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Efficiency in passage times is an important issue in designing networks, such as transportation or computer
networks. The small-world networks have structures that yield high efficiency, while keeping the network
highly clustered. We show that among all networks with the small-world structure, the most efficient ones have
a ‘‘single center’’ node, from which all shortcuts are connected to uniformly distributed nodes over the
network. The networks with several centers and a connected subnetwork of shortcuts are shown to be ‘‘almost’’
as efficient. Genetic-algorithm simulations further support our results.
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The small-world network models have received much at-
tention from researchers in various disciplines, since they
were introduced by Watts and Strogatz #1$ as models of real
networks that lie somewhere between being random and be-
ing regular. Small-world networks are characterized by two
numbers: the average path length L and the clustering coef-
ficient C. L, which measures efficiency #2$ of communication
or passage time between nodes, is defined as being the aver-
age number of links in the shortest path between a pair of
nodes in the network. C represents the degree of local order,
and is defined as being the probability that two nodes con-
nected to a common node are also connected to each other.
Many real networks are sparse in the sense that the num-

ber of links in the network is much less than N(N!1)/2, the
number of all possible !bidirectional" links. On one hand,
random sparse networks have short average path length !i.e.,
L%logN), but they are poorly clustered !i.e., C"1). On the
other hand, regular sparse networks are typically highly clus-
tered, but L is comparable to N. !All-to-all networks have
C#1 and L#1, so they are most efficient, but most expen-
sive in the sense that they have all N(N!1)/2 possible con-
nections and so they are dense rather than sparse." The small-
world network models have advantages of both random and
regular sparse networks: they have small L for fast commu-
nication between nodes, and they have large C, ensuring suf-
ficient redundancy for high fault tolerance. Many networks
in the real world, such as the world-wide web !WWW" #3$,
the neural network of C. elegans #1,4$, collaboration net-
works of actors #1,4$, networks of scientific collaboration
#7$, and the metabolic network of E. coli #8$, have been
shown to have this property. The models of small-world net-
works are constructed from a regular lattice by adding a rela-
tively small number of shortcuts at random, where a link
between two nodes u and v is called a shortcut if the shortest
path length between u and v in the absence of the link
is more than two #4$. The regularity of the underlying
lattice ensures high clustering, while the shortcuts reduce the
size of L.

Most work has focused on average properties of such
models over different realizations of random shortcut con-
figurations. However, a different point of view is necessary
when a network is to be designed to optimize its perfor-
mance with a restricted number of long-range connections.
For example, a transportation network should be designed to
have the smallest L possible, so as to maximize the ability of
the network to transport people efficiently, while keeping a
reasonable cost of building the network. The same can be
said about communication networks for efficient exchange of
information between nodes. We fix the number of shortcuts
here and as a result the clustering coefficient C for any con-
figuration of shortcuts is approximately as high as that of the
underlying lattice. The problem we address in this paper is:
given a number of shortcuts in a small-world network, which
configuration of these shortcuts minimizes L? #5$.
Most random choices of shortcuts result in a suboptimal

configuration, since they do not have any special structures
or organizations. On the contrary, many real networks have
highly structured configurations of shortcuts. For example, in
long-range transportation networks, the airline connections
between major cities which can be regarded as shortcuts are
far from being random, but they are organized around hubs.
Efficient travel involves ground transportation to a nearest
airport, then flights through a hub to an airport closest to the
destination, and ground transportation again at the end.
In the following, we show that the average path length L

of a small-world network with a fixed number of shortcuts
attains its minimum value when there exists a ‘‘center’’ node,
from which all shortcuts are connected to uniformly distrib-
uted nodes in the network #6$. An example of such a con-
figuration is illustrated in Fig. 1!a". We also show that if a
small-world network has several ‘‘centers’’ and its subnet-
work of shortcuts is connected, then L is almost as small as
the minimum value. An example of such configuration is
shown in Fig. 1!b". We then derive an explicit formula for
the minimum average path length in the case of the small-
world network models constructed from a one-dimensional
lattice by adding a fixed number of shortcuts. Finally, we
verify the results by performing genetic-algorithm simula-
tions for minimizing L.
Our general argument proceeds as follows. A small-world

