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We propose a scheme to induce intrinsic localized modes (ILMs) at an arbitrary site in microelec-
tromechanical cantilever arrays. The idea is to locate the particular cantilever beam in the array that
one wishes to drive to an oscillating state with significantly higher amplitude than the average and
then apply small adjustments to the electrical signal that drives the whole array system. Our scheme
is thus a global closed-loop control strategy. We argue that the dynamical mechanism on which our
global driving scheme relies is spatiotemporal chaos and we develop a detailed analysis based on
the standard averaging method in nonlinear dynamics to understand the working of our control
scheme. We also develop a Markov model to characterize the transient time required for inducing
ILMs. © 2010 American Institute of Physics. [doi:10.1063/1.3527008]

In a variety of spatially extended physical systems, intrin-
sic localized modes (ILMs) can arise. Associated with
such a motion, a few elements in the system oscillate with
significantly larger amplitudes than those of the vast ma-
jority of the remaining elements. A few years ago, it was
experimentally found that ILMs can occur in microelec-
tromechanical (MEM) cantilever-array systems. The spe-
cific locations of the ILMs in the MEM array system are,
however, unpredictable due to the intrinsic symmetry of
the system. An interesting question is thus whether it
would be feasible to derive a suitable control scheme to
excite an ILM at a desirable target location without indi-
vidual actuation access to the specific cantilever. Recently,
we addressed this question by outlining an idea of apply-
ing global frequency-modulation control to MEM oscilla-
tor array systems. A key requirement of our control
method is that the system exhibit spatiotemporal chaos,
which is, however, ubiquitous in driven MEM cantilever-
array systems. As a chaotic state contains an infinite
number of unstable motions including ILMs, a suitable
control can be used to stabilize any target ILM. In this
paper, we present a detailed analysis of our
spatiotemporal-chaos based global control method to in-
duce ILMs in MEM array systems. In particular, we first
derive stability conditions for localized vibration modes
in weakly coupled MEM cantilever arrays. We then per-
form a dynamical analysis of the control process, which
reveals the physical mechanism underpinning the control.
Finally, we identify three backbone dynamical states and
derive a corresponding Markov-transition model to ana-
lyze the issue of transient time required for achieving the
control. We show that during the control process, the sys-
tem switches between a spatiotemporal chaotic state and
a low-energy state in which all cantilevers oscillate with
near zero amplitude. The system can then be stabilized
once its state matches the spatial pattern of the desired
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ILM. Our work illustrates that the principle of chaos
control can be applied to achieve desirable system perfor-
mance in spatially extended physical systems of signifi-
cant recent interest.

I. INTRODUCTION

The phenomenon of nonlinear energy localization in spa-
tially extended physical systems has attracted continuous in-
terest from various branches of physics.'_4 For example,
such dynamical states, called intrinsic localized modes
(ILMs), can occur in a defect-free nonlinear lattice, extend-
ing over only a few lattice sites. The physical systems where
ILMs have been studied include Josephson junctions,5 opti-
cal waveguide arrays,6 photonic crystals,7 antiferromagnets,8
Bose-Einstein condensates (BECs) in optical lattices,” ' and
more recently, microelectromechanical (MEM) oscillator
arrays.15 Take BECs as an example to illustrate the intensive
interest in this topic. The existence of periodic localized os-
cillations of two coupled condensates was predicted in Ref.
9. Three coupled BECs were considered in Ref. 10 and the
existence of ILMs in one-dimensional BEC arrays was dis-
cussed in Ref. 11. In Ref. 16, ILM phenomena were reported
in dilute BECs trapped in a periodic potential regardless of
whether the interatomic potential is attractive or repulsive.
The existence of localized modes associated with quasi-one-
dimensional BECs confined in periodic potentials was dem-
onstrated in Ref. 12. It was also theoretically plredicted]3 that
ILMs can exist in atomic-molecular BECs trapped in an op-
tical lattice. In Ref. 14, localization phenomenon of BECs in
optical lattices was shown to be generated by boundary dis-
sipations.

The focus of this paper is on ILMs in MEM oscillator
arrays, an area of research that started around 2003." The
seminal work in Ref. 17 laid the foundation for observing
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ILMs in MEM systems18 that have been researched inten-
sively in applied physics and engineering, and have been
implemented in all kinds of technological devices. From the
standpoint of dynamics, MEM oscillator arrays are nonlinear,
spatially extended dynamical systems. Indeed, a recent work
demonstrated that under fairly general conditions, spatiotem-
poral chaos can arise in such systems and, interestingly, the
chaotic state can act as a precursor or platform for generating
ILMs."” Ina typical experimental setting,17 ILMs can be gen-
erated at random sites by chirping the frequency of the ex-
ternal driving signal. A question then concerns whether it is
feasible to derive a suitable control scheme to excite an ILM
at an arbitrary target location. Intuitively, this can be done
by using local driving (pinning). In this regard, it was dem-
onstrated experimentally20 that the pinning method can in-
deed induce ILMs, where a laser beam was employed to trap
ILM at a target location through localized thermal-
mechanical effect. A question is then whether an alternative
global control scheme can be devised to achieve the goal of
exciting ILM at any desirable location in the MEM array. In
arecent Lettelr,21 we demonstrated that such a control scheme
is indeed possible through the method of frequency modula-
tion to generate spatiotemporal chaos as a stepping stone to
ILMs.

