
Computers & Operations Research 32 (2005) 1147–1164
www.elsevier.com/locate/dsw

Web server QoS models: applying scheduling rules from
production planning

Nong Ye∗, Esma S. Gel, Xueping Li, Toni Farley, Ying-Cheng Lai

Department of Industrial Engineering, Arizona State University, P.O. Box 875906, Tempe, AZ 85287, USA

Abstract

Most web servers, in practical use, use a queuing policy based on the Best E8ort model, which employs
the 9rst-in-9rst-out (FIFO) scheduling rule to prioritize web requests in a single queue. This model does
not provide Quality of Service (QoS). In the Di8erentiated Services (Di8Serv) model, separate queues are
introduced to di8erentiate QoS for separate web requests with di8erent priorities. This paper presents web
server QoS models that use a single queue, along with scheduling rules from production planning in the
manufacturing domain, to di8erentiate QoS for classes of web service requests with di8erent priorities. These
scheduling rules are Weighted Shortest Processing Time (WSPT), Apparent Tardiness Cost (ATC), and Earliest
Due Date. We conduct simulation experiments and compare the QoS performance of these scheduling rules
with the FIFO scheme used in the basic Best E8ort model with only one queue, and the basic Di8Serv model
with two separate queues. Simulation results demonstrate better QoS performance using WSPT and ATC,
especially when requested services exceed the capacity of a web server.
? 2003 Elsevier Ltd. All rights reserved.

Keywords: Web server; Quality of Service (QoS); Scheduling rules; Simulation model

1. Introduction

The World Wide Web has become one of the most popular and important applications on the
Internet. A web server receives numerous requests for its services, which it cannot handle at the same
time, and will typically use a bu8er or queue to store incoming requests awaiting service. Requests
in the queue are typically stored in order of arrival. The web server will take the request at the front
of the queue, and service it 9rst. This is an example of 9rst-in-9rst-out (FIFO) scheduling. Most
existing web servers provide services based on the Best E8ort model, using FIFO scheduling.

∗ Corresponding author. Tel.: +1-480-965-7812; fax: +1-480-965-8692.
E-mail address: nongye@asu.edu (N. Ye).

0305-0548/$ - see front matter ? 2003 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cor.2003.10.001

mailto:nongye@asu.edu


1148 N. Ye et al. / Computers & Operations Research 32 (2005) 1147–1164

Quality of Service (QoS) has three main attributes: timeliness, precision, and accuracy [1,2]. A
service request can be considered a process with an input and output. Timeliness measures how fast
an output is produced for a given input. Precision measures the quantity, and accuracy measures
the quality, of the output. We often see such measures as delay, response time, and jitter used for
the timelines attribute; throughput, bandwidth, and loss rate (e.g., packet drop rate) used for the
precision attribute; and error rate used for the accuracy attribute. Tradeo8s often need to be made
among these attributes.

The Best E8ort model of a web server does not provide QoS because the completion time of
a request depends on how many requests are already in the queue, and thus cannot be predicted
for timeliness assurance. Furthermore, in any set of web requests, some may have a high priority,
while others have a low priority. Bhatti and Friedrich [3] discuss classifying web requests into high,
medium, and low priorities using such information as IP addresses and requested web sites. The
Best E8ort model does not support the di8erentiation of requests based on their priority. Instead,
requests are treated “fairly” based on their arrival time.

The lack of QoS in the Internet today makes it a highly vulnerable system in its current role of
supporting critical operations in many sectors of our society. QoS has been considered as a “must”
for the next-generation Internet [4,5]. Existing work on QoS for the Internet falls into two general
frameworks: Integrated Services (IntServ) and Di8erentiated Services (Di8Serv), both of which are
concerned mostly with timeliness assurance.

In the IntServ framework, applications are placed in two classes based on timeliness requirements:
real-time (hard or strict) and elastic (soft) [6–11]. IntServ aims to provide per Low QoS by reserving
bandwidth along a source-destination path to assure timeliness of data delivery. Many scheduling
rules and admission control strategies have been proposed in the IntServ framework to assure a
bound on end-to-end timeliness [12–15]. Because it requires that every hop on the end-to-end path
maintain the state of all bandwidth reservations for each Internet connection, IntServ is not scal-
able. Furthermore, a bound on end-to-end timeliness usually depends on the number of hops on an
end-to-end path, which is diMcult to predict, implying that there can exist no absolute bound on
end-to-end timeliness.

The Di8Serv framework marks data at the edges of a network with two classes of priority:
premium and best e8ort, which, respectively, have a high and low priority for being serviced [16–18].
In a router or host, two separate queues with di8erent capacities are used, one for each class of
data. Because the vast majority of data is classi9ed as Best e8ort, the capacity of the premium
queue is usually much smaller. Data in the premium queue is served 9rst, whereas data in the Best
E8ort queue is served only when the premium queue is empty. Lu et al. [19] use a feedback control
method to address the relative delay or jitter in a web server for assuring QoS. Some studies use load
balancing to address QoS [20–22]. Still other QoS methods based on Di8Serv have been explored
[23–25].

Research in providing QoS on a web server takes di8erent approaches. Ferrari [26] investigates
the e8ect of aggregation on performance using Priority Queuing (PQ) and Weighted Fair Queuing
(WFQ) scheduling algorithms. Chen and Mohapatra [27] exploit the dependence among session-based
requests and propose a dynamic weighted fair sharing (DWFS) scheduling algorithm to control
overloads in web servers.

