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A number of recent studies have focused on the statistical prop-
erties of networked systems such as social networks and the
Worldwide Web. Researchers have concentrated particularly on a
few properties that seem to be common to many networks: the
small-world property, power-law degree distributions, and net-
work transitivity. In this article, we highlight another property that
is found in many networks, the property of community structure,
in which network nodes are joined together in tightly knit groups,
between which there are only looser connections. We propose a
method for detecting such communities, built around the idea of
using centrality indices to find community boundaries. We test our
method on computer-generated and real-world graphs whose
community structure is already known and find that the method
detects this known structure with high sensitivity and reliability.
We also apply the method to two networks whose community
structure is not well known—a collaboration network and a food
web—and find that it detects significant and informative commu-
nity divisions in both cases.

Many systems take the form of networks, sets of nodes or
vertices joined together in pairs by links or edges (1).

Examples include social networks (2–4) such as acquaintance
networks (5) and collaboration networks (6), technological
networks such as the Internet (7), the Worldwide Web (8, 9), and
power grids (4, 5), and biological networks such as neural
networks (4), food webs (10), and metabolic networks (11, 12).
Recent research on networks among mathematicians and phys-
icists has focused on a number of distinctive statistical properties
that most networks seem to share. One such property is the
‘‘small world effect,’’ which is the name given to the finding that
the average distance between vertices in a network is short (13,
14), usually scaling logarithmically with the total number n of
vertices. Another is the right-skewed degree distributions that
many networks possess (8, 9, 15–17). The degree of a vertex in
a network is the number of other vertices to which it is connected,
and one finds that there are typically many vertices in a network
with low degree and a small number with high degree, the precise
distribution often following a power-law or exponential form
(1, 5, 15).

A third property that many networks have in common is
clustering, or network transitivity, which is the property that two
vertices that are both neighbors of the same third vertex have a
heightened probability of also being neighbors of one another.
In the language of social networks, two of your friends will have
a greater probability of knowing one another than will two
people chosen at random from the population, on account of
their common acquaintance with you. This effect is quantified by
the clustering coefficient C (4, 18), defined by

C !
3! (number of triangles on the graph)

(number of connected triples of vertices). [1]

This number is precisely the probability that two of one’s friends
are friends themselves. It is 1 on a fully connected graph
(everyone knows everyone else) and has typical values in the
range of 0.1 to 0.5 in many real-world networks.

In this article, we consider another property, which, as we will
show, appears to be common to many networks, the property of
community structure. (This property is also sometimes called
clustering, but we refrain from this usage to avoid confusion with
the other meaning of the word clustering introduced in the
preceding paragraph.) Consider for a moment the case of social
networks—networks of friendships or other acquaintances be-
tween individuals. It is a matter of common experience that such
networks seem to have communities in them: subsets of vertices
within which vertex–vertex connections are dense, but between
which connections are less dense. A figurative sketch of a
network with such a community structure is shown in Fig. 1.
(Certainly it is possible that the communities themselves also
join together to form metacommunities, and that those meta-
communities are themselves joined together, and so on in a
hierarchical fashion. This idea is discussed further in the next
section.) The ability to detect community structure in a network
could clearly have practical applications. Communities in a social
network might represent real social groupings, perhaps by
interest or background; communities in a citation network (19)
might represent related papers on a single topic; communities in
a metabolic network might represent cycles and other functional
groupings; communities on the web might represent pages
on related topics. Being able to identify these communities
could help us to understand and exploit these networks more
effectively.

In this article we propose a method for detecting community
structure and apply it to the study of a number of different social
and biological networks. As we will show, when applied to
networks for which the community structure is already known
from other studies, our method appears to give excellent agree-
ment with the expected results. When applied to networks for
which we do not have other information about communities, it
gives promising results that may help us understand better the
interplay between network structure and function.

Detecting Community Structure
In this section we review existing methods for detecting com-
munity structure and discuss the ways in which these approaches
may fail, before describing our own method, which avoids some
of the shortcomings of the traditional techniques.