The reasons that we focus on chaos as a precursor for
ILMs are as follows. The discovery that spatiotemporal
chaos can facilitate the generation of ILMs in physical sys-
tems (other than MEM oscillator all‘r21ys)22’23 and the demon-
stration of this phenomenon in MEM oscillator arrays'’ sug-
gest the feasibility of using global driving to excite ILMs. In
particular, a spatiotemporally chaotic state contains an infi-
nite number of modes of motion, including various ILMs, all
unstable. In a MEM oscillator array, spatiotemporal chaos is
pervasive and can be realized readily by adjusting the fre-
quency of the dn'ving.19 When the system is in spatiotempo-
ral chaos, ILMs at all possible locations have been embedded
in the chaotic state, although they are unstable. Since spa-
tiotemporal chaos occurs globally in the entire oscillator-
array system, it is, in principle, possible to articulate small,
judiciously chosen, and time-dependent driving to excite an
ILM at any desirable location.*

The basic idea of our control method is shown schemati-
cally in Fig. 1. We first set the frequency of the external
driving so that the MEM oscillator array system exhibits
spatiotemporal chaos, which provides the necessary condi-
tion for generating ILMs, i.e., spatial heterogeneity. Assume
that a time series, typically the displacement signal, at the
target site can be measured. (For example, an image sensor
can be used for scanning the cantilever beam movements at
the surface of the MEM lattice.ls) We then use the time
series as input in a feedback scheme for tuning the global
driving frequency, stabilizing the particular ILM for that
beam.

In this paper, we provide a detailed analysis of our
spatiotemporal-chaos based global control method to induce
ILMs in MEM array systems. New results beyond those in
our Letter’' include a comprehensive treatment of the non-
linear dynamics of the MEM array system, a detailed deriva-
tion of the control law based on the dynamics, and the result
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FIG. 1. (Color online) Illustration of our scheme of global control to excite
a particular ILM in a MEM oscillator-array system.

on the average transient time to achieve the control. In Sec.
II, we describe our driving scheme. The dynamical mecha-
nism of ILMs in MEM oscillator arrays and the working of
our scheme are analyzed in Sec. III. Transient-time analysis
is presented in Sec. IV. A conclusion is given in Sec. V.

Il. FREQUENCY-MODULATION CONTROL
OF ILMs

A. Controller design

Although we shall demonstrate our idea using MEM os-
cillator array systems, the dynamics of ILMs are representa-
tive of a broader class of physical systems. We thus expect
our result to provide insights into the dynamics of ILMs in
general.

The dynamics of a MEM cantilever array can be de-
scribed by coupled driven Duffing oscillators,"”

M+ bix; + koyix; + k4ix,3 + k(22— X4y = xi2)
=m;a cos(Q)r), (1)

where x; (i=1,...,N) is the displacement of the end point of
the ith cantilever beam of effective mass m;, b; is the damp-
ing coefficient, k,; and ky; are the on-site harmonic and qua-
dratic spring constants of the ith beam, respectively, and k; is
the harmonic coupling spring constant. Each beam is subject
to a common sinusoidal driving of acceleration & and angu-
lar frequency (). Equation (1), in fact, models a nonlinear
dynamical system that arises commonly in a variety of physi-
cal and engineering situations. For appropriately strong driv-
ing, each oscillator can exhibit a bistable behavior with two
possible states: one of low and another of high amplitude
(energy). An ILM is a state where the amplitudes of a few
oscillators are high but the remaining majority of oscillators
are in the low-energy state.