We investigate Internet QoS by providing QoS on web servers. We use only one queue for all web
requests, and an advanced scheduling rule to di8erentiate services and improve overall QoS. Many



N. Ye et al. / Computers & Operations Research 32 (2005) 1147–1164 1149

advanced scheduling rules have been developed for production planning in the manufacturing domain
[28]. If we consider a web server as a production system, those scheduling rules can be adopted.
In this study, we investigate the application of three scheduling rules from production planning.
These scheduling rules are: Weighted Shortest Processing Time (WSPT), Apparent Tardiness Cost
(ATC), and Earliest Due Date (EDD). EDD is also known as Earliest Deadline First (EDF) [29].
We compare the QoS performance of these rules with that of FIFO in the basic Best E8ort model
with only one queue, and that of a basic Di8Serv model for a web server with two separate queues.

The rest of this paper is organized as follows: First, we de9ne the QoS models of a web server
using WSPT, ATC, and EDD, along with basic Best E8ort and Di8Serv models. Next, we describe
the simulation of these web server models using a commercial simulation tool for computer networks
(OPNET), and the simulation experiments conducted under various data conditions to discover the
QoS performance of the models. Finally, we present the simulation results and summarize our
9ndings.

2. Web server QoS models

We introduce high level frameworks for web server QoS models to provide QoS at the application
layer. The units queued in these frameworks are considered as complete web requests. Similar to
real-time applications where jitter and delay are critical to performance, timeliness is also important
to web requests, especially for some commercial web sites where a late response may cause clients
to turn to rival web sites. With the increasing development of e-commerce, it is signi9cant to provide
timeliness on web sites to attract users. Loss of users means loss of pro9t. Our study focuses on the
server side of a web site. Any incoming request is treated as a new request, regardless of whether
it is a resubmitted, previously dropped request, or an entirely new request.

QoS requirements on the Internet primarily come from end users. A web server provides services
to end users, who can specify their QoS requirements for these services. Web requests on the Internet
today do not come with any indication of their priority or other QoS requirements, such as expected
delay. We anticipate that in the future web requests will be accompanied by such data in order to
allow for QoS assurance on the Internet. In this study, we assume that each web request comes with
the following information:

• Priority
• Requested data (from which we derive its size)
• Due date (required completion time of request)
• Arrival time (determined at time of arrival).

In our study it is assumed that it is not entirely up to the web client to set the priority. Clients
cannot set priorities without web server authentication. Otherwise, everyone, including malicious
users, will give themselves the highest priority. Clients’ access history, user name and password, IP
address, and current status (e.g., a customer with a full shopping cart or with a purchasing history
gains a higher weight than a customer without a purchasing history or a full cart) can be used to
prioritize the requests. Web QoS allows the incoming requests to be categorized as high, medium,
or low priority based on IP address, requested URL, and so on [5].



1150 N. Ye et al. / Computers & Operations Research 32 (2005) 1147–1164

Fig. 1. QoS model of a sequential web server.

The complete round trip time, or delay, of a web request includes time waiting in the queue,
9nding and retrieving requested data, and sending it to the web client. In this study, for each web
request, we ignore the time spent 9nding and retrieving the requested data, and consider only the
waiting time in the queue and the time sending requested data to the requesting web client.

In this paper, we model a web server as a sequential single server, which means that the web
server processes incoming requests one at a time as shown in Fig. 1. This concept is di8erent from
the traditional multiprocessor or mutlithreaded web server model. We argue that this is reasonable
in terms of web server QoS. For example, if bandwidth were the performance bottleneck under
scrutiny, then we would argue that high priority requests should not share bandwidth with lower
priority requests, thereby requiring a multiprocessor or multithreaded solution.

In our study, we are addressing scheduling issues relating to the web server itself. Such solutions
could be scalable to a multiprocessor or multithreaded web server, when applied at each level of
redundancy. In this section we present the models used in our experiments.

2.1. The basic Best E;ort model

The basic Best E8ort model of a web server consists of three elements, as shown in Fig 1:
incoming web requests, a queue to sort and keep incoming requests before they are extracted for
servicing, and a server to process incoming requests and provide web services. The basic best-e8ort
model uses only the arrival time to sort incoming requests in the queue using the FIFO rule. A
request is dropped by the web server if it has been in the queue for longer than some “timeout”
threshold (for example, 90 s).

The Internet and most corporate intranets are built using the IP protocol, which is a connectionless
protocol that provides no guarantees of service time or the relative ordering of packets. For the Best
E8ort web servers in such networks, there is no admission control scheme. Hence, if client requests
are placed into the web server queue faster than they are removed for processing, congestion occurs,
resulting in delayed requests and requests dropped due to the server’s timeout threshold. Thus, the
Internet can only provide a single level of service; that of Best E8ort.



N. Ye et al. / Computers & Operations Research 32 (2005) 1147–1164 1151

Fig. 2. Basic Di8Serv model.

2.2. The basic Di;Serv model

Under the Di8Serv policy, requests are categorized into priority classes and placed in separate
queues. The server always processes the higher priority queue before serving any of the lower priority
queues. Di8Serv architectures generally de9ne two types of classi9cation: (1) the behavior aggregate
classi<er, which selects packets according to the Di8serv codepoint (DSCP) value stored in the IP
header on ingress, and (2) the multi<eld classi<er, which uses a more general set of classi9cation
conditions like IP header 9eld values and source address.

To implement a Di8Serv model, we classify the incoming requests into two categories: high
and low (best e8ort) priority, based on their assigned weights. Fig. 2 shows the two queues used
for these two service classes, both of which are serviced in a FIFO manner. In this model, the
best e8ort queue will only be serviced when there are no requests waiting in the high priority
queue. Again, as in the Best E8ort model, there is no admission control in the basic Di8Serv
model.

