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Abstract

A fundamental observation in nonlinear dynamics is that the asymptotic chaotic invariant sets in many high-

dimensional systems are low-dimensional. We argue that such a behavior is typically associated with chaos synchro-

nism. Numerical support using coupled chaotic systems including a class derived from a nonlinear partial differential

equation is provided.

� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The phase spaces of many dynamical systems in nature, such as those described by nonlinear partial differential

equations (PDEs), are infinite-dimensional. Yet it often occurs that the dynamical invariant sets responsible for many

observable phenomena of physical interest lie in some low-dimensional manifold, as speculated by Ruelle and Takens in

1971 [1] and later verified in many natural systems [2]. The hope that low-dimensional chaos may be relevant to high-

dimensional dynamical systems is one reason that drives not only theoretical chaos research such as differentiable

dynamics [3], but also applied work such as chaotic time series analysis [4]. In this paper we shall argue that chaos

synchronism [5,6] provides a natural and fundamental mechanism for high-dimensional systems to exhibit low-

dimensional chaos.

Throughout the paper we adopt the notion that low-dimensional chaos is characterized by only one positive

Lyapunov exponent while high-dimensional chaos by more than one such exponent. Consider a class of dynamical

systems described by

dX=dt ¼ FðX; pÞ; ð1Þ

where X 2 RN , N � 1 is the phase-space dimension, and p denotes a set of system parameters. Despite high dimen-

sionality of the phase space, often, there exist regions in the parameter space with positive Lebesgue measure in which

the asymptotic dynamical invariant set is d-dimensional, where d � N . That is, there exists an invariant manifold of
dimension m, where mJ d, in which the invariant set is embedded. Let M denote this low-dimensional manifold. Our

point is that, when a high-dimensional dynamical system exhibits low-dimensional chaotic behaviors, the dynamical
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variables X in the original high-dimensional phase space will generally be synchronized with the variables in M. Let

x 2 M � Rm be the set of dynamical variables inM. Then, as we shall argue in this paper, synchronization between X

and x is a sufficient condition for the asymptotic dynamics of the original high-dimensional system to be low-dimen-

sional. Generally, this synchronization can be expressed by the following function that is not necessarily smooth:

X ¼ gðxÞ; where g : RN ! Rm: ð2Þ

To facilitate analysis and numerical computation, we investigate a class of coupled chaotic systems, including a class of

such systems derived from a nonlinear PDE [7]. We will provide numerical evidence that as a system parameter changes,

the onset of low-dimensional chaos coincides with the parameter value at which the synchronization state becomes

stable. An implication of our results is that the phenomenon of chaotic synchronization [5,6], besides its importance in

technological applications [8,9], is more fundamental than previously indicated in the chaotic dynamics literature.

It is important, at this point, to discuss our work versus the ‘‘slaving principle’’ in the context of synergetics proposed

by Haken in the seventies [10]. Mathematically, the slaving principle is represented by Eq. (2). Briefly, synergetics deals

with systems composed of many subsystems and studies how the interaction (or ‘‘cooperation’’, as called by Haken)

among these subsystems brings about spatial, temporal or functional structures on macroscopic scales. Particular at-

tention is focused on situations where these structures arise in a self-organized fashion, and governed by the slaving

principle. The slaving principle implies reduction in dimensionality, which contains a number of important theorems as

special cases, such as the center manifold theorem, the slow manifold theorem, and adiabatic elimination procedures

[10]. Its main content is to use the adiabatic approximation to remove the fast variable and find the order parameter

equation (slow variable). The order parameters determine the type and degree of order. Our point is that, synergetics

addresses mainly the collective behavior in coupled limit-cycle systems. More importantly, the existing point of view is

that the slaving principle in synergetics is not applicable to chaotic systems [11]. Our work deals with, exclusively,

dimension reduction in chaotic systems and, therefore, is novel beyond what can be understood in the context of

synergetics.

The paper is organized as follows. In Section 2, we provide a simple argument for the interplay between the onset of

low-dimensional chaotic behavior and the stability of the synchronization state. In Section 3, we present numerical

examples with the system of coupled R€oossler oscillators [12]. In Section 4, we study a model of coupled chaotic os-
cillators derived from a nonlinear PDE. In Section 5, we investigate a model consisting of two coupled, but charac-

teristically different chaotic maps to illustrate the interplay between generalized synchronism and the occurrence of

low-dimensional chaos. A brief discussion is presented in Section 6.

2. Synchronism and onset of low-dimensional chaos

2.1. Generalized synchronization as a typical mechanism for low-dimensional chaos

We argue that synchronism is a sufficient condition for the occurrence of low-dimensional chaotic dynamics by

considering the following unidirectionally coupled system:

dx

dt
¼ fðxÞ; dy

dt
¼ gðx; yÞ; ð3Þ

where the x-dynamics admits a low-dimensional chaotic attractor with one positive Lyapunov exponent Kx
1 > 0. By

synchronization we mean the existence of a functional relation between the set of driving variables x and the set of

driven variables y

y ¼ hðxÞ: ð4Þ

This function also defines the synchronization manifoldM, and the synchronization is generalized [13]. Eq. (3) has been

shown to be a sufficient representation of coupled nonlinear oscillators in general, because there always exists a

mathematical change of coordinates to transform a pair of mutually coupled (bidirectionally coupled) oscillators into a

pair of unidirectionally coupled ones, at least locally near the synchronization manifold [14]. Since the x-subsystem

already has one positive Lyapunov exponent, the full system Eq. (3) is high-dimensionally chaotic if the y-subsystem

possesses at least one positive Lyapunov exponent. Otherwise, Eq. (3) is low-dimensionally chaotic if the largest