The displacement of the ith oscillator, in general, can be
written as
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x;(2) = U(t)cos(Qr) — Vi(1)sin(Qz) = ri(t)cos[ QO + 0,(2)],
(2)

where r;=V U[2+V,-2 and 6; are the radial and angular coordi-
nates of (U;, V), respectively. When the driving frequency ()
is close to the resonant frequency and the driving amplitude
is relatively strong, the beam dynamics is typically bistable.
In this regime, for the low-energy state, the phase angle 6,()
is usually stabilized about a value less than —/2, but for the
high-energy state, the stable phase value is larger than
—7/2. 2526

Our proposed control scheme is illustrated in Fig. 1. We
first tune the frequency of the external driving so that the
MEM oscillator array system exhibits spatiotemporal chaos.
We then employ a displacement sensor to acquire the oscil-
lation signal of a desirable beam M about which ILM is to be
generated. The signal is multiplied by a sinusoidal signal of
the controlled frequency and reference phase angle ¢. The
combined signal is led to pass through a low-pass filter
(LPF) so that the phase information can be extracted. Finally,
the signal is integrated to tune the controlled frequency ().
The mathematical equations modeling this frequency modu-
lator are

ch ylé

.1 . 3)
E=- ;[§+ Yo sin(Qet + @)1,

where ). is the time-dependent driving frequency, & is a
variable related to the phase-angle difference, 7 is the typical
time corresponding to the cut-off frequency of the LPF, and
v; and 7, are the gains of the modulator. The equations for
the MEM cantilever-array system under the controlled driven
frequency thus become

M+ bk + ko + k] + k(2= X = Xi_p)
=m;a cos(Q,1). (4)

In Eq. (3), the value of 27/7 should be set to be much
smaller than (). so that the high-frequency component in
voxyr sin(€ 1+ @) can be filtered out. In a stable modulation
state, ) is locked to (). and the multiplication term
Xy sin(Q .+ ) is decoupled as

meMm+@=%9@mxm+%@+@+mw

- Oy(0)]}.

By setting 27/ 7<), the term sin[2Q 1+ 6),(r) + ¢] whose
frequency is 2€). can be filtered out. Thus, the system vari-
able &(7) is modulated by the phase-angle difference between
the output and the reference values. We have

anzw@§%d%m—@. (5)

As a result, the differential equation governing the change in
the modulated angular frequency is approximately
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TP (0sinl 0y(1) = 6. (6)

Q1) =9 &0 ~

The output phase angle can thus be stabilized around the
desired reference value that corresponds to the high-energy
oscillation state at site M. In a single cantilever system, the
maximum high-energy state has the phase angle of —m/2
(see the Appendix). In the coupled cantilever arrays system,
we find that the phase angle of the high-energy state is also
close to this value, suggesting that one can directly set the
angle value ¢ close to —m/2 to achieve the desired control
performance.

B. Stability analysis

We now address the stability issue of our proposed con-
trol scheme. We first consider the situation of the decoupled
limit defined by k;=0. With the target cantilever equation and
the controller expressed by Eq. (3), the whole controlled
MEM array system can be described by

mx + bx + kyx + kyx* = ma cos(€Q,1),

ch 7’1§,

§==(Un[&+ yx sin(Q1 + P)]. (7

If Q. is close to the natural frequency y=+k,/m, which
holds when (), is chosen to be in the bistable region, one can
apply the invertible van der Pol transformation to system (7),

(o))

where
( cos Q. —sin Q.1/Q, )
" \=sin Q¢ —cos Q110 )"
The transformed system is
d 1
d_I: = ai(kz/m - Q) (u cos Q.t—v sin Q1)

b k
— =0, (u sin Qut +v cos Qt) + —(u cos Q¢
m m

—v sin Q.1)% - a cos Qct] sin .z,

dr Q.

d 1
v —[(kz/m - Q) (ucos Q. —v sin Q1)

b ) k

——Q.(u sin Q.1+ v cos Q1) + = (u cos Q¢
m m

— v sin Q 1)} — a cos Qct] cos .1,

dQ)
dt

c

= 715&
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d
d =- £ E(u cos Q. —v sin Q.H)sin(Qr+ @).  (9)
dt T T

Averaging the system (9) over one time period T=2/(),
and transforming the averaged system into the polar coordi-
nates [r,8|r=\u?+v?, @=arctan(v/u)], we obtain the fol-
lowing averaged system:

dr 1 Q.br -

O T

dg 1 3kyr

= _ - 02 -

o Zch{(kz/m Or+ . a cos 0},

Q. _ ¢

a e

d

X__E 2 h-0). (10)
dt T T

In system (10), there is only one equilibrium given by

r —[(ma)/(Q.b)]sin ¢

0 ¢
o, |” F(9) ’ (
p 0

where F(¢)=\/k2/m+3k4r2/ (4m)+a cos ¢ is ultimately a
function of (). since the variable ¢ is related to (), as
( 3kyma®  QAmQO2 - ky) e
4b° b
Qz(mﬂf -k«
b

)tan ¢+ Qlatan ¢

tan ¢+ Q’a =0, (12)

Equation (12) is derived from Eq. (10) by setting the right-
hand sides to zero.

