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We articulate a control method to induce intrinsic localized modes at programable bielement cell in
driven microcantilever arrays. The idea is to excite a preassigned cantilever to an oscillating state
with significantly higher amplitude than the average by using feedback signal to modulate the
frequency that drives the whole array. Our control method is thus global, which is advantageous in
microsystems as local pinning actuation may be difficult to implement at small scales. © 2009
American Institute of Physics. �DOI: 10.1063/1.3216054�

The use of microelectromechanical �MEM� cantilever or
clamped beam arrays have become widespread in all kinds of
microscale devices. Due to their large output signals, the
array systems are suitable for highly sensitive sensors, such
as mass sensors1 and magnetometers.2 They are also useful
in applications such as RF filtering with programmed pass
band.3

The phenomenon of nonlinear energy localization in
MEM cantilever arrays has attracted much recent attention.4

Such energy states, called intrinsic localized modes �ILMs�,
can occur in a defect-free nonlinear lattice, extending over
only a few lattice sites.5 Advances in microfabrication and
optical visualization technologies render feasible detailed ex-
perimental studies of ILMs in MEM systems. In a typical
experimental setting to excite ILMs,6 temporal noise is em-
ployed. In this case, the actual locations where ILMs would
arise are completely random and unpredictable. An interest-
ing question concerns then a suitable driving scheme to ex-
cite an ILM at a programmed location. Recently, this goal
has been achieved experimentally7 via a pinning-control
method, where impurity mode was induced by laser and used
to trap an ILM. We ask in this letter whether it would be
possible to use a global actuating signal, i.e., a control signal
applied identically to all cantilevers, to excite ILMs at any
specific location of interest. In practical applications, this
question may be meaningful if some particular ILMs corre-
spond to a desirable state of the operation of the device. For
example, in experimental research it may be desirable to cre-
ate certain patterns of ILMs.

A brief description of our control method is as follows.
We first set the frequency of the external driving such that
the MEM cantilever-array system exhibits spatiotemporal
chaos, which is pervasive and can be realized readily by
adjusting the frequency of the driving.8 We then use a mea-
sured displacement signal of the target cantilever as input in
a feedback scheme to tune the global driving frequency,
thereby stabilizing the particular ILM at that cantilever.

The dynamics of a MEM cantilever array is described
by6 miẍi+biẋi+k2ixi+k4ixi

3+kI�2xi−xi+1−xi−1�=mi� cos��t�,
where xi �i=1, . . . ,N� is the displacement of the end point of
the ith cantilever beam of effective mass mi, bi is the damp-
ing coefficient, k2i and k4i are the on-site harmonic and qua-
dratic spring constants of the ith beam, respectively, and kI is
the harmonic coupling spring constant. Each beam is subject
to a common sinusoidal driving of acceleration � and angu-
lar frequency �. To induce ILM at a preassigned site, say
site M, we propose the following frequency-modulating
scheme:

��̇c = �1�

�̇ = −
1

�
�� + �2xM sin��ct + ��� , � �1�

which can be regarded effectively as a low-pass filter.
In Eq. �1�, �c is the modulated driving frequency,
� is a variable related to the phase-angle difference, � is a
reference phase, � is the typical time corresponding to the
cutoff frequency of the low-pass filter, and �1 and �2 are the
gains of the modulator. The value 2� /� should be set to be
much smaller than �c so that the high-frequency component
of �2xM sin��ct+�� can be filtered out. Substituting � by �c

in xi�t�=Ui�t�cos��t�−Vi�t�sin��t��ri�t�cos��t+�i�t�� in
Eq. �1�, where ri=�Ui

2+Vi
2 and �i are the radial and angular

coordinates of �Ui ,Vi�, we can write the xM sin��ct+��
term as xM sin��ct+��=rM�t�	sin�2�ct+�M�t�+��+sin��
−�M�t��
 /2, where the high-frequency term sin�2�ct+�M�t�
+�� will be removed by the low-pass filtering process. Equa-
tion �1� then becomes ��t���2rM�t�sin��M�t�−�� /2, which
depends on the phase-angle difference between the output
and the reference and provides perturbations for tuning the
driving frequency. The modulated angular frequency is ap-
proximately given by

�̇c�t� = �1��t� �
�1�2

2
rM�t�sin��M�t� − �� . �2�

The output phase angle can thus be stabilized about the de-
sired reference value that corresponds to a high-energy oscil-a�Electronic mail: qchen20@asu.edu.
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lation state at site M. The reference phase angle should be set
as the one associated with the ILM.