2.3. WSPT

A number of scheduling rules have been developed in the manufacturing domain to schedule a
set of jobs on a single machine, given that all of the jobs are available at time=0. The WSPT
scheduling rule is one such rule that schedules a set of jobs by decreasing order using a formula
which includes the priority weight and processing time of the job. The completion time of a job
is de9ned as the time elapsed between time=0 and the time that the machine 9nishes processing
the job.

It is shown that the WSPT scheduling rule minimizes the weighted completion time for a set
of jobs [28]. A similar technique is used in operating systems for scheduling processes on a single
CPU. This scheduling algorithm, called shortest job 9rst (SJF), is “provably optimal” [30]. However,
the SJF algorithm does not take priorities into account. We investigate the application of WSPT to
scheduling in a QoS model of a web server because WSPT incorporates the weight factor, thereby
allowing the di8erentiation of web requests with various priority weights. The WSPT rule also
incorporates the processing time of a job, to minimize the sum of the completion times for a set
of jobs. Hence, the application of the WSPT rule to scheduling in a QoS model of a web server
enables us to minimize the delays of web requests.

Using the WSPT rule, we schedule incoming web requests in a web server queue in decreasing
order by their priority values. The priority value of a web request j is determined by wj=pj, where



1152 N. Ye et al. / Computers & Operations Research 32 (2005) 1147–1164

wj is the given priority weight for the request j, and pj is its service time, which is calculated from
the size of the requested data, dj, as follows:

pj =
dj
s
: (1)

In Eq. (1), s is the service rate or data transmission rate (the amount of data that can be transmitted
per time unit) of the web server. Note that the higher the weight and the shorter the service time
of a web request, the higher its priority value will be.

When a new request arrives at the web server, its priority value is computed, and the request
is then inserted into the queue according to this value. Before a new request is inserted into the
queue, we 9rst make an admission control decision based on its expected completion and due dates.
Deferring an incoming request at the very beginning of the transaction, rather than in the middle,
is a desirable scheme for an overloaded web server. First of all, it avoids further frustration on the
client side by refusing to accept requests for which it cannot satisfy the respective QoS requirements
(e.g., limits on cycle time. lateness and tardiness, etc.). Secondly, it keeps the queue levels relatively
stable, resulting in less variable output.

QoS requirements are determined by a web request’s QoS factor. We de9ne the QoS factor of an
incoming request as:

Qj = Dj − Tj −Wj: (2)

In Eq. (2), Dj is the due date of the web request j; Tj is its arrival time, and Wj is its predicted
waiting time (i.e., the sum of the processing times of the requests ahead of request j). According
to our assumed admission control scheme, if Qj is less than zero, request j will be rejected.

2.4. ATC

The ATC rule combines WSPT and the Minimum Slack (MS) 9rst rule [28]. MS is a dynamic
dispatching rule that orders jobs in increasing order of slack, where the slack of job j at time t is
de9ned as max{dj−pj− t; 0}, where dj denotes the due date of job j and pj denotes its processing
time as in Eq. (1).

Under the ATC rule, jobs are scheduled one at a time; that is, every time the machine becomes
free, a ranking index is computed for each remaining job. The job with the highest-ranking index
is then selected to be processed next. The index is de9ned as

Ij(t) =
wj
pj

exp
(

−max{dj − pj − t; 0}
k Sp

)
: (3)

In Eq. (3), k is a scaling parameter that can be determined empirically, and Sp represents the average
processing time of the remaining jobs in the queue at time t. We can see that if k is big enough,
the ATC rule will reduce to WSPT, since the ATC index Ij(t) → wj=pj as k → ∞.
In this paper, we use the following equation in place of Eq. (3) to index incoming requests using

the ATC rule:

I∗j (t) =
wj
pj

exp
(

−max{dj − t; 0}
k Sp

)
: (4)



N. Ye et al. / Computers & Operations Research 32 (2005) 1147–1164 1153

In Eq. (4), the processing time pj is eliminated because the slack of the request equals its due date
minus its waiting time, which we previously de9ned as the time elapsed between the time a request
comes into the web server and the time it gets processed.

2.5. EDD

Sequencing in increasing order by due date, EDD, minimizes the maximum lateness of a set of
jobs with given due dates and processing times [28]. While we know that EDD is optimal for the
case in which all jobs to be scheduled are available at time zero, it is harder to 9nd an optimal
policy for the case in which jobs are released in di8erent points in time, such is the case in a web
server. This is due to the fact that when preemption of jobs is not allowed, the optimal schedule is
not necessarily a non-idling schedule.

Having noted this point, we adopt a static EDD rule in our web server model by placing the
incoming requests into the queue according to their due date. Requests with an earlier due date are
placed in the front of the queue, and processed before requests with a later due date.

3. QoS measures

We de9ne four QoS measures in this paper: number of dropped jobs per unit time (drop rate),
average waiting time in the system, average lateness and throughput.

Under the basic Best E8ort and Di8Serv policies, request drops only occur when the request’s
waiting time in the queue reaches the TIMEOUT threshold. Under the WSTP, ATC, and EDD
policies, request drops may happen at admission control, as well as when the waiting time exceeds the
due date while requests are waiting in the queue. Waiting time is used to measure the responsiveness
of the web server. Lateness represents the gap between the waiting and due dates, and can be negative
or positive. A negative lateness indicates that a request completed before its due date, and a positive
lateness indicates that a request was tardy. Lateness depicts how well the due date requirement of
the request is met.

4. Simulation model and experiments

We simulate a web server under the policies discussed above using the OPNET Modeler 8.1.A
simulation environment. The simulation experiments were conducted on a Micron PC with a single
Pentium4 1:9 GHz CPU and 512 MB of RAM running on the Windows 2000 operating system. Fig. 3
depicts the simulation model based on the web server system presented in Fig. 1. The three generator
modules generate web requests with di8erent priority weights. The forwarder module forwards the
requests to the queue, where the admission control scheme is implemented. The requests are then
placed into the queue based on the scheduling rule currently in use. The sink module destroys the
requests after the web server processes them.