The Jacobian matrix of the system (10) evaluated at the
equilibrium solution (11) is

b _ a @

“om Z_QCCOS 1) 203 sing 0
A, - b A, 0
2m 5 (13)
0 0 0 Y
Yoma sin ¢ 0 B 1
27F(p)b T

where

A, = 3kya/(4Q%b)sin ¢,

Ay == 1/2 = ky/ (2Q%m) = 3kya®m/(8Q!?)sin® ¢
- b/(2mQ)tan™" .
The characteristic equation of Eq. (13) can be obtained as
M+aN+a N +a\ +a,=0, (14)

where the parameters a;—a, are
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b 1
aj=—+-, (15)
m T
b_2+ b aAcos ¢
a2_4m2 mr 20,
1/ b? a Y1Yyama )
=—|—+-——A + A, si ,
4 T<4m2 20, S P byt S @

1 1o

a,= ;(%Az sin ¢ +
Note that all parameters are positive. This is because, as we
set ¢ close to the value that corresponds to the highest en-
ergy state, —w/2, we have sin ¢<<0, cos ¢=0, and
tan~! ¢p=~0. We thus have A; >0 and A,<0. As a result, we
have a;,a,,a;,a,>0. The Routh—Hurwitz condition for
stability”" is

e 2¢). (16)

4R

Al =a > O,
A2=alaz—a3 >0,

2 2
A3=a1a2a3—a3—a1a4 > 0,

A4=a1a4A3 > 0. (17)

Since a;—ay, are all positive, the stability condition (17) can
be simplified as

A2=a1a2—a3>0,

As=a,a,a3— a3 — ajay > 0. (18)

For the case of weakly coupled cantilever arrays, due to the
high localized energy at the target cantilever (in ILM state),
we have x> x,,,xy_; for the coupling term in Eq. (4).
The stability condition (18) thus holds for weakly coupled
cantilever-array system as well. We mention that the above
analysis is valid only for the local stability of the ILM state.
To make the system eventually settle into the desired ILM
state, a number of other conditions are needed in addition to
the local stability criterion. These will be detailed in Sec.
11 B.

C. Simulation results

Examples illustrating our scheme to induce ILMs are
shown in Figs. 2(a)-2(d) in which the fourth-order Runge—
Kutta method with a time step of 6.4 X 107> s is employed to
integrate the dynamical equations. The coupled MEM oscil-
lator system consists of two groups of beams of different
length, arranged alternatively in space. The cantilevers are
coupled by an overhang. The structural parameters of the
system are chosen according to their respective
experimental values'’ (m;, b;, ky;, ky;)=(5.46 X 10713 kg,6.24
x 107" kg/s,0.303 N/m,5Xx 10 N/m?) for odd i, the
long beams, and (m;,b; ky;,ky)=(4.96X 10713 kg,5.67
X 107" kg/s,0.353 N/m,5x 10®8 N/m?) for even i, the
short beams. The parameters of the driving are chosen to be
(a,71,7,7=(1.56 X 10* m/s?,5,10'2,0.1361 s).
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FIG. 2. (Color online) For a MEM oscillator system of N=50 beams of
alternating length, space-time plots of four examples of inducing ILMs at
sites M=10 (a), 20 (b), 30 (c), and 40 (d). The initial value of Q. is
Q.(1=0)=9.24 X 10° rad/s. Dark lines indicate higher amplitudes. See text
for various parameters.

We have simulated an oscillator array of N=50 beams,
where the phase in Eq. (3) is set to be ¢p=—m/2. The initial
value of the driving frequency is set to be Q.(1=0)=9.24
X 10° rad/s so that the system exhibits spatiotemporal chaos
(Sec. III). The initial displacements and velocities of all the
beams are set to be zero. The four panels in Figs. 2(a)-2(d)
correspond to the cases where an ILM has been induced at
site. M=10, 20, 30, and 40, respectively. Apparently, our
method is capable of inducing robust ILMs at any desirable
site in the system. Since the device model and parameters are
from experiments17 where the MEM array system consists of
multiple bielement cells and each cell is a dual coupled beam
with different beam lengths, ILMs can be induced only
around the shorter beam in each bielement cell, namely,
those beams with even sequence numbers.