Numerical results illustrating our method for inducing
ILMs are shown in Figs. 1�a�–1�d� in which the fourth-order
Runge–Kutta method with time step 6.4	10−5 s is em-
ployed to integrate the dynamical equations. The coupled
MEM cantilever system consists of two groups of beams of
different length, arranged alternatively in space. The struc-
tural parameters of the system are chosen according to their
respective experimental values,6 �mi ,bi ,k2i ,k4i�

�5.46	10−13 kg, 6.24	10−11 kg /s, 0.303 N /m, 5
	108 N /m3� 5.46	10−13 kg, 6.24	10−11

kg /s , 0.303 N /m, 5	108 N /m3 for odd i, the long
beams, and �mi ,bi ,k2i ,k4i�= �4.96	10−13 kg, 5.67
	10−11 kg /s , 0.353 N /m, 5	108 N /m3� for even i, the
short beams. The parameters of the driving are chosen to be
�� ,�1 ,�2 ,��= �1.56	104 m /s2 , 5	1012, 0.1361 s�. The
total number of cantilevers is N=50 and the phase in Eq. �1�
is set to be �=−1.4641 �arbitrarily�. The initial value of the
driving frequency is set to be �c�t=0�=9.24	105 rad /s so
that the system exhibits spatiotemporal chaos. The initial dis-
placements and velocities of all beams are set to be randomly
with standard deviation of 10−7 m and 10−7 m /s, respec-
tively. The four panels in Figs. 1�a�–1�d� correspond to the
cases where an ILM has been induced at site M =10, 20, 30,
and 40, respectively. Apparently, our method is capable of
inducing robust ILMs at any desirable cell in the system.
Note that the device employed in experiment6 consists of
multiple bielement cells and each cell is a dual-coupled beam
with different beam lengths. For this class of systems, ILMs
can be induced at the shorter beam with even sequence num-
ber in any bielement cell.

The above simulation results are for ideal cantilever ar-
rays. In real experimental devices fabrication errors are in-
evitable. It is thus necessary to address the effect of fabrica-
tion errors on the effectiveness of control. We have carried
out a number of simulations and found that our control
method is robust to such errors. For example, when there is
10% systematic mismatch and 1% random mismatch among

both the lengths and thicknesses of the beams, ILMs can be
induced at any desirable cell, which is essentially the same
result as in Fig. 1. We remark that the main requirement for
our control scheme is measurement of the position of the
target cantilever, which can be realized by optical
microprobes.9 Other quantities necessary for the control are
driving frequency and phase angle of the stable ILM, which
can be obtained by theoretical analysis and computations.10

To understand the working of our control method, we
consider a MEM array system of N=128 beams �64 cells�.
Say the desirable site for ILM is M =64. Figures 2�a�–2�c�
show a representative space-time plot, a typical time series of
the modulating frequency �c�t�, and a signal of the filtered
phase-angle difference

�M�t� = rM�t�sin��M�t� − �� , �3�

respectively. The control process consists of two distinct
stages, as shown in panels �b� and �c�. The first stage, a
selecting phase, is for t�0.21 s �indicated by the vertical
dashed line�, where the quantity �M�t� fluctuates about zero
but the modulating frequency �c�t� remains approximately at
its initial constant value. In this stage, the system exhibits
spatiotemporal chaos, as indicated by the space-time plot in
Fig. 2�a�. The second stage, a locking phase, corresponds to
the desirable state where an ILM has occurred at the target
site. At the beginning of this phase, �M�t� is excited to a
relatively high value. It then decays slowly to zero. The
modulating frequency �c�t�, however, increases with time,
approaching asymptotically a constant value as the ILM state
becomes stable.