Lyapunov exponent of the y-subsystem is not positive. This exponent is given by

Ky
1 ¼ lim

t!1

1

t
ln

jdyðtÞj
jdyð0Þj ; ð5Þ
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where dyð0Þ is a randomly chosen initial infinitesimal vector in the tangent space of the y-subsystem, and the evolution

of this vector is governed by

ddyðtÞ
dt

¼ og

oy
� dyðtÞ; ð6Þ

where the Jacobian matrix og=oy is evaluated with respect to a trajectory in the full phase space. On the other hand, the
stability of the synchronization manifold M is determined by the following transverse Lyapunov exponent:

KT ¼ lim
t!1

1

t
ln

jdyðtÞj
jdyð0Þj

����
y¼hðxÞ

; ð7Þ

where the Jacobian matrix og=oy now is evaluated locally atM. WhenM is transversely stable so that synchronization

is achieved, we have KT < 0. But then, asymptotically a trajectory lies inM and, hence, Ky
1 ¼ KT < 0. Thus, in this case,

there is no positive Lyapunov exponent in the y-subsystem and the full system Eq. (3) is low-dimensionally chaotic.

However, Ky
1 < 0 does not necessarily imply that KT < 0. Therefore, generalized synchronism is a sufficient but not a

necessary condition for the occurrence of low-dimensional chaotic dynamics. This statement is true under the assumptions

of Eq. (3), which are: (1) the y-variables can synchronize to the x-variables in a generalized sense, and (2) the x-variables

admit only one positive Lyapunov exponent.

2.2. System of coupled, identical chaotic oscillators

The above consideration can be easily extended to one common class of spatiotemporal systems: coupled chaotic

oscillators. A simple system consisting of two such oscillators can be written, as follows:

dx

dt
¼ f1ðxÞ þ � � ðy xÞ;

dy

dt
¼ f2ðyÞ þ � � ðx yÞ

ð8Þ

where x 2 Rm and y 2 Rm, f1 and f2 are velocity fields of the chaotic flows xðtÞ and yðtÞ, respectively, and � denotes the
coupling matrix.

We consider the case where the oscillators are identical: f1 ¼ f2 � f, and the velocity field fðxÞ generates a low-
dimensional chaotic attractor. In this case, the synchronization manifold M, defined by xðtÞ ¼ yðtÞ, is an invariant
manifold of Eq. (8) in the sense that if the system is started with initial condition xð0Þ ¼ yð0Þ, then xðtÞ ¼ yðtÞ holds for
all t > 0. The transverse stability ofM can be explicitly determined by introducing the following transform of variables:

ðu; vÞ ¼ 1
2
ðx

�
þ yÞ; 1

2
ðx yÞ

�
; ð9Þ

so the synchronization state is represented by v ¼ 0. Near M, we have jvj � 0 and, to first order in jvj, the differential
equations for u and v are

du

dt
� fðuÞ;

dv

dt
� of

ou

�
 2�

�
� v:

ð10Þ

We see that inM (v ¼ 0), there is a chaotic attractor generated by f. The Lyapunov exponents evaluated with respect to

the Jacobian matrices ½of=ou 2�� determine the transverse stability of chaotic trajectories in M. When � ¼ 0 (no

coupling),M is transversely unstable because the transverse Lyapunov spectrum is identical to that of the chaotic flow.

As the coupling parameter � is increased, we expect the transverse Lyapunov exponents to decrease. For randomly
chosen initial conditions, synchronization can occur when � is increased through a critical value �c so that the largest
Lyapunov exponent in v becomes negative. When this occurs, the asymptotic attractor of the system lies in M and is

therefore low-dimensional. For the full system Eq. (8), for small coupling, there are two positive Lyapunov exponents.

We expect then that, as � is increased through �c, the second largest positive exponent becomes negative and, hence,
precisely at �c, there is a transition from high-dimensional to low-dimensional chaos.

The situation of N coupled, identical, chaotic oscillators can be formulated in a similar way [15]. Such a system can

be described as follows:
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dxi

dt
¼ fðxiÞ þ �

XN
j¼1

GijHðxjÞ; i ¼ 1; . . . ;N ; ð11Þ

where Gij’s are elements of the coupling matrix G and HðxÞ is a smooth function. The synchronization manifold M of

the network is defined by: x1 ¼ x2 ¼ � � � ¼ xN . If Gij’s satisfy the condition
P

j Gij ¼ 0 for all i, a situation treated

commonly in literature [15], thenM is an invariant subspace of Eq. (11) (not necessarily stable for all �). The stability of
M can be assessed by examining the variation equation for Eq. (11), as follows:

ddxi

dt
¼ Dfðxi

nÞ � dxi þ �
XN
j¼1

GijDHðxiÞ � dxj; ð12Þ

where DF and DH denote the partial derivatives. On M, where x1 ¼ � � � ¼ xN ¼ x, this can be written concisely as

ddX
dt

¼ IN½ �DFðxÞ þ �G�DHðxÞ� � dX; ð13Þ

where dX ¼ ðdx1; . . . ; dxN ÞT, and IN denotes the N � N identity matrix. If G ¼ T1CT with C ¼ Diagðc0; . . . ; cN1Þ, then
system (13) can be decoupled into the following block diagonal form:

ddY
dt

¼ IN½ �DFðxÞ þ �C �DHðxÞ� � dY; ð14Þ

where dY ¼ ðdy1; . . . ; dyN ÞT and dyi ¼
P

j T
i
jdx

j. In terms of the individual components, we have N variational equa-

tions in Rm

dyk

dt
¼ DFðxÞ½ þ �ckDHðxÞ� � dyk ; k ¼ 0; 1; . . . ;N  1: ð15Þ

Note that the condition
P

j Gij ¼ 0 implies that G has at least one zero eigenvalue, which we take to be c0; the cor-
responding equation determines the Lyapunov exponents of the chaotic attractor inM. The remaining N  1 equations

determine the stability of the orbit in the mðN  1Þ directions transverse toM. Our point is, as the coupling parameter �
is increased from zero, the number of positive Lyapunov exponent of the full system Eq. (11) becomes one at precisely

the same critical parameter value �c at which the largest transverse Lyapunov exponent becomes negative.