lll. DYNAMICAL MECHANISM OF CONTROLLED
GENERATION OF ILMS

A. Dynamical mechanism of frequency-modulation
control

To understand the working mechanism of our scheme, it
is insightful to explore the dynamical mechanism for ILMs
to arise naturally (without any control) in a MEM oscillator-
array system. We start with the system [Eq. (1)] in its nomi-
nal setting, i.e., the driving frequency ) does not depend on
time. While the dynamical solutions of ILMs in conservative
systems have been understood reasonably well, 5% systems
of MEM oscillator arrays are typically dissipative. For a
coupled Duffing oscillator array with large nonlinearity, mul-
tiple stable solutions may coexist. (The issue of multistability
in coupled cantilever arrays was discussed briefly in Ref.
30.) To understand the phenomenon of multistability, we use
the standard averaging method.” Inserting Eq. (2) into Eq.
(1) and taking the time average in one driving period 27/ (),
we obtain the following averaged system:
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du; 1 3 ky; Qo
— = — (= Q%)v; - = o, (u? +v]) - =2 Qu;
dt ZQ|:( Ol)vl 4mivl(ul +vl) Q,‘ u;

k
- _1(201' —Uit1— vi—l):| s
mA

l

dl)l' 1

3 ky; Q)
a ﬁ{_ (Q - OF)u; + Z#ui(u? +v]) - —2Qu;

m; Qi

—a+:71(2u,~—ui+l—u,-_l)}, i=1,....,N, (19)
where Q;= v%/b,- is the quality factor, ;= Vk,;/m; is the
resonant frequency of the ith beam, and u,(r) and v(¢) are the
averaged functions of U,(t) and V,(z), respectively. Here, we
consider the typical experimental setting17 where k; is fixed
(e.g., k;=0.0241 N/m) and the driving frequency () can be
varied.

The boundaries of multiple dynamical states can be ob-
tained by examining the bifurcation points in Eq. (19). In
particular, we can continue the dynamical solutions from the
decoupled limit k;=0 to k;=0.0241 N/m (the effective cou-
pling spring constant"’) and locate the bifurcation point in )
(boundary).32 The boundaries between spatiotemporal cha-
otic states (denoted as SC) and the low-energy states (de-
noted as LES) are denoted by Q3" and those between SC
states and ILM states are denoted by QE“M. In the region
QC<QI§C, the MEM cantilever arrays system is in some SC
state and, in the region Q> Qp™, the system is likely to be
stabilized around an ILM state. In the intermediate region
(Q5F<Qe<Qp™M), the system can be in some LES state
only.

Since frequency modulation is directly controlled by the
difference between the real-time phase angle and its refer-
ence value, a key quantity in the controlled regime is the
ranges of phase angles in different dynamical states. Our idea
is to examine the relationship between 6, and ry, in the
decoupled limit and then use the obtained relation to heuris-
tically explain the phase angles’ ranges. For the Mth beam, in
the decoupled limit (k;=0) the input energy in one driving
period from the external driving force is

€in = J mysee cos(Q)dxy,. (20)

Since x,,(t)=ry; cos(Qr+ 6,,), where the rates of change in
ry(t) and 6,,(¢r) are much smaller than that of (z), we can
regard the amplitude and the phase angle as being constants
in a driving period. We thus have

2(k+1) 7/
Ein = f mysae cos(Q)(— Qry,)sin(Qe + 6,,)drt
2kar/Q)

=—2mmyary, sin(6,,). (21)

From Eq. (21), we see that the phase angle 6,, is confined in
the region (—,0) since the energy input is always positive
for a stable damped oscillatory system. Similarly, the dissi-
pated energy due to the damping force is
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FIG. 3. (Color online) Frequency dependence of oscillation amplitude ry,
and phase angle 6, in the decoupled limit of k;=0.

2(k+1)w/Q
Eout = J bxydxy =~ f b[Qry, sin(Qr + 6,))dt
x 2kr/Q)

= mbQry,. (22)

Energy conservation requires

€in = €out> (23)

which leads to the following formula relating the average
phase angle to the average amplitude and the driving fre-
quency:

'm

Qry=--1L
M max ’

2amy, Ty

sin(6y,) = - (24)

where r*=2am,,/ (b)) is the oscillation amplitude of the
resonant peak. In Eq. (24), since ry, and r};™ are both posi-
tive, ), is confined in the range of (—,0). The amplitude ry,
is confined in the region (0, ;™). The frequency dependence
of ry and 6, is shown in the upper and lower panels of
Fig. 3.

From Eq. (24), it can be seen that the state with the
maximum oscillation amplitude r}™ (denoted as “A” in
Fig. 3) has the phase angle of —7/2. Moreover, there are two
branches of stable motion: one of large and another of small
oscillation amplitude. Furthermore, in the lower panel, we
see that the high-amplitude branch has phase angle larger
than —7/2 (0> @,>-m/2) and the low-energy one has

phase angle smaller than —7/2 (-m< #,,<—/2).
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The results obtained from the decoupled limit can shed
light on the phase-angle property of dynamical states in
coupled system (1). Since in a spatiotemporal chaotic state
every site has moderate energy,33 the Mth beam’s oscillation
can be heuristically treated as in the high-energy branch in
Fig. 3 and its phase angle is larger than —7r/2 (labeled as “B”
in the figure). On the other hand, the low-energy state of the
Mth beam can be regarded as in the low-energy branch in
Fig. 3 (labeled as “C”). Since the reference phase angle ¢ is
set to be close to —r/2, we have

Oulsc— >0

_ (25)
Oplies — <0,

where 6), denotes the average value of 6,,. Consequently, the
value of

®M =TIy Sin(@M - d)), (26)

which governs the frequency-varying rate, as shown in Eq.
(6), will change sign from that associated with an SC state to
an LES state. The system of MEM cantilever array [Eq. (1)]
has been numerically computed and the average values of
0®,, in different dynamical regimes are obtained in Ref. 19.
The results of phase angles and frequency-modulation prop-
erties are summarized in Table I, where the simulated values
agree with those from the stability analysis.

