Midterm Exam 2

10:40am-11:55am, Thursday, 11/7/2002

Name

ASU ID

- I. Multiple-choice problems (8 points 1 point each)
 - 1. The second-order differential equation

$$t^2\frac{d^2x}{dt^2} + t\frac{dx}{dt} + 4x = 0.$$

is

- (a) nonlinear.
- (b) linear.
- (c) quadratic because of the term involving t^2 .
- (d) none of the above.
- 2. The following equation has many applications in engineering:

$$\frac{d^2x}{dt^2} + a(t)\frac{dx}{dt} + b(t)x = f(t),$$

where a(t), b(t), and f(t) are continuous functions of time t. Let $x_h(t)$ be the general solution of the corresponding homogeneous equation, and let $x_p(t)$ be a particular solution of the original equation. The general solution of the original equation can be written as (C) is an arbitrary constant)

- (a) $x(t) = x_h(t)$.
- **(b)** $x(t) = x_h(t) + Cx_p(t)$.
- (c) $x(t) = C[x_h(t) + x_p(t)].$
- (d) $x(t) = Cx_h(t) + x_p(t)$.

3. An ideal mass-spring system is described by the following second-order equation:

$$\frac{d^2x}{dt^2} + \omega^2 x = 0,$$

where ω is the internal oscillating frequency of the system. Given the initial conditions $x(0) = x_0$ and $x'(0) = v_0$, one finds that the solution satisfying these initial conditions can be written as $x(t) = A\sin(\omega t + \phi)$. The amplitude of the oscillation is

- (a) $A = x_0$.
- **(b)** $A = \sqrt{x_0^2 + (v_0/\omega)^2}$.
- (c) $A = v_0$.
- (d) $A = v_0/\omega$.
- 4. The asymptotic behavior of the solution to the following differential equation:

$$\frac{d^2x}{dt^2} + 9x = \sin(3t),$$

can be described as,

- (a) $|x(t)| \to 0$ as $t \to \infty$.
- **(b)** $|x(t)| \sim t^2$ at large t.
- (c) $|x(t)| \sim t$ at large t.
- (d) $|x(t)| \to \text{constant} \neq 0 \text{ as } t \to \infty.$
- 5. A forced, damped, linear oscillator can be described by,

$$\frac{d^2x}{dt^2} + c\frac{dx}{dt} + \omega^2 x = f(t),$$

where c > 0, $\omega \neq 0$, and $c^2 - 4\omega^2 < 0$. Which of the following is true regarding the asymptotic behavior of the solution at very large t?

2

- (a) The asymptotic solution does not depend on initial conditions.
- (b) The asymptotic solution depends on initial conditions.
- (c) The asymptotic solution does not depend on c and ω .
- (d) The asymptotic solution does not depend on the form of f(t).

6. A suitable trial form for a particular solution of the constant-coefficient differential equation:

$$\frac{d^2x}{dt^2} + a\frac{dx}{dt} + bx = \cos t,$$

where $a \neq 0$ and $b \neq 1$, is

- (a) $x_p(t) = A \cos t$.
- **(b)** $x_p(t) = A \sin t$.
- (c) $x_p(t) = A\cos t + B\sin t$.
- (d) $x_p(t) = A\cos(2t)$.
- 7. The interval of existence of the following two functions $x_1(t) = e^t \sin t$ and $x_2(t) = \sin t$ is $I: (-\infty, +\infty)$. Which of the following statements regarding $x_1(t)$, $x_2(t)$, or their Wronskian is correct?
 - (a) W = 0 for all t in I.
 - (b) $W \neq 0$ for all t in I.
 - (c) $x_1(t)$ and $x_2(t)$ can be solutions of the same homogeneous, second-order linear differential equations.
 - (d) $x_1(t)$ and $x_2(t)$ cannot be solutions of the same homogeneous, second-order linear differential equations.
- 8. The steady-state solution of the following driven equation,

$$\frac{d^2x}{dt^2} + 4x = F\sin t,$$

can be written as $x_{ss}(t) = A \sin(t + \phi)$. Which of the following combinations of A and ϕ is correct?

- (a) $A = F/3 \text{ and } \phi = 0.$
- **(b)** $A = F/3 \text{ and } \phi = \pi/2.$
- (c) $A = F/2 \text{ and } \phi = 0.$
- (d) $A = F/2 \text{ and } \phi = \pi/2.$

II. (5 points) Use the method of *variation of parameters* to obtain the general solution to the following differential equation:

$$y'' - y' + \frac{y}{4} = 4e^{t/2}.$$

(This is problem 3 from HW7. You will receive no credit if you don't use the method of variation of parameters.)

III. (7 points) Analysis of a system of two masses and two springs results in the following set of two coupled equations:

$$u_1'' + 5u_1 = 2u_2,$$
 (1)
 $u_2'' + 2u_2 = 2u_1,$

where $u_1(t)$ and $u_2(t)$ are the displacements of the two masses.

- 1. (1 point) Obtain the fourth-order, homogeneous equation in u_1 .
- 2. (2 points) Write down the corresponding characteristic equation for u_1 and obtain all roots.
- 3. (2 points) Write down the general solution $u_1(t)$. From this, obtain the general solution $u_2(t)$. (Hint: there should be four arbitrary constants altogether in $u_1(t)$ and $u_2(t)$.)
- 4. (2 points) Obtain the solutions $u_1(t)$ and $u_2(t)$ under the initial conditions $u_1(0) = 0$, $u_1'(0) = 0$, $u_2(0) = 2$, and $u_2'(0) = 0$.

(This problem was explained in detail in class on Oct. 22. I told you after the break that this problem would likely appear on Exam 2).