2.3. Coupled nonidentical chaotic oscillators

When the coupled chaotic oscillators are not identical, the synchronization manifold M defined by

x1 ¼ x2 ¼ � � � ¼ xN will typically not be an invariant subspace of the system and, hence, the calculation of transverse

Lyapunov exponents, as defined above, is no longer valid. In this case, the synchronization state can be more com-

plicated, such as time-lagged synchronization observed in the system of two coupled nonidentical R€oossler oscillators
[16].

To gain insight, we again consider Eq. (8), but this time without invoking the assumption that the oscillators are

identical. If the chaotic velocity fields are close: f1 � f2, then the synchronization state is: v ¼ 1
2
ðx yÞ � 0. The pair of

differential equations in the ðu; vÞ-variables are:
du

dt
� f1ðuÞ½ þ f2ðuÞ�=2;

dv

dt
� GðuÞ½  2�� � vþ f1ðuÞ½  f2ðuÞ�=2;

ð16Þ

where GðuÞ is the average Jacobian matrix of the velocity fields f1 and f2. We see that the evolution of uðtÞ is determined
by the ‘‘average’’ velocity field of f1 and f2. Due to the presence of the term ½f1ðuÞ  f2ðuÞ�=2 in the second equation,
v ¼ 0 is no longer a solution of the system. In general, if the coupling is large enough so that the product of matrices

½GðuÞ  2�� is stable, we expect v to stay near 0. Synchronization between the x and y systems is thus characterized by

xðtÞ ¼ yðtÞ þ 2vðtÞ; ð17Þ

where jvðtÞj � 0. Thus, as � is increased, we expect that the onset of low-dimensional chaos to occur at the same value of
the coupling parameter at which the average value of hxðtÞ  yðtÞi becomes small. As we will show in numerical ex-

periments, such a synchronism may manifest itself in the form of chaotic time-lagged synchronization.
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3. Example: system of coupled R€oossler oscillators

We consider the following system of N coupled R€oossler oscillators with periodic boundary conditions:

dxi=dt ¼ xiyi  zi þ �ðxiþ1 þ xi1  2xiÞ;
dyi=dt ¼ xixi þ ayi;

dzi=dt ¼ bþ ziðxi  cÞ;
ð18Þ

where xi (i ¼ 1; . . . ;N ) is the mean frequency of the ith oscillator, � is the coupling parameter, and a, b, and c are the

parameters of the individual R€oossler oscillator. We choose a ¼ 0:165, b ¼ 0:2, c ¼ 10:0, and xi � 1:0 so that each
oscillator, when uncoupled, exhibits a chaotic attractor with one positive Lyapunov exponent [12]. In what follows we

treat two cases: identical and nonidentical coupled oscillators.

3.1. Identical R€oossler oscillators

We set xi � x ¼ 1:0 and N ¼ 3. The matrix G and the coupling function HðxÞ in Eq. (11) are:

G ¼
2 1 1
1 2 1
1 1 2

0
@

1
A; and HðxÞ ¼

x
0
0

0
@

1
A: ð19Þ

Since the oscillators, are identical, the simple coupling scheme defined by the matrix G stipulates that the three-

dimensional synchronization manifold

M : ðx1; y1; z1Þ ¼ ðx2; y2; z2Þ ¼ ðx3; y3; z3Þ � ðx; y; zÞ

be an invariant subspace of Eq. (18). The transverse subspace T is then six-dimensional, and so the number of

transverse Lyapunov exponents is six. The Jacobian matrix that determines the transverse Lyapunov spectrum is given

by

DJTðx; y; zÞ ¼
ck� x 1
x a 0
z 0 x c

0
@

1
A; ð20Þ

where ck ’s (k ¼ 0; 1; 2) are the eigenvalues of G: c0 ¼ 0 and c1 ¼ c2 ¼ 3. The trivial eigenvalue c0 determines the
Lyapunov spectrum of the chaotic attractor in M, and the nontrivials ones: c1 and c2 determine the transverse spec-
trum. Due to degeneracy, there are only three distinct transverse Lyapunov exponents. Fig. 1(a) shows the two largest

transverse exponents K1
T and K2

T (solid lines) versus the coupling parameter � for 06 �6 0:2, where 1000 values of � are

Fig. 1. For Eq. (18) with N ¼ 3 (system of three coupled identical R€oossler oscillators): (a) the first two distinct transverse Lyapunov

exponents versus �, and (b) the first five Lyapunov exponents versus �. The transition to low-dimensional chaos coincides with the onset
of synchronous chaos.
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chosen from this interval and 107 time steps of h ¼ 0:01 are used to compute the spectrum for each value of �. We see
that �Tc � 0:065, where for � > �Tc , M becomes transversely stable (K1

T < 0) and we expect trajectories initiating in the

vicinity of M to approach asymptotically to M.

When does low-dimensional chaos occur for the nine-dimensional system of Eq. (18)? Qualitatively, we note that at

weak coupling (�J 0), the three coupled R€oossler attractors are nearly independent of each other, so the system is high-

dimensionally chaotic because there are three positive Lyapunov exponents. If the coupling is strong, the three oscil-

lators are synchronized so that there is only one Lyapunov exponent (low-dimensional chaos). The transition from

high-dimensional to low-dimensional chaos occurs when the second largest Lyapunov exponent K2 becomes negative.