The above analysis suggests a general strategy for induc-
ing ILMs in a MEM oscillator-array system. To explain the
strategy, it is necessary to reveal the detailed dynamics of the
control and of the cantilever array. An example is shown in
Fig. 4 where the underlying system has N=128 beams (64
cells) and the desirable site for ILM is M=64. When the

system is in the spatiotemporal-chaos regime, {).>0 so that
the frequency will increase and exceed QZC, which is indi-
cated in Fig. 4(c). If the system cannot get into the basin of
a high-energy mode (ILM), it will go to the basin of a low-

energy state. If this happens, ). will become negative, re-
ducing the driving frequency. As a result, if ILM does not
occur, the modulated driving frequency (). will switch back
and forth between some values in the chaotic and in the
low-energy regimes [Fig. 4(c)]. This process is denoted as
the selecting phase in Fig. 4, during which the value of ©,,
changes constantly. There is then a nonzero probability for
the system to get into an ILM state, which is the locking
phase in Fig. 4. In the locking phase, the modulating fre-
quency .(7) increases with time, approaching asymptoti-

TABLE 1. Dynamical, phase, and frequency-modulation properties of MEM cantilever arrays (1) in different
dynamical regimes for k;=0.0241 N/m, where legcﬁv9.254 X 10° rad/s is the boundary between SC and LES
and QLLMz9.312>< 10° rad/s is the boundary between LES and ILM states (Ref. 19).

Frequency range Q<3¢
Dynamical regime SC
Phase property ) < T a
)
Frequency-modulation property ﬁc >0

Q<< QIM Qc>opM
LES ILMs
Op<-—1* 0, is close to—;—T at ILM
0,<0 Q,~0 at ILM

*Reference 21.
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FIG. 4. (Color online) For a MEM oscillator system of N=128 beams, an
example of stabilizing an ILM at site M=64. (a) Space-time plot of beam
amplitude. (b) Time series of the phase difference ©,,(r) for M=64. The
initial value of Q) is set to be Q.(t=0)=9.24 X 10° rad/s. The vertical
dashed line at 1=0.21 s denotes the boundary between the selecting and the
locking phase. (c) Time series of the modulating frequency Q(f). Q5C is the
boundary between SC and LES states.

cally a constant value as the ILM state becomes stable [Fig.

4(c)]. When this occurs, ®,, is maintained at a positive value
but it decreases slowly as the system evolves into a stable
ILM state defined by 6,,=¢, as shown in Fig. 4(b). Due to
the relatively small basin of attraction of the high-energy
state in a single driven Duffing oscillator in the bistability
regime,19 the probability of generating an ILM through
random-phase changes is typically small, leading to a rela-
tively long period of transient phase before ILM is actually
realized. Once a particular oscillator has been locked in an

ILM state, the random fluctuations in ©,, are reduced sig-
nificantly [Fig. 4(b)], preventing the oscillators at other sites
to enter some ILM states.

This mechanism also suggests that our approach to in-
ducing ILM can be successful even when the initial value of
the driving frequency (). falls outside the regime of spa-
tiotemporal chaos. In particular, if the initial Q. (r=0) is
above legc, the system will converge to a low-energy state
that is always stable, insofar as the condition QC>Q§C is
satisfied. As a result, ®,, will become negative, making

. <0. The value of the driving frequency will consequently
be tuned to that in the spatiotemporal chaos regime again,
“preparing” the system for excitation into some desirable
ILM states.

We note that, although the small basin of attraction of
the ILM states makes the probability of creating ILMs at
other sites small, for a large-size array, there is a possibility
that some ILMs at other sites can be simultaneously locked
together with the one at the target site. Figure 5 shows the
controlled state in a system of 200 MEM cantilevers. In the
figure, each column represents the controlled system state for
a specific target site M (its x value). The result demonstrates
that ILMs at other sites can indeed be excited. However,
since the spatiotemporal chaotic state, which is the platform
of ILM control, is sensitive to the initial condition, the con-
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FIG. 5. Controlled system states for the case of 200 MEM cantilevers. Each
column in the figure denotes the arrays’ controlled state for a specific desir-
able site (its x values). The initial condition of the simulation is identical for
each M.

trol result will depend on the initial dynamical state of the
array system. Thus, if multiple ILMs occur in the controlled
system, one can restore the system to spatiotemporal chaotic
state (by disabling the controller and then reducing the
driven frequency) and repeat the control process several
times until the desired ILM pattern is created without any
other ILMs in the system.