network is composed of two parts: the underlying network
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!e.g., a regular lattice" and the subnetwork of shortcuts con-
taining only the shortcuts and their nodes. Let m denote the
number of shortcuts. First, for L to be as short as possible,
the subnetwork of shortcuts must be connected. This connec-
tivity is unlikely to happen if the shortcuts are chosen at
random, since the network is sparse. Indeed, the probability
is less than m!/Nm!1, where N is the number of nodes in the
network. For example, for N"1000 and m"10, the prob-
ability is smaller than 10!22. Having a disconnected compo-
nent in the subnetwork of shortcuts increases the value of L.
In particular, consider the configuration of shortcuts as
shown in Fig. 2!a", where one of the shortcuts in Fig. 1!a" is
disconnected from the rest of the subnetwork of shortcuts. If
the shortest path between a pair of nodes involves going
from the disconnected shortcut to the rest of the subnetwork,
then its length is increased by 2 compared to the path length
between the corresponding pair in Fig. 1!a". This increases
the average path length L.
Next, observe that the nodes in the subnetwork of short-

cuts must be uniformly distributed over the network. This
can be seen by noting that the average length of the shortest
path from a node to its nearest shortcut is smallest when
these nodes are uniformly distributed.
Finally, among all possible configurations of connected

subnetworks of shortcuts with uniformly distributed nodes,
ones with a single center involve the largest number of nodes
!namely, m#1). Figure 2!b" shows some examples of con-
nected subnetworks with m"6. Obviously, increasing the
number of nodes involved in the shortcut subnetwork re-
duces L, since it reduces the average path length to the near-
est shortcut node. Among all connected configurations of
shortcuts having m#1 nodes, the ones having a single center
give the shortest value for L, since the average path length of
the shortcut subnetwork is the smallest in that case.
These arguments indicate that given a fixed number of

shortcuts, the networks with a connected subnetwork of

shortcuts having nodes uniformly distributed have smaller L
than a typical random configuration, and among those the
ones with a single center minimize L. In other words, the
‘‘smallest’’ small-world networks are characterized by these
structures.
Now we will compute explicitly the average path length

for a configuration with a single center in the case of small-
world networks constructed from a one-dimensional lattice.
Consider N nodes arranged uniformly on a circle of unit
circumference, where each node is connected to its two
nearest-neighbor nodes. In addition, consider shortcuts con-
necting m arbitrary pairs of nodes. To make the calculation
simple, we take the continuum limit N→# with m fixed, in
which the network becomes a continuous graph composed of
a circle corresponding to the lattice and chords representing
the shortcuts. Let us define the distance d(P ,Q) between
points P and Q on the continuous graph as the length of the
shortest continuous path along the graph, regarding the
length of a chord as zero. In other words, a shortcut is re-
garded as identifying two points on the circle, rather than
merely connecting them. Then, the number of links in the
shortest path between nodes P and Q in the original network,
normalized by N, tends to d(P ,Q) as N→# . This one-
dimensional model, despite being one of the simplest models
of small-world networks, captures basic features of many
real networks. In Ref. $9%, a mean-field-type argument was
used to derive an analytical expression for an average of L
over random configurations of shortcuts, which was later im-
proved in Ref. $10%. In the following, we derive an analytical
expression for the configuration with a single center.
Consider the configuration of shortcuts with a center node

connected to m other points on the circle, as shown in Fig. 3.
The m#1 points including the center point are equally
spaced with &'1/(m#1), and they divide the circle into
m#1 arcs of the same length. We will compute the average
d(P ,Q) taken over all pairs (P ,Q). Without loss of gener-
ality, we may consider P as fixed. Let AP be the arc in which
P lies. Suppose first that Q!AP as in Fig. 3!a". Because the
end points of AP are connected to each other by two short-
cuts via the center, the distance in AP is equivalent to the
distance on a circle of circumference & . Therefore, the aver-
age of d(P ,Q) over all pairs (P ,Q), such that Q!AP , is
equal to the average distance between two points on a circle
of circumference & , which is &/4. Suppose now that Q"AP
as in Fig. 3!b". Let us denote the distance from P to its
closest shortcut connection by ( , and the distance from Q

FIG. 1. Examples of shortcut configuration with !a" a single
center and !b" two centers.

FIG. 2. !a" Configuration with one shortcut disconnected from
the rest of the subnetwork of shortcuts. !b" Various configuration of
shortcuts with m"6 shortcuts.