Fig. 1(b) shows the five largest Lyapunov exponents versus � for the full system Eq. (18), where we see that the system

has only one positive exponent for � > �c � 0:065. Apparently, we have �c � �Tc , indicating that the onset of low-
dimensional chaos coincides with the onset of stable synchronization among the three chaotic oscillators. We also note

that, at �c, K2 and K3 both become zero and for � > �c, they degenerate to the negative Lyapunov exponent of the
uncoupled attractor. This behavior is caused by the degeneracy of the nontrivial eigenvalues of the coupling matrix G

and is therefore nongeneric. As we will see later, introducing a small amount of symmetry-breaking, such as making the

oscillators slightly nonidentical, can immediately remove the degeneracy in the Lyapunov exponents at and after the

bifurcation to low-dimensional chaos.

3.2. Nonidentical R€oossler oscillators

When the oscillators are not identical, the direct synchronization state ðx1; y1; z1Þ ¼ ðx2; y2; z2Þ ¼ ðx3; y3; z3Þ is no
longer a solution of the system and, hence, it is not an invariant subspace of the system. In this case, we expect gen-

eralized synchronization. Investigation of a system of two coupled R€oossler oscillators indicates that the generalized
synchronization can manifest itself in the form of time-lagged synchronization [16]. To our knowledge, time-lagged

synchronization in systems consisting of more than two coupled chaotic oscillators has not been addressed previously.

Here we demonstrate, for a system of N ðN > 2Þ coupled nonidentical R€oossler oscillators, that the occurrence of low-
dimensional chaos is accompanied by the onset of such a lag synchronization among these oscillators.

Some features of the lag synchronization, when the number of coupled oscillators is more than two, are as follows.

In general, we say there is a lag synchronization between oscillator i and j if there exists a lag time sminij 6¼ 0 such that

xjðt
��� þ sminij Þ  xiðtÞ

��� ! 0; as t ! 1; ð21Þ

where the lag time sminij is approximately proportional to the mismatch between the two oscillators [16]. If the N os-

cillators are coupled along a circle (periodic boundary condition), then the lag times between the adjacent oscillators

satisfy:

smin1N ¼ smin12 þ smin23 þ � � � þ sminðN1ÞN : ð22Þ

The following similarity functions [16] provides a convenient way to detect lag synchronization:

SijðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xjðt þ sÞ  xiðtÞ
� �2D E
x2i ðtÞh i x2j ðtÞ

� �� �1=2
vuuut ; i; j ¼ 1; . . . ;N ði 6¼ jÞ; ð23Þ

where x is a dynamical variable of the the R€oossler oscillator, s is a time delay, and h�i denotes time average. Let Sminij be

the minimum value of SijðsÞ. The lag time sminij is thus the time delay at which Sminij is minimum. Lag synchronization

between oscillators i and j is thus defined by the condition: Sminij ¼ 0 and sminij 6¼ 0. In contrast, a complete synchroni-

zation is characterized by: Sminij ¼ 0 and sminij ¼ 0.

In the following, we emphasize our point, by numerical experiments, that when the coupling parameter is increased

through a critical value so that the transition to low-dimensional chaos occurs, lag synchronization among the coupled

oscillators occurs. For clarity of presentation, we report numerical experiments using N ¼ 3. To introduce mismatch

among the oscillators, we choose xi (i ¼ 1, 2, 3) randomly in the interval [0.95,1.05]. For the results in this Section, the

values of xi are: x1 � 1:003, x2 � 0:978 and x3 � 1:037. Fig. 2(a) shows part of the Lyapunov spectrum (the first five

exponents) versus the coupling parameter �. Ignoring periodic windows, we see that low-dimensional chaos occurs at
�c � 0:08 as there is only one positive Lyapunov exponent for � > �c. Fig. 2(b)–(d) show Smin12 , S

min
13 , and Smin23 versus �,

respectively. We see that when the coupling is small, the values of Smin12 , S
min
13 , and Smin23 are large, indicating a lack of any

synchronization. As � is increased through �c, the values of Smin become approximately zero, indicating the occurrence
of synchronization. This synchronization is, however, time lagged, as can be seen from Fig. 3(b)–(d), the plots of smin12 ,
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smin13 , and smin23 versus �. We see that these lag times are not zero for � > �c where the minimum values of the similarity

functions are already zero. In fact, for �J �c, the lag times are about 0.25, corresponding to about 10% of the average

period of the oscillations of the dynamical variables in the R€oossler oscillators. The occurrence of lag synchronization for
� > �c can also be explicitly seen by examining the phase-space trajectories. Fig. 4(a), (c) and (e) show for � ¼ 0:011,
x1ðtÞ versus x2ðtÞ, x1ðtÞ versus x3ðtÞ, and x2ðtÞ versus x3ðtÞ, respectively. Clearly, there is no direct synchronization among
x1ðtÞ, x2ðtÞ, and x3ðtÞ as the plots spread away from the diagonal lines. However, when the proper lag times are taken

into account, the plots are confined in the neighborhood of the diagonal lines, as shown in Fig. 4(b), (d) and (f), the

plots of x1ðtÞ versus x2ðt þ smin12 Þ, x1ðtÞ versus x3ðt þ smin13 Þ, and x2ðtÞ versus x3ðt þ smin23 Þ, respectively. Note that the lag
times are: smin12 � 0:17 (Fig. 4(b)), smin13 � 0:2 (Fig. 4(d)), and smin23 � 0:37 (Fig. 4(f)), which satisfy smin12 þ smin23 � smin13 , as

stipulated by Eq. (22).