We de9ne two 9elds in the data packet format: weight and due date. We assume that the requested
data follows a Pareto distribution with shape parameter 65536 and scale parameter 1.4 [31,32]. Thus
the mean of the requested data is 65536∗1:4

1:4−1 =229376 bits, about 28 K bytes. We calculate the processing



1154 N. Ye et al. / Computers & Operations Research 32 (2005) 1147–1164

Fig. 3. The topology of the QoS web server simulation.

time by dividing the requested data by a constant, deterministic service rate. For example, if the
requested data is 6000 bytes and the service rate of the server is 240,000 bytes per second, the
processing time for this request is assumed to be 0:025 s.
The weight 9eld is a 4-bit integer that contains the weight information of the request. The weight

value is recorded in the weight 9eld of a request packet when the request is generated. There are
multiple choices available to select the proper weight value [3]. For simplicity, we only de9ne
three priority classes. In Fig. 3, generators 1, 2, and 3 generate requests with weights 1, 5 and 10,
respectively, corresponding to low, medium, and high priority requests.

The due date 9eld in the packets shows the time a request is due. If an application cannot receive
a response as required, its QoS requirements cannot be met. Of course, whether or not an application
can get its response on time depends not only on how fast the web server processes the request,
but also on the Internet transmission delay. How to guarantee a lower bound delay between routers
is beyond the scope of this paper. Hence, we focus on the due date, by which the web server is
required to have processed a request, and assume that the client will receive its response once the
server sends it. We use the same distribution to model the randomness of the due dates for all
classes of requests because we assume that they require the same URLs. We also assume that the
due dates are normally distributed with a mean of 2 s and a standard deviation of 0:2 s.

In our experiments, we use two traMc conditions: overwhelming and light. We use an exponential
distribution to model randomness in the arrival of requests to the web server. For the overwhelming
traMc condition, generators 1 and 2 generate requests at a rate of 40 requests per second, while
generator 3 generates requests at a rate of 20 requests per second. Hence, the total traMc generated
is equal to (40+ 40+ 20)∗229376 bits per second. We set the queue service rate at 12,697,600 bits
per second, about T1 speed of 1:55 Mbps, which is around 55.36% of the generated web traMc. The
server can process about 55 requests per second.

In the light traMc case, the arrival rate for low and medium priority requests are reduced to 16
requests per second, while the arrival rate for the high priority requests is at a rate of 8 requests



N. Ye et al. / Computers & Operations Research 32 (2005) 1147–1164 1155

Table 1
Simulation parameters

TraMc case Class Weight Request interarrival time Due date (s) Document size (bits)

Overwhelming LOW 1 Exponential(0.025) Normal(2,0.2) Pareto (65536; 1:4)
MEDIUM 5 Exponential(0.025) Normal(2,0.2) Pareto (65536; 1:4)
HIGH 10 Exponential(0.05) Normal(2,0.2) Pareto (65536; 1:4)

Light LOW 1 Exponential(0.0625) Normal(2,0.2) Pareto (65536; 1:4)
MEDIUM 5 Exponential(0.0625) Normal(2,0.2) Pareto (65536; 1:4)
HIGH 10 Exponential(0.125) Normal(2,0.2) Pareto (65536; 1:4)

ARRIVAL START DONE IDLE

BUSY

FREE

JOBS
WAITING

 FINISH

NOT FINISH

JOBS
WAITING

NO JOB
WAITING

DEFAULT

ARRIVAL

Fig. 4. FSM for sequential web server.

per second. Hence, the total traMc generated reduces to only 72% of the traMc the web server
can handle. In both overwhelming and light traMc cases, we use 100 for the scaling parameters
in the ATC policy. We set the simulation duration to 4000 s. The parameters for our simulation
experiments are given in Table 1.
We use a Finite State Machine (FSM) to simulate processing in a web server. The model actually

includes two FSMs. The ARRIVAL state itself is an FSM in which requests come into the queue
based on QoS rules. The second FSM includes the three states: START, DONE, and IDLE. The
FSMs are shown in Fig. 4.

We describe the processing handled in each state in the FSM shown in Fig. 4 for each of the
web server models in our investigation:

ARRIVAL state. Best E;ort model: When a request comes in, it enters the ARRIVAL state, and
will be placed into the queue using the FIFO rule.

Basic Di;Serv model: After a request enters the ARRIVAL state, we get the priority ‘weight’
value from the packet and place it into the respective queue.

WSPT model: First we execute the admission control algorithm and drop any requests with a
QoS factor less than zero. For new requests, we calculate their priority according to equation (1),
and insert the request into the queue based on its priority.

ATC model: As an extension of WSPT, we also implement the Admission Control Scheme at the
very beginning of the ARRIVAL state. For a new incoming request, we calculate its index using Eq.
(4) as its priority for queue placement. We assign k =100; the scaling parameter in our simulation.



1156 N. Ye et al. / Computers & Operations Research 32 (2005) 1147–1164

EDD model: We perform the Admission Control Scheme when the process enters the ARRIVAL
state. We extract the due date information of a new request from the packet’s due date 9eld. We
use its reciprocal as the priority and insert the request into the queue accordingly.

START state. When the server is not busy, a process enters the START state. In this state, we
will remove a request from the head of the queue and schedule it based on its processing time. The
FSM will then stay in the START state until the current request is processed.