FIG. 3. The continuum limit model with configuration having a
single center. !a" Q is in AP , the arc containing P, and !b" Q is not
in AP .
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m shortcuts from one center:

to its closest shortcut by ! . Since the shortest path between
P and Q must pass through two shortcuts of length zero, we
have d(P ,Q)!""! . Averaging this over all possible
choices of " and ! , which can take any value between 0 and
#/2 independently, we obtain #/2. Noting that the probabili-
ties that Q!AP and that Q"AP are 1/(m"1) and m/(m
"1), respectively, the normalized average path length l can
be calculated as

l!d$P ,Q %!
1

m"1 ! #

4 ""
m

m"1 ! #

2 "!
2m"1
4$m"1 %2

.

Let us now consider more general situation where each
node in the network has connections to its neighboring
nodes, up to kth nearest neighbors. Because of the connec-
tions to kth nearest neighbors, following the shortest path
between nodes P and Q takes 1/k times less steps compared
to the case discussed above. Hence, we must also scale l, the
normalized average path length of the network, by a factor
1/k yielding

l!
1
kd$P ,Q %!

2m"1
4k$m"1 %2

. $1%

An important observation about Eq. $1% is that it can be writ-
ten as l! f (m)/k , where f (m) is a function that depends
only on the number of shortcuts. The formula derived in Ref.
&9' for the average lr of normalized path length over random
configuration of shortcuts also has the same form with dif-
ferent function for f, namely,

lr!
1

2k!m2"2m
tanh#1! m

!m2"2m " . $2%

Note also that since the shortcuts are considered to have
length zero, the derivation above remains correct as long as
the subnetwork of shortcuts is connected and has uniformly
distributed nodes, suggesting that in the continuum limit
these two conditions are sufficient to achieve the minimum
of L.
Figure 4 compares the calculation summarized in Eq. $1%

$continuous curve% with numerical computation of l for a
single center $circles% and of lr over 10 random configura-
tions of shortcuts $squares%. This shows an excellent agree-
ment of Eq. $1% with the simulation. In fact, the error in the
Eq. $1% due to the approximation N→( is of order 1/N ,
mainly because the normalized length of a shortcut is con-
sidered to be zero rather than 1/N . The inset in Fig. 4 shows
the ratio lr /l as a function of the number $m% of shortcuts.
Here the ratio is computed from numerical simulations
$circles% and from the theoretical results $1% and $2% $continu-
ous curve%. Since Eq. $1% is valid for m$N and Eq. $2% is
valid for 1$m$N , the curve in the inset is exact in the limit
N→( with m%1 fixed. Using the asymptotic form lr
)(log 2m)/4m of Eq. $2% for m%1, one sees that lr /l
)logm, explaining the fact that the curve in the inset is
almost a straight line for large m. Numerical results in the
inset indicate that the effect of finite size and large shortcut
density actually increases the ratio, making the benefit of

optimizing the shortcut configuration to a single-center
model even larger than the theoretical prediction.
Finally, we simulate optimization of the shortcut configu-

ration for a one-dimensional array of nodes using the
genetic-algorithm $GA% methodology &11'. An initial popula-
tion is described as being a collection of various shortcut
configurations specified by m pairs of integers representing
the locations of nodes connected by shortcuts. The fitness of
each configuration is defined to be L#1, where L is the av-
erage path length. A new population of shortcut configura-
tions is created from the old one in analogy with reproduc-
tion in population genetics: a configuration is viewed as
being the genome of an individual in the population, and in
creating a new population, we allow there to be one-point
crossovers $i.e., interchanging subsets of shortcuts% and mu-
tations $i.e., changes in the location of end points by Gauss-
ian random numbers%. This creation process is continued un-
til the fitness of the best individual in the population is
constant over 100 generations. This gives a candidate for the
optimal solution. The program for the simulation was devel-
oped using a C"" library called GAlib &12'.
Ten best solutions $here best means having shortest aver-

age path length% resulting from 254 independent runs with
m!10, k!1, and N!1000, and the population size of 100
are shown in Fig. 5. First, observe that in each case the
subnetwork of shortcuts is connected. This was the case in
every solution found using the genetic algorithm. Second, in
each case there are centers from which many shortcuts ema-
nate. Moreover, the nodes in the subnetwork are approxi-
mately equally spaced around the circle. These observations
are consistent with the argument used above to establish our
results. All solutions in Fig. 5 have the average path length
within 2% of the average path length achieved by the single-
center configuration $which is 44.577%. In contrast, the cor-
responding value for random shortcuts (*88) is almost
double the single-center solution. Although the single-center