The relationship between the onsets of low-dimensional chaos and synchronism can be seen more explicitly by

computing the following synchronization bifurcation diagram, taking into account the proper time lags. We vary the

coupling parameter systematically in the interval that contains the transition from high-dimensional to low-dimensional

chaos. For each parameter value, we compute the similarity functions SijðsÞ (i; j ¼ 1; . . . ;N , i 6¼ j) to obtain the proper

Fig. 2. For Eq. (18) with N ¼ 3 (system of three coupled nonidentical R€oossler oscillators): (a) the first five Lyapunov exponents versus

�; (b–d) the minimum values of the similarity functions Smin12 , S
min
13 , and Smin23 versus �, respectively. The nearly zero values of these

quantities indicate the presence of synchronization for � > �c.

Fig. 3. For Eq. (18) with N ¼ 3 (system of three coupled nonidentical R€oossler oscillators): (a) the first five Lyapunov exponents versus
�; (b–d) the lag times smin12 , smin13 , and smin23 versus �, respectively. Nonzero values of the lag times for � > �c indicate chaotic lag syn-

chronization.

Y.-C. Lai et al. / Chaos, Solitons and Fractals 15 (2003) 219–232 225

CHAOS 2076 No. of Pages 232, DTD=4.3.1
24 August 2002 Disk used SPS-N, ChennaiARTICLE IN PRESS



lag times sminij . The asymptotic values of the lag-time-adjusted difference in the dynamical variables from individual

oscillators

Dxs
ij ¼ xj t

�
þ sminij

�
 xiðtÞ; i; j ¼ 1; . . . ;N ; i 6¼ j

are then computed. Fig. 5(b)–(d) show, for N ¼ 3, Dxs
12, Dxs

13, and Dxs
23 versus �, respectively. Apparently, the nu-

merically computed, lag-time adjusted values of Dxs’s become approximately zero after the system becomes low-

dimensionally chaotic. In contrast, if the lag times are not taken into account, the bifurcation diagrams show no sign of

synchronization, as shown in Fig. 6(a)–(c), where Dxs¼0
12 , Dxs¼0

13 , and Dxs¼0
23 versus � are plotted.

The above results suggest that the synchronization pattern in coupled nonidentical chaotic oscillators is generally

quite complicated. The results, however, provide a strong credance to our proposition that the occurrence of low-

dimensional chaos in high-dimensional phase space is fundamentally related to chaos synchronism.

Fig. 4. For Eq. (18) with N ¼ 3 (system of three coupled nonidentical R€oossler oscillators), lag synchronization at � ¼ 0:011. (a,c,e) x1ðtÞ
versus x2ðtÞ, x1ðtÞ versus x3ðtÞ, and x2ðtÞ versus x3ðtÞ, respectively; (b,d,f) x1ðtÞ versus x2ðt þ smin12 Þ, x1ðtÞ versus x3ðt þ smin13 Þ, and x2ðtÞ
versus x3ðt þ smin23 Þ, respectively.

Fig. 5. For Eq. (18) with N ¼ 3 (system of three coupled nonidentical R€oossler oscillators), bifurcation diagram of lag synchronization.

(b–d) Dxs
12, Dxs

13, and Dxs
23 versus �, respectively.
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4. Low-dimensional chaos in spatially extended systems

We demonstrate here that the fundamental interplay between low-dimensional chaos and synchronism can also be

expected in a discretized model derived from a nonlinear PDE. In particular, we consider the following one-dimensional

PDE that describes the propagation of nonlinear waves in forced, spatially extended medium with dispersion char-

acterized by medium susceptibility r1 and r2, and damping c [7]

o2U
ot2

¼ c
oU
ot

 r1U
3 þ r2U þ �

o2U
oz2

þ f sinxt; ð24Þ

where Uðz; tÞ is the local displacement of the medium, � is a quantity related to the group velocity of the wave, and f and

x are the forcing amplitude and frequency, respectively. In order to solve Eq. (24) numerically, one discretizes it

spatially by the following substitutions

z ! i;

Uðz; tÞ ! xiðtÞ;
o2U
oz2

! D2 ¼ xiþ1  2xi þ xi1;

ð25Þ

where i is an integer denoting the spatial site, xi is the medium displacement at site i, and D2 is the discrete second-order

differential operator. Eq. (24) thus becomes the following set of coupled ordinary differential equations:

d2xiðtÞ
dt2

¼ c
dxiðtÞ
dt

 r1 xiðtÞð Þ3 þ r2xiðtÞ þ f sinxt þ �D2 xiðtÞ½ �; i ¼ 1; . . . ;N : ð26Þ

Letting yiðtÞ � dxiðtÞ=dt and ziðtÞ ¼ xt, we can convert Eq. (26) into a set of coupled, first-order equations. Taking into
account the effect of spatial inhomogeneity of the medium and nonuniformity of the external force in space, we obtain

the following:

dxiðtÞ
dt

¼ yiðtÞ;

dyiðtÞ
dt

¼ ci
dxiðtÞ
dt

 ri
1 xiðtÞð Þ3 þ ri

2x
iðtÞ þ f i sin zi þ �D2 xiðtÞ½ �;

dziðtÞ
dt

¼ xi; i ¼ 1; . . . ;N ;

ð27Þ

which is the set of coupled Duffing oscillators [17].