B. Strategy of choosing control parameters

For the controller design [Eq. (3)], the values of the pa-
rameters 7, y;, and 7, should be chosen in the region deter-
mined by the local stability condition [Eq. (18)]. Our stabil-
ity analysis indicates that the controller utilizes the phase
characteristics of different dynamical states and the fre-
quency modulation is triggered by a “seed” small-amplitude
ILM provided by spatiotemporal chaos, which can be ampli-
fied into a large, stable ILM state at the desirable site. Spe-
cifically, the frequency ramping can gradually move the ILM
states in the phase space and their basin of attraction. The
moving basin attracts and pulls the system state to the final,
desirable ILM state associated with the phase 6,,=¢. How-
ever, the nonstationary, small-amplitude ILM states can also
change the localized energy. As a result, control may be lost.
The implication is that, besides the local stability condition
analyzed in Sec. II B, three extra conditions are necessary to
make the control scheme successful. First, the controller has
to be able to track the detected phase information without
delay, for otherwise the frequency ramp signal may not be
generated in time, causing the ILM state to fail to be locked.
Second, the increasing rate of the ramp signal needs to be
large enough to avoid the escaping effect. Third, the ILM’s
basin of attraction needs to be large enough so as to generate
a finite probability that the MEM array system can enter the
basin in response to the rapid frequency ramping.

We now describe a strategy for choosing the control pa-
rameters. First, the nonlinear dynamical properties of the
MEM array system, which include the typical escaping time
of small-amplitude ILMs, phase values of different states,
and the size of the ILM basin of attraction, etc., need to be
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FIG. 6. (Color online) Selection time (defined in Fig. 4) vs the cut-off
frequency of the LPF in a MEM array system of size N=50.

assessed through numerical simulations of the physical
model of the system.li3 2 System parameters can then be cho-
sen to satisfy the three conditions mentioned above. In par-
ticular, for the first condition, the bandwidth of the LPF in
Eq. (3) needs to be large enough to cover the variational rate
of the phase signal so as to guarantee that the variable & can
follow the phase signal in time, as suggested by Eq. (6).
However, the bandwidth of the LPF cannot be arbitrarily
large because the high-frequency component of the multi-
plied signal, as shown in Eq. (3), should be effectively fil-
tered. Should this not be the case, the residual high-
frequency signal will be coupled to the driven signal,
generating phase noise. To illustrate the effect of LPF band-
width on ILM control, we perform simulations for MEM
array system of size N=50 by varying the cut-off frequency
in Eq. (3). The results are shown in Fig. 6. It can be seen that
the duration of phase selection defined in Fig. 4 decreases as
the cut-off frequency is increased in a power-law manner.
This suggests that, if the bandwidth is small, the ramp signal
may not be generated before ILM disappears at the desirable
site and the selecting time of the control can be impractically
long. After fixing the value of 7, which is inversely propor-
tional to the cut-off frequency, one can choose the amplifi-
cation gains v, and 7, to satisfy the remaining two condi-
tions. To do this, we need to estimate the available range of
the slope of the generated frequency ramp signal based on
the simulation results of the average escaping time and the
size of the ILM’s basin of attraction. By adjusting the values
of vy, and 7y,, we can choose the slope within the estimated
range.

IV. TRANSIENT TIME PRECEDING CONTROL

We see that in order to excite an ILM state at a target
site, the system has to go through a period of transient phase
during which it switches between some spatiotemporal cha-
otic and low-energy motions. Due to chaos, for different ini-
tial conditions, the transient time can be quite different. A
relevant issue concerns then the average length of the tran-
sient time. Here, we shall construct a Markov model with
inputs from numerical computations to characterize the tran-
sient phase.

Chaos 20, 043139 (2010)
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FIG. 7. (Color online) Statistical distribution of transient time 7 from Monte
Carlo simulations of 6000 trials. The system has N=128 beams with the
same experiment-based structural parameters as in Fig. 2. The solid curve is
a prediction from the Markov model, which holds for 7 greater than some
nonzero value.

Figure 7 shows the distribution of the transient time for a
system of N=128 beams (with the same experiment-based
structural parameters as in Fig. 2). To generate the statistical
distribution, Monte Carlo simulations of 6000 trials are used.
In general, the selecting time 7 comprises two components:
T=T|+ T, Where 7| represents the transient time for the sys-
tem to be in either spatiotemporally chaotic or low-energy
state and 7, is the switching time. In the following, we dis-
cuss the characteristics of 7; and 7,.