DONE state. After a request is processed, the FSM enters the DONE state, and the server becomes
free again. If there are no jobs waiting for processing, the FSM will go to IDLE, otherwise, the
FSM will go back to START to process the waiting requests.

IDLE state. The server is free at the IDLE state. When there are no requests waiting in the
queue, the FSM remains in the IDLE state. When a request comes into the ARRIVAL state and is
inserted into the queue, the FSM will transition from IDLE to START.

5. Experimental results

In this section, we provide detailed results on our simulation experiments for the heavy traMc and
light traMc cases and provide a discussion of our results for each of the QoS performance metrics.

5.1. Overwhelming tra@c case

We 9rst present the results of the overwhelming traMc scenario. Due to the “bursty” nature of web
traMc, it is not surprising that a web server can become overwhelmed when one minute previous
its workload was quite small. A malicious attack that sends a high volume of requests to a web
server is another source of overwhelming traMc. We argue that even under the overwhelming traMc
condition, our QoS enabled web server can still provide QoS.

The simulation results for this section are given in Table 2. In our tabulated results, STD stands
for Standard Deviation which is calculated over time from 600 to 4000 s (a time interval in which
the system is in a steady state). BE stands for Best E8ort policy and DS stands for basic Di8Serv
policy. The number in each cell can also be considered a percentage of requests since the columns
of each row total the actual number of requests.

5.1.1. Waiting time
The waiting time performance of the Best E8ort, basic Di8Serv, WSPT, ATC, and EDD policies

are shown in Fig. 5. We take all processed requests into account and calculate the waiting time in
the steady state window.

We observe that the overall performance is dramatically enhanced under the ATC, EDD, and
WSPT policies, as shown in Table 2. These policies employ an admission control scheme. The
admission control scheme discards requests whose QoS requirements cannot be met before they are
even placed in the queue, which results in a smaller average number of requests waiting in the queue
and consequently a shorter waiting time. The average number of requests waiting in the queue is
about 25 under WSPT policy, and 67 under EDD policy. Under Best E8ort and basic Di8Serv, the
average number of waiting requests is about 8989 and 7279, respectively.



N. Ye et al. / Computers & Operations Research 32 (2005) 1147–1164 1157

Table 2
Experimental results of the overwhelming traMc case

Priority class BE DS WSPT ATC EDD

Waiting time of requests
All Mean 89.96725 56.39645 0.100961 0.104629 0.2742334

STD 0.004698 7.965471 0.012236 0.013271 0.0301226
High Mean 89.96703 3.776491 0.021563 0.022253 3.776491

STD 0.005094 10.2084 0.003994 0.00413 10.2084
Medium Mean 89.96749 89.95819 0.039224 0.040503 0.273149

STD 0.00474 0.007214 0.005459 0.005846 0.03198
Low Mean 89.96762 89.958 0.231369 0.240477 0.274335

STD 0.004737 0.006525 0.029947 0.032699 0.032978

Requests dropped
All Mean 45.34254 46.44422 10.44669 10.63292 46.50868

STD 11.2525 12.06754 1.174351 1.191997 14.39948
High Mean 9.001148 0.066765 0.180685 0.199215 9.21321

STD 2.279903 0.612841 0.067248 0.075172 2.850334
Medium Mean 18.24159 23.28894 1.001089 1.046383 18.75024

STD 4.625595 6.022406 0.170591 0.17572 5.782265
Low Mean 18.10011 23.08864 9.265216 9.387631 18.54573

STD 4.4637 5.869901 1.061894 1.07052 5.851304

Lateness of requests
All Mean 87.964869 54.39429 −1.87864 −1.8751 −1.45155

STD 0.0124608 7.964984 0.210136 0.2099 0.046376
High Mean 87.96774 0.4149 −1.95503 −1.95416 −1.4516044

STD 0.023457 10.20868 0.219513 0.219381 0.051434
Medium Mean 87.96471 87.95174 −1.93868 −1.93742 −1.45239

STD 0.01794 0.022036 0.217253 0.217093 0.047151
Low Mean 87.96591 87.96192 −1.77454 −1.76515 −1.4509

STD 0.016003 0.028651 0.022221 0.024757 0.049007

Throughput of requests
All Mean 12696420 12696350 12697660 12697573 12697636

STD 2968060 4493832 7463.187 5814.585 3727158
High Mean 2311544 4241935 3396161 3373713 2290618

STD 562505.6 1302286 186548.3 178843.3 670560.8
Medium Mean 5015363 3963317 6083328 6073930 5023274

STD 1321620 1529590 165117.2 162480 1967933
Low Mean 5369555 4491137 3218229 3249982 5383762

STD 2870234 2748046 158414.8 164200.2 3589084

The WSPT and ATC policies also contribute to the stabilized waiting time as shown in Fig. 5.
We notice that the variance of the overall Waiting Time under basic Di8Serv policy is quite large,
which can also be seen from Table 2.



1158 N. Ye et al. / Computers & Operations Research 32 (2005) 1147–1164

0
10
20
30
40
50
60
70
80
90

100

600 1600 2600 3600

Time (Second)

BE

DS

0

0.1

0.2

0.3

0.4

0.5

600 1600 2600 3600

Time (Second)

S
ec

o
n

d
S

ec
o

n
d

WSPT

ATC

EDD

Fig. 5. Overwhelming traMc case: overall waiting time of requests.

0

20

40

60

80

100

120

600 1600 2600 3600

Time (Second)

R
eq

u
es

ts

BE

DS

WSPT

ATC

EDD

-5

0

5

10

15

20

25

600 1600 2600 3600

Time (Second)

R
eq

u
es

ts

BE

DS

WSPT

ATC

EDD

Fig. 6. Overwhelming traMc case: overall drop of all (above) and high priority (below) requests.