Fig. 6. For Eq. (18) with N ¼ 3 (system of three coupled nonidentical R€oossler oscillators), bifurcation diagram of the difference among

dynamical variables. (a–c) Dxs¼0
12 , Dx

s¼0
13 , and Dxs¼0

23 versus �, respectively. There exists apparently no direct synchronization between the

coupled oscillators.
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Fig. 7(a) and (b) show the bifurcation diagrams of a single Duffing oscillator, where yðtÞ versus f and x on the

Poincar�ee surface of section defined by x ¼ 0 are plotted, respectively. There are apparently extensive parameter regions

for chaotic attractors. Fig. 7(c) shows the projection of the chaotic attractor in the ðx; yÞ-plane for f ¼ 36:0 and x ¼ 1:0.
To explore the interplay between synchronization and low-dimensional chaos, we couple N ¼ 15 such Duffing chaotic

oscillators, as in Eq. (27). Fig. 8(a) and (b) show part of the transverse and full Lyapunov spectra, respectively. In

particular, in Fig. 8(a), the two largest, distinct transverse exponents, together with the constant positive exponent of

the single Duffing oscillator in the synchronization manifold, are shown. We see that stable synchronous chaos arises

for � > �c � 12:0. In Fig. 8(b), the first five largest exponents from the full system are plotted, where we see that, despite

periodic windows and fluctuations of the exponents near the edges of these windows [18], for � > �c there is apparently
only one positive exponent, signifying low-dimensional chaos. Fig. 8(a) and (b) thus provide qualitative evidence for the

interplay between the onsets of low-dimensional chaos and synchronization in dynamical systems described by non-

linear PDEs.

Fig. 7. Bifurcation diagrams of the single Duffing oscillator in Eq. (27) for c ¼ 0:3, r1 ¼ r2 ¼ 1:0: (a) yp versus f for x ¼ 1:0 and (b) yp
versus x for f ¼ 36:0, where yp is the y-value obtained on the Poincar�ee surface of section defined by x ¼ 0. (c) For f ¼ 36:0 and

x ¼ 1:0, projection of the Duffing chaotic attractor in the ðx; yÞ-plane.

Fig. 8. For the system of N ¼ 15 coupled Duffing chaotic oscillators for the same set of parameter values as in Fig. 7(c). (a) the first

two distinct largest transverse Lyapunov exponents versus the coupling parameter �. The constant positive exponent is the largest

Lyapunov exponent of a single Duffing chaotic oscillator in the synchronization manifold. Synchronization occurs at � � 12:0. (b) The

first five exponents from the full Lyapunov spectrum versus �. Despite periodic windows and fluctuations of the exponents near the

windows, there exists only one positive Lyapunov exponent, indicating the occurrance of low-dimensional chaos after onset of syn-

chronization.
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5. Generalized synchronization and the onset of low-dimensional chaos

When the coupled chaotic dynamics are characteristically different, e.g., when f and g are distinct in Eq. (3), we

expect generalized synchronization, i.e., y ¼ hðxÞ, to occur at sufficiently strong coupling. Typically, we expect the
occurrence of generalized synchronization to coincide with the onset of low-dimensional chaos as the coupling pa-

rameter is increased from zero.

A technical issue is how to detect the occurrence of generalized synchronization. The function y ¼ hðxÞ can be difficult
to detect because it may be nondifferentiable and complicated [19,20]: it can even be a fractal [21]. Here we make use of

the criterion based on examining the relationship between the distance of nearest neighbors in the x and y space, which

was proposed by Rulkov et al. [19]. The general idea is that if there exists a generalized synchronization and y ¼ hðxÞ is a
continuous function, then, when two points x1ðtÞ and x2ðtÞ in x get close at time t, the corresponding points y1ðtÞ and
y2ðtÞ in y will be close, too, and vice versa. One can then examine the statistical average of the following ratio:

Rxy � lim
jDxj!0

jDyj
jDxj

� �
; ð28Þ

where h�i denotes the ensemble average, i.e., average over many chaotic trajectories. If there is no synchronization
between x and y, the ratio Rxy will be infinite (mathematically). On the other hand, if there exists a generalized syn-

chronization, Rxy will be finite. In computer simulations, however, Rxy will in general be larger than 1=d0, where d0 is the
computer roundoff, in the absence of synchronization. A reduction from 1=d0 in Rxy indicates the onset of generalized

synchronization. In practice, one usually computes both ratios Rxy and Ryx and examine their product

R ¼ RxyRyx: ð29Þ

To illustrate the interplay between generalized synchronization and the onset of low-dimensional chaos, we inves-

tigate a system of two coupled, but distinct, maps, which is derived from a physical model. In particular, we consider the

dynamics of floaters convected on the surface of an incompressible flow [22]. Let v be the velocity field, where r � v ¼ 0,

and let vz ¼ az so that oxvx þ oyvy ¼ a. The trajectories of the particles on the surface of this fluid (z ¼ 0) are

dx
dt

¼ vx;
dy
dt

¼ vy : ð30Þ

Any initial area on the surface of the fluid (the ðx; yÞ plane) contracts exponentially with time. We choose the following
velocity field: v ¼ v1 þ v2 þ v3, where the three components of v are chosen to be

v1 ¼ ayðtÞy0;
v2 ¼ yðtÞx0;

v3 ¼ y0 sin xðtÞ½ þ 2pzðtÞ� � k
X1
n¼1

dðt
"

 nÞ
#
:

