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% Scientific Innovation Processes — Random
Walk on Networks
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We introduce a model for the emergence of innovations, in which cognitive processes are described as
random walks on the network of links among ideas or concepts, and an innovation corresponds to the first
visit of a node. The transition matrix of the random walk depends on the network weights, while in turn the
weight of an edge is reinforced by the passage of a walker. The presence of the network naturally accounts
for the mechanism of the “adjacent possible,” and the model reproduces both the rate at which novelties
emerge and the correlations among them observed empirically. We show this by using synthetic networks
and by studying real data sets on the growth of knowledge in different scientific disciplines. Edge-
reinforced random walks on complex topologies offer a new modeling framework for the dynamics of
correlated novelties and are another example of coevolution of processes and networks.




Edge Reinforced Random Walks (ERRW5S)

FIG. 1. Edge-reinforced random walks (ERRWs) produce a
coevolution of the network with the dynamics of the walkers. At
time ¢z, the walker 1s on the red node and has already visited the
gray nodes, while the shaded nodes are still unexplored. The
widths of edges are proportional to their weights. At time ¢ + 1,
the walker has moved to a neighbor (red) with probability as in
Eq. (1), and the weight of the used edge has been reinforced by
ow. At this point, the walker will preferentially go back, although
it can also access the set of “adjacent possible” (green).
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Heaps’ Law  S(t) ~ tP

* S(t) —number of scientific concepts (innovations) at time t

* Originally introduced by Heaps to describe the number of distinct
words encountered at time t 1in a text document
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FIG. 2. ERRW on SW networks with N = 10° and m = 1.
(a) Heaps’s law and associated exponents f obtained for different
values of reinforcement 6w on a network with p = 0.02.

(b) Exponent /3 as a function of the reinforcement 6w for networks
with different rewiring probabilities p.



% Growth of Knowledge in Science — Empirical Data
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FIG. 3. Growth of knowledge in science. (a) For each scientific
field, an empirical sequence of scientific concepts & is extracted
from the abstracts of the temporally ordered sequence of papers.
(b) The network of relations among concepts is constructed by
linking two concepts if they appear in the same abstract. The
network is then used as the underlying structure for the ERRW
model. (c) The model is tuned to the empirical data by choosing
the value of the reinforcement éw that reproduces the Heaps
exponent S associated to S.
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ARTICLE INFO ABSTRACT
Article history: Random walks are ubiquitous in the sciences, and they are interesting from both theoretical
Accepted 25 July 2017 and practical perspectives. They are one of the most fundamental types of stochastic
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¢ : processes; can be used to model numerous phenomena, including diffusion, interactions,
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and opinions among humans and animals; and can be used to extract information about
important entities or dense groups of entities in a network. Random walks have been

Ilg?r/l‘ggrrgi}valk studied for many decades on both regular lattices and (especially in the last couple of
Network decades) on networks with a variety of structures. In the present article, we survey the
Diffusion theory and applications of random walks on networks, restricting ourselves to simple
Markov chain cases of single and non-adaptive random walkers. We distinguish three main types of
Point process random walks: discrete-time random walks, node-centric continuous-time random walks,

and edge-centric continuous-time random walks. We first briefly survey random walks on
a line, and then we consider random walks on various types of networks. We extensively
discuss applications of random walks, including ranking of nodes (e.g., PageRank), commu-
nity detection, respondent-driven sampling, and opinion models such as voter models.