FIG. 4. Normalized path length of the network as a function of
the number m of shortcuts for k!1. The continuous curve is Eq.
$1%. The circles and squares are the numerical computation of l for
the configuration with a single center and of lr over 10 random
shortcut configurations, respectively. The inset shows the ratio lr /l
computed from numerical simulations $circles% and from theoretical
results $1% and $2% for N!( $continuous line%. N!104 was used for
numerical computations.
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to its closest shortcut by ! . Since the shortest path between
P and Q must pass through two shortcuts of length zero, we
have d(P ,Q)!""! . Averaging this over all possible
choices of " and ! , which can take any value between 0 and
#/2 independently, we obtain #/2. Noting that the probabili-
ties that Q!AP and that Q"AP are 1/(m"1) and m/(m
"1), respectively, the normalized average path length l can
be calculated as
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Let us now consider more general situation where each
node in the network has connections to its neighboring
nodes, up to kth nearest neighbors. Because of the connec-
tions to kth nearest neighbors, following the shortest path
between nodes P and Q takes 1/k times less steps compared
to the case discussed above. Hence, we must also scale l, the
normalized average path length of the network, by a factor
1/k yielding

l!
1
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2m"1
4k$m"1 %2
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An important observation about Eq. $1% is that it can be writ-
ten as l! f (m)/k , where f (m) is a function that depends
only on the number of shortcuts. The formula derived in Ref.
&9' for the average lr of normalized path length over random
configuration of shortcuts also has the same form with dif-
ferent function for f, namely,
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Note also that since the shortcuts are considered to have
length zero, the derivation above remains correct as long as
the subnetwork of shortcuts is connected and has uniformly
distributed nodes, suggesting that in the continuum limit
these two conditions are sufficient to achieve the minimum
of L.
Figure 4 compares the calculation summarized in Eq. $1%

$continuous curve% with numerical computation of l for a
single center $circles% and of lr over 10 random configura-
tions of shortcuts $squares%. This shows an excellent agree-
ment of Eq. $1% with the simulation. In fact, the error in the
Eq. $1% due to the approximation N→( is of order 1/N ,
mainly because the normalized length of a shortcut is con-
sidered to be zero rather than 1/N . The inset in Fig. 4 shows
the ratio lr /l as a function of the number $m% of shortcuts.
Here the ratio is computed from numerical simulations
$circles% and from the theoretical results $1% and $2% $continu-
ous curve%. Since Eq. $1% is valid for m$N and Eq. $2% is
valid for 1$m$N , the curve in the inset is exact in the limit
N→( with m%1 fixed. Using the asymptotic form lr
)(log 2m)/4m of Eq. $2% for m%1, one sees that lr /l
)logm, explaining the fact that the curve in the inset is
almost a straight line for large m. Numerical results in the
inset indicate that the effect of finite size and large shortcut
density actually increases the ratio, making the benefit of

optimizing the shortcut configuration to a single-center
model even larger than the theoretical prediction.
Finally, we simulate optimization of the shortcut configu-

ration for a one-dimensional array of nodes using the
genetic-algorithm $GA% methodology &11'. An initial popula-
tion is described as being a collection of various shortcut
configurations specified by m pairs of integers representing
the locations of nodes connected by shortcuts. The fitness of
each configuration is defined to be L#1, where L is the av-
erage path length. A new population of shortcut configura-
tions is created from the old one in analogy with reproduc-
tion in population genetics: a configuration is viewed as
being the genome of an individual in the population, and in
creating a new population, we allow there to be one-point
crossovers $i.e., interchanging subsets of shortcuts% and mu-
tations $i.e., changes in the location of end points by Gauss-
ian random numbers%. This creation process is continued un-
til the fitness of the best individual in the population is
constant over 100 generations. This gives a candidate for the
optimal solution. The program for the simulation was devel-
oped using a C"" library called GAlib &12'.
Ten best solutions $here best means having shortest aver-

age path length% resulting from 254 independent runs with
m!10, k!1, and N!1000, and the population size of 100
are shown in Fig. 5. First, observe that in each case the
subnetwork of shortcuts is connected. This was the case in
every solution found using the genetic algorithm. Second, in
each case there are centers from which many shortcuts ema-
nate. Moreover, the nodes in the subnetwork are approxi-
mately equally spaced around the circle. These observations
are consistent with the argument used above to establish our
results. All solutions in Fig. 5 have the average path length
within 2% of the average path length achieved by the single-
center configuration $which is 44.577%. In contrast, the cor-
responding value for random shortcuts (*88) is almost
double the single-center solution. Although the single-center