5.1.2. Drop rate
Fig. 6 shows the overall drop rate of all requests and high priority requests. We observe that

the overall dropped requests using Best E8ort, basic Di8Serv, and EDD is about 45 requests per
second as shown in Table 2. However, only about 10 requests are dropped per second under ATC



N. Ye et al. / Computers & Operations Research 32 (2005) 1147–1164 1159

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

BE DS WSPT ATC EDD

B
its

B
its

Mean

Std

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

BE DS WSPT ATC EDD

Mean

Std

Fig. 7. Overwhelming traMc case: throughput of all (above) and high priority (below) requests.

and WSPT; 22% of Best E8ort. This is because the WSPT and ATC policies take processing time
into account and discriminate against requests with a long processing time.

In the high priority class of requests, using the basic Di8Serv policy has the lowest drop rate
because the requests in the low priority queue can only be processed when the high priority queue
is empty. We can see from the lower chart in Fig. 6 that some high priority requests may still
be dropped. This can happen when the timeout threshold is reached, for example, when a high
priority request comes into the system while a request that asked for a large document is being
processed.

5.1.3. Lateness
From Table 2, we note that ATC, WSPT and EDD can meet the Lateness QoS requirement. On

the other hand, Best E8ort and basic Di8Serv cannot. In Di8Serv, most of the High priority requests
can meet the Lateness QoS requirement (negative Lateness), however, the Lateness of some requests
can be over 60 s (STD).

5.1.4. Throughput
The mean throughput of all requests is about 12,697,600 bits per second, the service rate of the

server, because the web server is overwhelmed (see Table 2). We 9nd that di8erences in standard
deviation of the throughput between the 9ve policies are quite large as shown in Fig. 7.

We observe from the lower chart in Fig. 7 that with High priority class requests, the basic
Di8Serv policy yields the highest throughput among the 9ve models and EDD has the lowest. The
more requests that are dropped, the less the throughput yield, and vice versa.



1160 N. Ye et al. / Computers & Operations Research 32 (2005) 1147–1164

For Medium priority requests, WSPT has the highest throughput, about 21% more than Best
E8ort and 53% more than basic Di8Serv. For Low priority requests, WSPT and ATC have the
lowest throughput and standard deviation (see Table 2). Best E8ort and EDD policies have the
highest throughput. However, the standard deviations are quite large.

5.1.5. Requests waiting in queue
The average number of requests waiting in the queue under each of the policies is shown in Table

2. There are only 25 requests waiting in the queue under WSPT and ATC policies, while EDD has
about 67 requests. Best E8ort and basic Di8Serv have about 8989 and 7279 requests waiting in the
queue, respectively.

5.2. Light tra@c case

We now present the results of the light traMc scenario. The simulation results for this section are
given in Table 3.

5.2.1. Waiting time
The overall waiting time of the ATC, Best E8ort, basic Di8Serv, EDD and WSPT policies is

shown in Fig. 8. WSPT and ATC have similar performance. The overall waiting time for Best E8ort
and basic Di8Serv are more than 15 times longer than the WSPT and ATC policies.

From Table 3 and Fig. 8, we can see that the deviation of waiting times of the Best E8ort
and basic Di8Serv policies are very large, about 5.87 for Best E8ort and 5.49 for basic Di8Serv.
Congestion can happen under Best E8ort and basic Di8Serv models at some points, leading to longer
waiting times. A request may need to wait more than 40 s before getting service.

5.2.2. Drop rate
Table 3 also includes the drop rate information. There are no requests dropped under the Best

E8ort and Basic Di8Serv policies. There is a tradeo8 between waiting time and requests dropped.
There are a small amount of requests dropped under ATC, WSPT and EDD policies, due to the
admission control scheme, however a shorter waiting time is gained.

5.2.3. Lateness
We 9nd that on the average there is no violation of due date requirements in the Light TraMc

scenario under each of the policies because the mean lateness, as shown in Table 3, is negative.
But we should keep in mind that, as shown in Fig. 8, the waiting time of some requests can exceed
40 s and thus the lateness can be positive.

5.2.4. Throughput
Since the incoming traMc and service rates are the same under all policies, they produce almost

the same level of throughput in the light traMc scenario because the system is stable and able to
handle the incoming traMc. The throughput of the Best E8ort and Basic Di8Serv policies are a little
higher than that of the other policies because no requests are dropped, resulting in a higher arrival
(and hence, throughput) rate.



N. Ye et al. / Computers & Operations Research 32 (2005) 1147–1164 1161

Table 3
Experimental results of the light traMc case

Priority class BE DS WSPT ATC EDD

Waiting time of requests
All Mean 1.530703 1.493246 0.092163 0.090235 0.124289

STD 5.878742 5.493077 0.04996 0.046535 0.062083
High Mean 1.529657 0.354413 0.068523 0.069562 0.126305

STD 5.887196 1.552743 0.03778 0.036143 0.063747
Medium Mean 1.530479 1.825389 0.078798 0.079292 0.121852

STD 5.875447 6.939911 0.044733 0.042569 0.056926
Low Mean 1.531522 1.827767 0.117916 0.112029 0.125791

STD 5.878587 6.948821 0.065669 0.059874 0.070296

Requests dropped
All Mean 0 0 1.352074 1.441486 1.659334

STD 0 0 4.215406 4.232963 4.426103
High Mean 0 0 0.217108 0.232718 0.312424

STD 0 0 0.777847 0.781258 0.828979
Medium Mean 0 0 0.50021 0.53609 0.676685

STD 0 0 1.694942 1.698867 1.787868
Low Mean 0 0 0.635015 0.672957 0.67051

STD 0 0 1.746721 1.756716 1.810628

Lateness of requests
All Mean −0.47009 −0.50748 −1.91247 −1.91452 −1.87361

STD 5.881148 5.495734 0.047722 0.04479 0.068402
High Mean −0.47449 −1.65009 −1.93752 −1.9364 −1.87521