ð31Þ

In Eq. (31), v1 is a contractive component, v2 is a shear flow, and v3 is a periodic vortical flow component with period 1.
The quantity, dðt  nÞ is a delta function and zðtÞ is a random variable. Solving Eq. (30), we obtain the position of a

particle after time t ¼ nþ 1 in terms of the position at time t ¼ n,

xnþ1 ¼ xn

�
þ 1 ea

a
yn

�
modð2pÞ;

ynþ1 ¼ eayn þ k sin xnþ1ð þ 2pznÞ:
ð32Þ

If zn ¼ 0, Eq. (32) is known as the Zaslavsky map, which can exhibit chaotic attractors [23]. The case where zn is a
random variable was treated previously in Ref. [22]. In order to study generalized synchronization, we choose zn to be a
chaotic variable defined by

znþ1 ¼ rzn 1ð  znÞ þ �yn: ð33Þ

The term 2pzn represents the coupling from the z-dynamics, which is the logistic map with a term �yn describing the
coupling from the ðx; yÞ dynamics. We regard the ðx; yÞ map and the z map as two coupled systems that are apparently
quite different. The full system, which is a three-dimensional map, can possess chaotic attractors with both one and two

positive Lyapunov exponents. The transition from high- to low-dimensional chaos is treated in Refs. [24–26]. Here we

wish to address the interplay between the transition and generalized synchronization.
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In numerical experiments, we fix k ¼ 0:5 and � ¼ 0:01 and study the transition in the two-dimensional parameter
space ðr; aÞ. LetL be the line segment from ðr1; a1Þ ¼ ð3:75; 0:05Þ to ðr2; a2Þ ¼ ð3:55; 0:2Þ, and let p be the distance from
ðr1; a1Þ along the line segment. Fig. 9(a) shows the two largest Lyapunov exponents of the asymptotic set versus p, where
we see that the transition from high- to low-dimensional chaos occurs at pc � 0:13. Fig. 9(b) shows the ratio
R ¼ Rxy;zRz;xy versus p, where Rxy;z and Rz;xy are averaged over 100 trajectories, each of 10

5 points. For p < pc where the
system is high-dimensionally chaotic, the value of R remains high and constant (>1014), which is approximately the
inverse of the computer roundoff. The value of R begins to decrease roughly as p increases through pc when the system
becomes low-dimensionally chaotic, signifying the onset and the gradual enhancement of generalized synchronization

between the ðx; yÞ-dynamics and the z-dynamics. The result suggests that for chaotic dynamics coming from charac-

teristically different maps, the onsets of low-dimensional chaos and generalized synchronization coincide.

6. Discussion

The development and success of low-dimensional chaotic dynamics are meaningful when the dynamical invariant

sets of the underlying physical system are low-dimensional. Indeed, many dynamical systems, despite their high di-

mensionality, exhibit low-dimensionally chaotic attractors [1,2] for which a good understanding can be achieved and

strategies for control and even prediction can be formulated. High-dimensionally chaotic systems with multiple positive

Lyapunov exponents, on the other hand, are still poorly understood and there exists no satisfactory general solution for

control, synchronization, and prediction. Understanding the mechanism of how low-dimensionally chaotic dynamics

arises in high-dimensional phase space is thus important, because it will help provide insights to understanding high-

dimensional chaos in general.

This paper provides understanding for a possible scenario for dynamical systems to exhibit low-dimensional as-

ymptotic chaotic invariant set. The key is synchronization. We provide arguments and strong numerical evidence for

our conclusion, which can be casted in the following conjecture: generalized chaotic synchronism is a sufficient con-

dition for the occurrence of low-dimensionally chaotic invariant sets in high-dimensional phase space. Our results may

provide an explanation for the observation of low-dimensionally chaotic sets in infinitely dimensional phase space such

as those arising from nonlinear PDEs.
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Fig. 9. For the coupled map system Eqs. (32) and (33): (a) the first two Lyapunov exponents versus the parameter p, and (b) the ratio R

of the nearest-neighbor distance versus p. Values of R near the inverse of the computer roundoff suggests lack of synchronization, and a

decrease of R from the inverse indicates the onset of generalized synchronization. We see that the onset of generalized synchronization

roughly coincides with the transition to low-dimensional chaos.

230 Y.-C. Lai et al. / Chaos, Solitons and Fractals 15 (2003) 219–232

CHAOS 2076 No. of Pages 232, DTD=4.3.1
24 August 2002 Disk used SPS-N, ChennaiARTICLE IN PRESS



References

[1] Ruelle D, Takens F. Commun Math Phys 1971;20:167.

[2] There are so many examples of low-dimensionally chaotic dynamics occurring in high-dimensional phase space that we do not

attempt to give even a partial list of the literature. An example is the magnetic ribbon system that has been used to verify a variety

of low-dimensionally chaotic phenomena. See, for instance Ditto WL et al. Phys Rev Lett 1989;63:923;

and Ditto WL, Rauseo SN, Spano ML. Phys Rev Lett 1990;65:3211.

[3] Eckmann J-P, Ruelle D. Rev Mod Phys 1985;57:617.

[4] Kantz H, Schreiber T. Nonlinear time series analysis. Cambridge: Cambridge University Press; 1997.

[5] Fujisaka H, Yamada T. Prog Theor Phys 1983;69:32;

Afraimovich VS, Verichev NN, Rabinovich MI. Radio Phys Quantum electron 1986;29:747.

[6] While the phenomenon of synchronous chaos was first reported in Ref. [5], it was independently discovered and it was pointed out

for the first time in the following paper that the phenomenon can have potential application in nonlinear digital communication

Pecora LM, Carroll TL. Phys Rev Lett 1990;64:821;

Since then, synchronization in chaotic systems has become one of the most active research areas in nonlinear dynamics. See, for

example Ditto WL, Showalter K. Chaos (Focus Issue on Control and Synchronization of Chaos) 1997;7:509.

[7] Umberger DK, Grebogi C, Ott E, Afeyan B. Phys Rev A 1989;39:4835.