Consider a time period during which the system state
transits from spatiotemporal chaos to a low-energy state and
then back to chaos. We call this time period one iteration. Let
AT be the average time for one iteration and P be the prob-
ability for the system to be excited to an ILM state. The
dynamics of the system with respect to the occurrence of
ILM can thus be described by a Markov model, as shown in
Fig. 8. Note that the probability of transition from a low-
energy state to spatiotemporal chaos is unity because of the

condition 0, <0 when the system is in a low-energy state.
Since AT is small, the probability distribution of random
variable 7, can be modeled as

ILM
R Y
& 2 A

Q( (\a

Pr=1-P

LE
SC _ S

€ =

FIG. 8. (Color online) Markov model describing the transient phase of ILM
excitation. The probabilities for the system to go from spatiotemporal chaos
to an ILM state and to a low-energy state are P and (1—P), respectively. The
probability for the system to transit from a low-energy state to spatiotempo-
ral chaos is 1.
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P(1,=T,) =~ (1 - P)7/AT-1p, (27)

Due to chaos, 7; and 7, are effectively independent of each
other, so the joint probability distribution for 7; and 7, is

P(r=T,m=T,) =P, (T)(1-P)AT"'p, (28)
We thus have

P(r+7=T)~(1-P)""'p

T
X J P.(T))(1 - Py TVATGT, . (29)
0

To provide a heuristic explanation for the approximately ex-
ponential decay of P,(7), we assume that the distribution of
7; has a high peak around its average value: P,"(T))
=~ §(T,-T)). This leads to

P(1 - p)T-TOAT-1 T =T

P(r=T)= ,
0, T<T,.

(30)
This function has a discontinuity of size P>0 at 7=T] but it
decreases exponentially for 7>T,. The predicted distribu-
tion (30) is shown as the solid curve in Fig. 7. The values of
the fitting parameters in Eq. (30), i.e., P, T}, and AT can be
estimated from the numerical data. For this specific example,
to compare with the numerically obtained distribution, we fix
T1=0.072 s, the point of the largest probability in the dis-
tribution, and the parameter P is chosen as the probability at
T1=0.04 s. We obtain P=0.11. The parameter AT can be
estimated by the mean value of the iteration period,
AT=0.004 s, which can be obtained by the time series of
®,,. Overall, the predicted distribution is consistent with the
numerical result.

V. CONCLUSION

In summary, we have proposed a method based on glo-
bal control to excite ILMs at arbitrarily given sites in MEM
oscillator-array systems. Our idea is to take advantage of the
spatial heterogeneity and temporal irregularity offered by
spatiotemporal chaos and to exploit a typical phase modula-
tion scheme to drive the system in a spatiotemporally chaotic
state into the basin of an ILM state. Due to the ubiquity of
nonlinear dynamics and chaos in spatially extended systems,
we expect our method to be generally applicable to other
classes of small-scale devices such as parametrically driven
MEM arrays where locally pinning excitations are not
feasible.’* A possible experimental scheme to realize our
strategy is phase-locked loops (PLLs),* a basic component
in many circuit applications. In particular, we can set the
initial frequency and phase, respectively, as the reference and
the phase angle of the voltage-controlled oscillator, a central
component of any PLL circuit. The output of the PLL can
then be used to drive the MEM system.
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APPENDIX: PHASE ANGLE ASSOCIATED
WITH HIGH-ENERGY STATE IN A SINGLE
CANTILEVER SYSTEM

Using the classical averaging method,”’ we can obtain an
expression for the amplitude and phase of a single MEM
resonator as follows:

d_r_L[ Qbr ]

= ——— —asinf
00|, s
e 1 3k,
Zzﬂ{(kz/m_ﬂz)”- 4; — a cos 0} (A1)

from which we can get the following equations for the am-
plitude (r) and phase (6):

3ky \2 Q%P
{((Q%—kZ/m)———“H) +— }H=a2, (A2)
4m m
where H=r? and
3kgm*a®  QP(mO? -k
( :n;a - (m , Ja tan ¢ + O atan ¢?
Q*(mQ? -k
- Mtan b+ Va=0. (A3)
We thus have
dH 24ky/mH* = 16(Q° — ky/m)H
dO?  27kAm*H? = 3ky/m(Q? — ky/m)H + (QF = ky/m)*
(A4)

Setting dH/dQ*=0, we obtain Q?=k2/m+3k,H/(4m). In-
serting this result into the right-hand side of the second equa-
tion of Eq. (A1) and using d6/dr=0, we get cos(#)=0 and,
consequently,

Oy = — T2 (A5)
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