen, Phys. Rev. Lett. 100, 058104 �2008�.
26P. M. Altrock and A. Traulsen, Phys. Rev. E 80, 011909 �2009�.
27W.-X. Wang, Y.-C. Lai, and C. Grebogi, Phys. Rev. E 81, 046113 �2010�.
28R. Yang, W.-X. Wang, Y.-C. Lai, and C. Grebogi, Chaos 20, 023113

�2010�.
29G. Szabó A. Szolnoki, and I. Borsos, Phys. Rev. E 77, 041919 �2008�.
30G. Szabó, A. Szolnoki, and R. Izsák, J. Phys. A 37, 2599 �2004�.
31G.-Y. Zhang, Y. Chen, W.-K. Qi, and S.-M. Qing, Phys. Rev. E 79,

062901 �2009�.
32B. Andrae, J. Cremer, T. Reichenbach, and E. Frey, Phys. Rev. Lett. 104,

218102 �2010�.
33H. Shi, W.-X. Wang, R. Yang, and Y.-C. Lai, Phys. Rev. E 81, 030901

�2010�.
34See, for example, S. W. McDonald, C. Grebogi, E. Ott, and J. A. Yorke,

Physica D 17, 125 �1985�.
35S. Redner, A Guide to First-Passage Processes �Cambridge University

Press, Cambridge, 2001�.
36L. Van Valen, J. Theor. Biol. 44, 19 �1974�.
37B. J. Rathcke, Ecology 57, 76 �1976�.
38M. D. Bertness, Ecology 70, 257 �1989�.
39Y. Yom-Tov, S. Yom-Tov, and H. Moller, J. Biogeogr. 26, 947 �1999�.

045116-8 Ni et al. Chaos 20, 045116 �2010�

Downloaded 24 Jan 2011 to 129.219.247.33. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1126/science.186.4164.645
http://dx.doi.org/10.1137/0129022
http://dx.doi.org/10.1016/0167-2789(91)90049-F
http://dx.doi.org/10.1006/jtbi.1995.0191
http://dx.doi.org/10.1016/j.physrep.2007.04.004
http://dx.doi.org/10.1088/1367-2630/9/8/267
http://dx.doi.org/10.1086/282900
http://dx.doi.org/10.1103/PhysRevLett.94.038102
http://dx.doi.org/10.1073/pnas.012399899
http://dx.doi.org/10.1038/380240a0
http://dx.doi.org/10.1038/306368a0
http://dx.doi.org/10.1073/pnas.72.12.5160
http://dx.doi.org/10.1038/nature00823
http://dx.doi.org/10.1038/nature00823
http://dx.doi.org/10.1038/nature02043
http://dx.doi.org/10.1038/nature02429
http://dx.doi.org/10.1038/nature06095
http://dx.doi.org/10.1016/j.jtbi.2008.05.014
http://dx.doi.org/10.1103/PhysRevLett.101.058102
http://dx.doi.org/10.1103/PhysRevLett.99.238105
http://dx.doi.org/10.1103/PhysRevE.78.031906
http://dx.doi.org/10.1098/rspb.2001.1670
http://dx.doi.org/10.1103/PhysRevLett.102.048102
http://dx.doi.org/10.1103/PhysRevLett.102.048102
http://dx.doi.org/10.1103/PhysRevLett.100.058104
http://dx.doi.org/10.1103/PhysRevE.80.011909
http://dx.doi.org/10.1103/PhysRevE.81.046113
http://dx.doi.org/10.1063/1.3431629
http://dx.doi.org/10.1103/PhysRevE.77.041919
http://dx.doi.org/10.1088/0305-4470/37/7/006
http://dx.doi.org/10.1103/PhysRevE.79.062901
http://dx.doi.org/10.1103/PhysRevLett.104.218102
http://dx.doi.org/10.1103/PhysRevE.81.030901
http://dx.doi.org/10.1016/0167-2789(85)90001-6
http://dx.doi.org/10.1016/S0022-5193(74)80026-3
http://dx.doi.org/10.2307/1936399
http://dx.doi.org/10.2307/1938431
http://dx.doi.org/10.1046/j.1365-2699.1999.00338.x