STD 5.889278 1.557602 0.046556 0.045589 0.07022
Medium Mean −0.46995 −0.17499 −1.92551 −1.92505 −1.87535

STD 5.877842 6.941919 0.044774 0.042893 0.065856
Low Mean −0.46819 −0.17192 −1.88658 −1.89277 −1.87127

STD 5.881193 6.951396 0.063165 0.058128 0.076792

Throughput of requests
All Mean 8995437 9022972 8599323 8592518 8624697

STD 1564300 1543513 1198582 1187294 1203524
High Mean 1713773 1719019 1651044 1644867 1636118

STD 360182.2 333671.4 315147.4 314850.4 317698.7
Medium Mean 3598025 3609039 3460339 3463858 3459718

STD 883359.1 913816 747808.3 744651.2 746697.3
Low Mean 3683673 3694949 3487975 3483828 3528896

STD 1390708 1345147 1327450 1326310 1347935

5.2.5. Requests waiting in queue
There are about 3.6 requests waiting in the queue under the WSPT and ATC policies, 5.3 requests

under EDD, 61.5 requests under basic Di8Serv and 62.2 requests under Best E8ort. The smaller
number of waiting requests in the queue contributes to the shorter waiting time.



1162 N. Ye et al. / Computers & Operations Research 32 (2005) 1147–1164

0
5

10
15
20

25
30
35
40
45

600 1100 1600 2100 2600 3100 3600

Time (Second)

S
ec

o
n

d

BE

DS

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45

600 1600 2600 3600

Time (Second)

S
ec

o
n

d WSPT

ATC

EDD

Fig. 8. Light traMc case: overall waiting time.

6. Conclusions and future work

In this paper, we demonstrate how to model a sequential web server as a single machine and apply
WSPT, ATC, and EDD queuing disciplines to di8erentiate the services, and thus provide QoS. We
compare these policies with the Best E8ort and basic Di8Serv policies.

We propose that most web servers can be modeled as a Best E8ort Model using the FIFO queuing
discipline. We then verify that the Best E8ort Model cannot provide quality of service, especially
in regard to waiting time. Furthermore, our results show that with the Basic Di8Serv Model, the
performance of high priority requests cannot be guaranteed because the requests cannot meet the
Lateness QoS requirement. Performance using other classes of requests is no better than the Best
E8ort policy can provide. As we can see from our experimental results, the Basic Di8Serv policy
cannot provide QoS for a web server.

We introduce an Admission Control Scheme, which contributes to a tremendous improvement in
performance. Thanks to the Admission Control Scheme, the overall waiting time of WSPT, ATC,
and EDD Models are much shorter than the overall waiting time of Best E8ort and Basic Di8Serv
Models. The waiting time of Best E8ort policy is about 900 times longer than that of WSPT in
the overwhelming traMc case. In the light traMc case, the waiting time of WSPT is also about 15
times shorter than that of Best E8ort. It reveals that the Admission Control Scheme is e8ective to
maintain timeliness for an overwhelmed web server.

We have shown that WSPT and ATC dispatching rules can be used to provide di8erentiated
services. From the simulation results, the performance of ATC is quite similar to that of WSPT
when the scaling parameter k is set to 100. We also create other scenarios of ATC with di8erent
scaling parameters and 9nd that there is no signi9cant di8erence if the scaling parameter k is larger
than 10 in our simulation.



N. Ye et al. / Computers & Operations Research 32 (2005) 1147–1164 1163

We can also safely conclude that our QoS models not only provide good performance when the
server is overloaded but also work well under a light traMc condition. In a light traMc scenario,
the QoS models provide better waiting time for high priority requests at the cost of a very small
amount of dropped lower priority requests.

However, as Pinedo [28] stated, real-world scheduling problems are di8erent from the mathematical
models in academia. For example, WSPT is a static rule which is not time dependent. It assumes
that there are n jobs to be scheduled and the problem is solved after the n jobs are scheduled. For a
web server, requests are submitted by clients continuously. WSPT may not be the optimal scheduling
rule to gain the minimum total weighted completion time. Another important aspect is that stochastic
models usually use special distributions which may not closely represent the behaviors of the real
system. Here, we use a requested document size divided by service rate to decide the processing
time of a request. Request size follows the Pareto distribution. For a web server, the processing time
of a request may also be inLuenced by the load and con9guration of the web server.

In spite of these small di8erences, scheduling rules in manufacturing can provide valuable
insights into scheduling problems in an information infrastructure. From the results of our research,
we surmise that some manufacturing scheduling rules may be used to develop a framework for
QoS enabled web servers. To implement our web server QoS models, other information about web
requests, such as hostname, port, etc. along with the requested links, are also required. We suggest
that further work might be done to investigate network costs and delays on implementing models
based on these frameworks.

Acknowledgements

This work is sponsored by the Air Force Research Laboratory—Rome (AFRL-Rome) under grant
number F30602-01-1-0510, and the Department of Defense (DoD) and the Air Force OMce of
Scienti9c Research (AFOSR) under grant number F49620-01-1-0317. The US government is autho-
rized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright
annotation thereon. The views and conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the oMcial policies or endorsements, either express or
implied, of, AFRL-Rome, DoD, AFOSR, or the US Government.

References

[1] Lawrence TF. The quality of service model and high assurance. In Proceedings of the IEEE High Assurance Systems
Engineering Workshop, Washington, DC, 1997.