Traditional Methods. The traditional method for detecting com-
munity structure in networks such as that depicted in Fig. 1 is
hierarchical clustering. One first calculates a weight Wij for every
pair i,j of vertices in the network, which represents in some sense
how closely connected the vertices are. (We give some examples
of possible such weights below.) Then one takes the n vertices in
the network, with no edges between them, and adds edges
between pairs one by one in order of their weights, starting with
the pair with the strongest weight and progressing to the weakest.
As edges are added, the resulting graph shows a nested set of

This paper was submitted directly (Track II) to the PNAS office.
‡To whom reprint requests should be addressed. E-mail: girvan@santafe.edu.

www.pnas.org!cgi!doi!10.1073!pnas.122653799 PNAS " June 11, 2002 " vol. 99 " no. 12 " 7821–7826

A
PP

LI
ED

M
A

TH
EM

A
TI

CS

Applications
In the previous section we tested our algorithm on a number of
networks for which the community structure was known before-
hand. The results indicate that our algorithm is a sensitive and
accurate method for extracting community structure from both
real and artificial networks. In this section, we apply our method
to two more networks for which the structure is not known and
show that in these cases it can help us to understand the make-up
of otherwise complex and tangled datasets. Our first example is
a collaboration network of scientists; our second is a food web
of marine organisms in the Chesapeake Bay.

Collaboration Network. We have applied our community-finding
method to a collaboration network of scientists at the Santa Fe
Institute, an interdisciplinary research center in Santa Fe, New
Mexico (and current academic home to both authors of this
article). The 271 vertices in this network represent scientists in
residence at the Santa Fe Institute during any part of calendar
year 1999 or 2000 and their collaborators. An edge is drawn
between a pair of scientists if they coauthored one or more
articles during the same time period. The network includes all
journal and book publications by the scientists involved, along
with all papers that appeared in the institute’s technical reports
series. On average, each scientist coauthored articles with ap-
proximately five others.

In Fig. 6 we illustrate the results from the application of our
algorithm to the largest component of the collaboration graph
(which consists of 118 scientists). Vertices are drawn as different
shapes according to the primary divisions detected. We find that
the algorithm splits the network into a few strong communities,
with the divisions running principally along disciplinary lines.
The community indicated by diamonds is the least well defined
and represents a group of scientists using agent-based models to
study problems in economics and traffic f low. The algorithm
further divides this group into smaller components that corre-

spond roughly with the split between economics and traffic. The
community represented by circles is comprised of a group of
scientists working on mathematical models in ecology and forms
a fairly cohesive structure, as evidenced by the fact that the
algorithm does not break it into smaller components to any
significant extent. The largest community, indicated by squares
of various shades, represents a group working primarily in
statistical physics and is subdivided into well defined smaller
groups, which are denoted by the different shadings. In this case,
each subcommunity seems to revolve around the research in-
terests of one dominant member. The community represented by
triangles is a group working primarily on the structure of RNA.
It, too, can be divided further into smaller subcommunities,
centered once again around the interests of leading members.

Our algorithm thus seems to find two types of communities:
scientists grouped together by similarity either of research topic
or methodology. It is not surprising to see communities built
around research topics; we expect scientists to collaborate
primarily with others with whom their research focus is closely
aligned. The formation of communities around methodologies is
more interesting and may be the mark of truly interdisciplinary
work. For example, the grouping of those working on economics
with those working on traffic models may seem surprising, until
one realizes that the technical approaches these scientists have
taken are quite similar. As a result of these kinds of similarities,
the network contains ties between researchers from traditionally
disparate fields. We conjecture that this feature may be peculiar
to interdisciplinary centers like the Santa Fe Institute.

Food Web. We have also applied our algorithm to a food web of
marine organisms living in the Chesapeake Bay, a large estuary
on the east coast of the United States. This network was
originally compiled by Baird and Ulanowicz (27) and contains 33
vertices representing the ecosystem’s most prominent taxa. Most
taxa are represented at the species or genus level, although some
vertices represent larger groups of related species. Edges be-
tween taxa indicate trophic relationships—one taxon feeding on
another. Although relationships of this kind are inherently
directed, we here ignore direction and consider the network to
be undirected.