[8] See, for example Parlitz U, Chua LO, Kocarev L, Halle KS, Shang A. Int J Bifurcat Chaos 1992;2:973;

Cuomo KM, Oppenheim AV. Phys Rev Lett 1993;71:65;

Cuomo KM, Oppenheim AV, Strogatz SH. Int J Bifurcat Chaos 1993;3:1629;

Short KM. Int J Bifurcat Chaos 1994;4:957;

Short KM. Int J Bifurcat Chaos 1996;6:367.

[9] Recent works on communicating with chaos include Baptista MS, Macau EE, Grebogi C, Lai Y-C, Rosa E. Phys Rev E

2000;62:4835;

Chen C-C, Yao K. IEEE Commun Lett 2000;4:37;

Sushchik M, Rulkov N, Lason L, Tsimring L, Abarbanel H, Yao K, Volkovskii A. IEEE Commun Lett 2000;4:128;

Chen C-C, Yao K. IEEE Trans Circuits Systems I 2000;47:1663.

[10] There are many books on synergetics. See, for example Haken H. Synergetics––an introduction: nonequilibrium phase transitions

and self-organization in physics, chemistry and biology. Berlin: Springer-Verlag; 1978;

Haken H. Advanced synergetics: instability hierarchies of self-organizing systems and devices. Berlin: Springer-Verlag; 1983.

[11] Bushev M. Synergetics: chaos, order, and self-organization. Singapore: World Scientific; 1994.

In Chapter 11 of this book, which is entitled ‘‘Chaos-Invalidity of the Slaving Principle,’’ the author states: ‘‘It is intuitively clear

that order is related to specific bans, to restrictions, while chaos is a violation of restrictions. The restrictions, enforced by the

slaving principle, are violated by chaos owing to the fact that the difference disappears between stable and unstable modes. When

there is chaos, practically all modes are unstable (slow). Chaos is persistent instability.’’.

[12] R€oossler OE. Phys Lett A 1976;57:397;

R€oossler OE. Phys Lett A 1979;71:155.

[13] Rulkov NF, Sushchik MM, Tsimring LS, Abarbanel HDI. Phys Rev E 1995;51:980;

Kocarev L, Parlitz U. Phys Rev Lett 1996;76:1816;

Abarbanel HDI, Rulkov NF, Sushchik M. Phys Rev E 1996;53:4528.

[14] Josi�cc K. Phys Rev Lett 1998;80:3053.

[15] Heagy JF, Carroll TL, Pecora LM. Phys Rev Lett 1994;73:3528;

Heagy JF, Pecora LM, Carroll TL. Phys Rev Lett 1995;74:4185;

Pecora LM, Carroll TL. Phys Rev Lett 1998;80:2109.

[16] Rosenblum MG, Pikovsky AS, Kurths J. Phys Rev Lett 1997;78:4193;

Taherion S, Lai Y-C. Phys Rev E 1999;59:R6247.

[17] Moon FC. Phys Rev Lett 1984;53:962;

Moon FC, Li G-X. Phys Rev Lett 1985;55:1439.

[18] These fluctuations come from multiple coexisting attractors and their complicated basin structures. See, for example Lai Y-C,

Winslow RL. Phys Rev Lett 1994;72:1640;

Lai Y-C, Winslow RL. Physica D 1994;74:353.

[19] Rulkov NF, Sushchik MM, Tsimring LS, Abarbanel HDI. Phys Rev E 1995;51:980.

[20] Abarbanel HDI, Rulkov NF, Sushchik M. Phys Rev E 1996;53:4528;

Kocarev L, Parlitz U. Phys Rev Lett 1996;76:1816.

[21] Barreto E, So P, Gluckman BJ, Schiff SJ. Phys Rev Lett 2000;84:1689;

Barreto E, So P. Phys Rev Lett 2000;85:2490.

[22] Yu L, Ott E, Chen Q. Phys Rev Lett 1990;65:2935 Physica D 1991;53:102.

[23] Zaslavsky GM. Phys Lett A 1978;69:145.

[24] Kapitaniak T. Phys Rev E 1993;47:R2975.

Y.-C. Lai et al. / Chaos, Solitons and Fractals 15 (2003) 219–232 231

CHAOS 2076 No. of Pages 232, DTD=4.3.1
24 August 2002 Disk used SPS-N, ChennaiARTICLE IN PRESS



[25] Harrison MA, Lai Y-C. Phys Rev E 1999;59:R3799;

Harrison MA, Lai Y-C. Int J Bifurcat Chaos 2000;10:1471;

Davidchack RL, Lai Y-C. Phys Lett A 2000;270:308.

[26] Kapitaniak T, Maistrenko Y, Popovych S. Phys Rev E 2000;62:1972;

Yanchuk S, Kapitaniak T. Phys Lett A 2001;290:139;

Yanchuk S, Kapitaniak T. Phys Rev E 2001;64:056235.

232 Y.-C. Lai et al. / Chaos, Solitons and Fractals 15 (2003) 219–232

CHAOS 2076 No. of Pages 232, DTD=4.3.1
24 August 2002 Disk used SPS-N, ChennaiARTICLE IN PRESS


	Low-dimensional chaos in high-dimensional phase space: how does it occur?
	Introduction
	Synchronism and onset of low-dimensional chaos
	Generalized synchronization as a typical mechanism for low-dimensional chaos
	System of coupled, identical chaotic oscillators
	Coupled nonidentical chaotic oscillators

	Example: system of coupled Ro&uml;ssler oscillators
	Identical Ro&uml;ssler oscillators
	Nonidentical Ro&uml;ssler oscillators

	Low-dimensional chaos in spatially extended systems
	Generalized synchronization and the onset of low-dimensional chaos
	Discussion
	Acknowledgements
	References