From Eq. �2�, one can see the value of �M determines
the frequency modulation rate. It has been found that multi-
stable dynamical states can coexist in different frequency
ranges in MEM cantilever array systems.8 As one tunes the
frequency from low to high value, the system will transit
from spatiotemporal chaotic state �denoted SC regime� to a
state where all beams oscillate with low energy �denoted as
LES regime�. When the frequency is increased further, the
system enters a multistable regime where stable ILMs and
LES coexist. The phase angles of the LES and SC state are

FIG. 1. For a MEM cantilever system of N=50 beams of alternating length,
space-time plots of four examples of inducing ILMs at sites M =10 �a�, 20
�b�, 30 �c�, and 40 �d�. The initial value of �c is �c�t=0�=9.24
	105 rad /s. Dark lines indicate higher amplitudes. See text for various
parameters.

FIG. 2. �Color online� For a MEM cantilever system of N=128 beams, an
example of stabilizing an ILM at site M =64: �a� space-time plot of beam
amplitude, �b� time series of the modulating frequency �c�t�, and �c� time
series of the phase difference �M�t� for M =64. The initial value of �c is set
to be �c�t=0�=9.24	105 rad /s. The vertical dashed line at t�0.21 s de-
notes the boundary between the selecting and the locking phases.
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qualitatively different. The one for LES is less than �, the
phase angle of the targeted ILM, resulting in �M 0 �Eq.
�3��. The phase angle for SC state is larger than �, leading to
�M �0. Figure 3 shows the average value of �M for �
� �9.235,9.27�	105 rad /s, where �bound�9.254
	105 rad /s is boundary value of � between the SC and the
LES regimes obtained numerically by a standard averaging
method. One can see that the phase-angle difference is dif-
ferent on the different sides of �bound. In particular, �M is
positive for ��bound, where the system is in a chaotic
state. However, �M becomes negative for ���bound, where
the system is in a low-energy state. From Eq. �2�, we then

have �̇̄c=�1�2�̄M /2�0 in SC regime and �̇̄c0 in LES
regime.

The above results suggest a general strategy for inducing
ILMs in a MEM cantilever-array system. When the system is

in the SC regime, �̇̄c�0 so that the frequency will increase
and exceed �bound. If the system cannot get into the basin of
a high-energy mode �ILM�, it will go to the basin of a low-

energy state. If this happens, �̇̄c will become negative, re-
ducing the driving frequency. As a result, if ILM does not
occur, the modulated driving frequency �c will switch back
and forth between some values in the chaotic and in the

low-energy regimes. During this process the value of �̄M is

changing constantly, leading to a nonzero probability for the
system to get into an ILM state through frequency chirping.6

When this occurs, �̄M will maintain a positive value but it
will decrease slowly as the system evolves into a stable ILM
state defined by �M =�, as shown in Fig. 2�c�. In this select-
ing process, the selecting time is random due to the random-
ness associated with spatiotemporal chaotic state. Using
Monte Carlo simulations, we find that the average selection
time is about 50 ms �with the same parameters as in Fig. 1�.
This time is about one order of magnitude’s larger than the
one with the pinning control method �2.5 ms�.4 Once a par-
ticular cantilever has been locked in an ILM state, the ran-

dom fluctuations in �̄M are reduced significantly �Fig. 2�c��,
making it practically improbable for cantilevers at other sites
to enter some ILM states. This is the mechanism responsible
for the locking phase.

In conclusion, a method based on global frequency
modulation is articulated for exciting ILMs at a programable
spatial location in MEM cantilever-array systems. The idea is
to take advantage of the spatial heterogeneity and temporal
irregularity offered by the inherent nonlinear dynamics of
MEM cantilever array, and to exploit a typical frequency
modulation scheme to drive the system into an ILM state
occurred at preassigned location.
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FIG. 3. �Color online� Average value of the phase difference �̄M vs the
driving angular frequency �, where �bound is the boundary value of �

between the SC and the LES regimes. We see that �̄M �0 when the system

is in spatiotemporal chaos ���bound� and �̄M 0 when the system is in
some low-energy state ����bound�.
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