Applying our algorithm to this network, we find two well
defined communities of roughly equal size, plus a small number
of vertices that belong to neither community (see Fig. 7). As Fig.
7 shows, the split between the two large communities corre-
sponds quite closely with the division between pelagic organisms
(those that dwell principally near the surface or in the middle
depths of the bay) and benthic organisms (those that dwell near
the bottom). Interestingly, the algorithm includes within each
group organisms from a variety of different trophic levels. This
finding contrasts with other techniques that have been used to
analyze food webs (28), which tend to cluster taxa according to
trophic level rather than habitat. Our results seem to imply that
pelagic and benthic organisms in the Chesapeake Bay can be
separated into reasonably self-contained ecological subsystems.
The separation is not perfect: a small number of benthic
organisms find their way into the pelagic community, presumably
indicating that these species play a substantial role in the food
chains of their surface-dwelling colleagues. This finding suggests
that the simple traditional division of taxa into pelagic or benthic
may not be an ideal classification in this case.

We also have applied our method to a number of other food
webs. Interestingly, although some of these show clear commu-
nity structure similar to that of Fig. 7, some others do not. This
could be because some ecosystems are genuinely not composed
of separate communities, but it also could be because many food
webs, unlike other networks, are dense, i.e., the number of edges
scales as the square of the number of vertices rather than scaling
linearly (29). Our algorithm was designed with sparse networks

Fig. 6. The largest component of the Santa Fe Institute collaboration
network, with the primary divisions detected by our algorithm indicated by
different vertex shapes.
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Estimating the Number of Communities
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Community detection, the division of a network into dense subnetworks with only sparse connections
between them, has been a topic of vigorous study in recent years. However, while there exist a range of
effective methods for dividing a network into a specified number of communities, it is an open question
how to determine exactly how many communities one should use. Here we describe a mathematically
principled approach for finding the number of communities in a network by maximizing the integrated
likelihood of the observed network structure under an appropriate generative model. We demonstrate the
approach on a range of benchmark networks, both real and computer generated.
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The large-scale structure of empirically observed net-
works, such as social, biological, and technological networks,
is often complex and difficult to comprehend [1]. Community
detection, the division of the nodes of a network into densely
connected groups with only sparse between-group connec-
tions, is one of the most effective tools at our disposal for
reducing this complexity to a level where network topology
can be more easily understood and interpreted. The develop-
ment of algorithmic methods for community detection has
been the subject of a large volume of recent research [2–4], as
a result of which we now have a number of efficient and
sensitive detection techniques that are able to findmeaningful
communities in real-world settings [4–11].
A fundamental limitation of most of these methods,

however, is that they only divide networks into a fixed
number of groups, so that one must know in advance how
many groups one is looking for. Normally, one does not have
this information, which significantly diminishes the useful-
ness of community detection as an analytic tool. In this
Letter, we present a rigorous, first-principles solution to
this problem in the form of an algorithm that, when applied
to a given network, returns the number of communities the
network contains. The algorithm makes use of widely
accepted methods of statistical inference coupled with a
numerical approach that scales efficiently to large networks.
There have been a number of previous approaches

proposed for this problem, among which perhaps the best
known is the method of modularity maximization [5,12],
which is a method both for choosing the number of
communities and for performing the community division
itself. This method is employed in, for example, the widely
used Louvain algorithm [8], but it suffers from being only
heuristically motivated and there are instances where it is
known to give incorrect results [13,14]. More rigorous
approaches include the maximization of various approx-
imations to integrated data likelihoods for generative net-
work models, including Laplace-style approximations [15],

variants of the Bayesian information criterion [16,17], and
variational approximations [18]. Perhapsmost similar to our
work is that of Ref. [19], which uses an exact integral of the
likelihood for a stochastic blockmodel, as we do, but makes
a number of other approximations and also employs a non-
degree-corrected model, making it unsuitable for applica-
tions to most real-world network data. Also of note is the
minimum description length method of Ref. [20], which at
first sight is based on different ideas but can be shown to be
equivalent to maximizing an integrated likelihood, though it
uses a differentmodel and different numerical methods [21].
Our approach, like much of the recent work in this area, is

based on methods of statistical inference, in which one
defines a model of a network with community structure and
then fits that model to observed network data. The param-
eters of the fit tell us about the community structure in much
the sameway that the fit of a straight line through a set of data
points can tell us about their slope. The model most
commonly employed in this context is the stochastic block
model [11,22,23]. In this model, one specifies the number
of nodes n in the network along with the number k of
communities or groups, and then one assigns each node in
turn to one of the groups at random, with probability γr
of assignment to community r (where r runs from 1 to k).
Note that we must have

Pk
r¼1 γr ¼ 1 for consistency.