[2] Ye N. QoS-Centric stateful resource management in information systems. Information Systems Frontiers
2002;4(2):149–60.

[3] Bhatti N, Friedrich R. Web server support for Tiered services. IEEE Network 2000;13(5):64–71.
[4] Strnadl C. At your service: QoS for the Internet. IEEE Multimedia 2002;9(1):93–5.
[5] Bhatti N, Bouch A, Kuchinsky A. Integrating user-perceived quality into web server design. Computer Networks

2000;33(1–6):1–16.
[6] Lzzo P. Gigbit networks: standards and schemes for next-generation networking. New York: Wiley; 2000.

p. 177–233 [chapter 6].
[7] Braden R, Clark D, Shenkar S. Integrated services in the internet architecture: an overview, RFC 1633, IETF, 1994.



1164 N. Ye et al. / Computers & Operations Research 32 (2005) 1147–1164

[8] Braden R, Zhang L, Berson S, Herzog S, Jamin, S. Resource reservation protocol (RSVP) version 1, functional
speci9cation, RFC 2205, IETF, 1997.

[9] Wroklawski J. The use of RSVP with IETF integrated services, RFC 2210, 1997.
[10] Wroklawski J. Speci9cation of the controlled-load network element service, RFC 2211, 1997.
[11] Shenker S, Partridge C, Guerin R. Speci9cation of guaranteed quality of service, RFC 2212, 1997.
[12] Almeida J, Dabu M, Manikutty A, Cao P. Providing di8erentiated levels of services in web content hosting. First

Workshop on Internet Server Performance, Madison, WI, 1998.
[13] Cherkasova L, Phaal P. Session-based admission control: a mechanism for peak load management of commercial

web sites. IEEE Transactions on Computers 2002;13(6):669–85.
[14] Li K, Jamin S. A measurement-based admission-controlled web server. Proceedings of the IEEE INFCOM 2000,

2000.
[15] Zhang H. Service disciplines for guaranteed performance service in packet-switching networks. Proceedings of the

IEEE, 1995;83(10):1374–96.
[16] Chandra S, Ellis CS, Vahdat A. Di8erentiated multimedia web services using Quality Aware Transcoding, INFOCOM,

2000.
[17] Nichols K, Blake S, Baker F, Black D. De9nition of the di8erentiated services 9eld (DS Field) in the Ipv4 and

Ipv6 headers, RFC 2474, 1998.
[18] Nichols K, Jacobson V, Zhang L. A two-bit di8erentiated services architecture for the Internet, 1999.

ftp://ftp.ee.lbl.gov/papers/dsarch.pdf.
[19] Lu C, Abdelzaher TF, Stankovic JA, Son SH. A feedback control approach for guaranteeing relative delays in web

servers. IEEE Real-Time Technology and Application Symposium (RTAS’ 2001), Taipei, Taiwan, 2001.
[20] Conti M, Gregori E, Panzieri F. Load distribution among replicated web servers: a Qos-based approach. Second

Workshop on Internet Server Performance in conjunction with ACM SIGMETRICS 99/FCRC, Atlanta, GA, 1999.
[21] Engelschall RS. Load balancing your web site, Practical Approaches for Distributing HTTP traMc, 1998.

www.webtechniques.com/archives/1998/engelschall.
[22] Shan Z, Lin C, Marinescu DC, Yang Y. Modeling and performance analysis of QoS-aware load balancing of

web-server clusters. Computer Networks 2002;40(2):235–56.
[23] Rhee, Yoon-Jung, Hyun, Eun-Sil, Kim, Tai-Yun. Connection management for QoS service on the Web. Journal of

Network and Computer Applications 2002;25(1):57–68.
[24] Abdelzaher TF, Shin KG, Bhatti N. Performance guarantees for web server end-systems: a control-theoretical

approach. IEEE Transactions on Parallel and Distributed Systems 2002;13(1):80–96.
[25] Striegel A, Manimaran G. Packet scheduling with delay and loss di8erentiation. Computer Communications

2002;25(1):21–31.
[26] Ferrari T. End-to-end performance analysis with traMc aggregation. Computer Networks 2000;34(6):905–14.
[27] Chen H, Mohapatra P. Overload control in QoS-aware web servers. Computer Networks 2003;42(1):119–33.
[28] Pinedo M. Scheduling theory, algorithms, and systems. Englewood Cli8s, NJ: Prentice-Hall; 1995.
[29] Guerin R, Peris V. Quality-of-service in packet networks: basic mechanisms and directions. Computer Networks

1999;31(3):169–89.
[30] Silberschatz A, Galvin PB, Gagne G. Operating systems concepts, 6th ed. New York: Wiley; 2003. p. 158–61

[chapter 6].
[31] David von S. CRC Standard curves and surfaces. Boca Raton, FL: CRC Press; 1993. p. 252–3.
[32] Arlitt MF, Williamson CL. Web server workload characterization: the search for invariants. In ACMSIGMETRICS

Performance Evaluation Review 1996:126–37.

ftp://ftp.ee.lbl.gov/papers/dsarch.pdf
http://www.webtechniques.com/archives/1998/engelschall

	Web server QoS models: applying scheduling rules from production planning
	Introduction
	Web server QoS models
	The basic Best Effort model
	The basic DiffServ model
	WSPT
	ATC
	EDD

	QoS measures
	Simulation model and experiments
	Experimental results
	Overwhelming traffic case
	Waiting time
	Drop rate
	Lateness
	Throughput
	Requests waiting in queue

	Light traffic case
	Waiting time
	Drop rate
	Lateness
	Throughput
	Requests waiting in queue


	Conclusions and future work
	Acknowledgements
	References