Once all nodes have been assigned to a group, one places
undirected edges independently at random between pairs of
distinct nodes with probabilities ωrs, where r and s are the
groups towhich the nodes belong. If the diagonal parameters
ωrr are greater than the off-diagonal ones, this produces a
network with traditional community structure.
In practice, this model is often studied in a slightly

different formulation in which one places not just a single
edge between any pair of nodes i, j but a Poisson distributed
number with mean ωrs or half that number when i ¼ j [11].
In this variant of the model, the generated network may
contain both multiedges and self-edges, which is in a sense
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Dynamics Based Approach – Paradigm Shift?
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FIG. 3. Emergence of hierarchical community structure through synchronization. The benchmark
network has the structure of (14,3), with its eigenvalue spectrum shown in Fig. 1. The nodal dynamical
system is that of a chaotic Rössler oscillator. The coupling parameter is continuously decreased so that,
starting from m = 2, the nontrivial eigenmodes lose their transverse stability one after another. Shown are
the synchronization error matrix constructed from all the pairwise distances between the nodal dynamical
variables, where the distances are color coded. For each panel, the integer value of m corresponds to the
case where the (m � 1) nontrivial eigenmodes (from two to m) are transversely unstable. For m  4,
the synchronization states reflect correctly the four large communities at second hierarchical level. As
m is increased from 4 to 16 (corresponding to continuous decrease in the actual value of the coupling
parameter), the degree of inter-community synchronization at the first hierarchical level of 16 communities
is gradually weakened, revealing the community structure at the smaller scale. Insofar as m  16, there is
local synchronization within each of the 16 communities. For m � 17, synchronization at the small scale
begins to deteriorate, revealing more refined structures within each such community.

increased from two to 19, synchronized clusters with a hierarchical community structure are grad-
ually unfolded by the matrix representation. For the values of the coupling strength corresponding
to m = 4 and m = 16, both the number and the size of the synchronous clusters are in complete
agreement with the community structures of the network at the two levels. Particularly, for m  4,
there are four synchronous clusters that correspond exactly to the four large communities at the
second hierarchical level, due to the transversely unstable eigenmodes associated with �2, �3, and
�4. In this case, there is no synchronization over the scale of this modular hierarchy, making
it possible to discern the communities at the corresponding scale. Equivalently, the community
structure at this scale is encoded faithfully in the eigenvectors associated with these eigenmodes.
However, at a smaller scale, the nodal dynamics are synchronized, due to the transverse stability
of the vast majority of the eigenmodes. As the value of m is increased from 4 to 16, starting from
m = 5, the eigenmodes loses transverse stability sequentially, leading to a gradual deterioration
of the original synchrony within each larger community. That is, the corresponding eigenvectors
begin to reveal the community structure at a smaller scale. For m = 16, all 15 nontrivial eigen-
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Dynamics Based Approach – A Real Example
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FIG. 6. Structure of the American college football game network as represented by the adjacency
matrix. There are altogether 115 teams (115 nodes in the network), which are divided into 12 conferences -
separated by lines. The names of the conferences are noted. Intra-conference games are more frequent than
inter-conference ones, giving rise to a community structure. Two anomalies are the “Independents” and
“Sun Belt” conferences, which have fewer intra-conference games. The conferences are organized into a
hierarchical structure because inter-conference teams that are geographically close to one another are more
likely to play in a game.

Real Networks. We test our synchronization based approach to community detection on a
number of real world networks and present results for two of them: the American college football
game network (CFGN) [1] and the southern women club network (SWCN) [67] (more examples
given in SI). The CFGN consists of 115 teams (nodes), which are uniformly divided into 12 con-
ferences (communities at the small scale) and form the hierarchical community structure through
games, as shown in Fig. 6. The nodal dynamics are set to be the chaotic Rössler type. A systematic
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