FIG. 4. Normalized path length of the network as a function of
the number m of shortcuts for k!1. The continuous curve is Eq.
$1%. The circles and squares are the numerical computation of l for
the configuration with a single center and of lr over 10 random
shortcut configurations, respectively. The inset shows the ratio lr /l
computed from numerical simulations $circles% and from theoretical
results $1% and $2% for N!( $continuous line%. N!104 was used for
numerical computations.
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m randomly distributed shortcuts:

to its closest shortcut by ! . Since the shortest path between
P and Q must pass through two shortcuts of length zero, we
have d(P ,Q)!""! . Averaging this over all possible
choices of " and ! , which can take any value between 0 and
#/2 independently, we obtain #/2. Noting that the probabili-
ties that Q!AP and that Q"AP are 1/(m"1) and m/(m
"1), respectively, the normalized average path length l can
be calculated as
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Let us now consider more general situation where each
node in the network has connections to its neighboring
nodes, up to kth nearest neighbors. Because of the connec-
tions to kth nearest neighbors, following the shortest path
between nodes P and Q takes 1/k times less steps compared
to the case discussed above. Hence, we must also scale l, the
normalized average path length of the network, by a factor
1/k yielding
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only on the number of shortcuts. The formula derived in Ref.
&9' for the average lr of normalized path length over random
configuration of shortcuts also has the same form with dif-
ferent function for f, namely,
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Note also that since the shortcuts are considered to have
length zero, the derivation above remains correct as long as
the subnetwork of shortcuts is connected and has uniformly
distributed nodes, suggesting that in the continuum limit
these two conditions are sufficient to achieve the minimum
of L.
Figure 4 compares the calculation summarized in Eq. $1%

$continuous curve% with numerical computation of l for a
single center $circles% and of lr over 10 random configura-
tions of shortcuts $squares%. This shows an excellent agree-
ment of Eq. $1% with the simulation. In fact, the error in the
Eq. $1% due to the approximation N→( is of order 1/N ,
mainly because the normalized length of a shortcut is con-
sidered to be zero rather than 1/N . The inset in Fig. 4 shows
the ratio lr /l as a function of the number $m% of shortcuts.
Here the ratio is computed from numerical simulations
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almost a straight line for large m. Numerical results in the
inset indicate that the effect of finite size and large shortcut
density actually increases the ratio, making the benefit of
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model even larger than the theoretical prediction.
Finally, we simulate optimization of the shortcut configu-

ration for a one-dimensional array of nodes using the
genetic-algorithm $GA% methodology &11'. An initial popula-
tion is described as being a collection of various shortcut
configurations specified by m pairs of integers representing
the locations of nodes connected by shortcuts. The fitness of
each configuration is defined to be L#1, where L is the av-
erage path length. A new population of shortcut configura-
tions is created from the old one in analogy with reproduc-
tion in population genetics: a configuration is viewed as
being the genome of an individual in the population, and in
creating a new population, we allow there to be one-point
crossovers $i.e., interchanging subsets of shortcuts% and mu-
tations $i.e., changes in the location of end points by Gauss-
ian random numbers%. This creation process is continued un-
til the fitness of the best individual in the population is
constant over 100 generations. This gives a candidate for the
optimal solution. The program for the simulation was devel-
oped using a C"" library called GAlib &12'.
Ten best solutions $here best means having shortest aver-

age path length% resulting from 254 independent runs with
m!10, k!1, and N!1000, and the population size of 100
are shown in Fig. 5. First, observe that in each case the
subnetwork of shortcuts is connected. This was the case in
every solution found using the genetic algorithm. Second, in
each case there are centers from which many shortcuts ema-
nate. Moreover, the nodes in the subnetwork are approxi-
mately equally spaced around the circle. These observations
are consistent with the argument used above to establish our
results. All solutions in Fig. 5 have the average path length
within 2% of the average path length achieved by the single-
center configuration $which is 44.577%. In contrast, the cor-
responding value for random shortcuts (*88) is almost
double the single-center solution. Although the single-center

FIG. 4. Normalized path length of the network as a function of
the number m of shortcuts for k!1. The continuous curve is Eq.
$1%. The circles and squares are the numerical computation of l for
the configuration with a single center and of lr over 10 random
shortcut configurations, respectively. The inset shows the ratio lr /l
computed from numerical simulations $circles% and from theoretical
results $1% and $2% for N!( $continuous line%. N!104 was used for
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Simulation Results from Genetic Algorithm

solution was not found by the genetic algorithm due to the
limited number !254" of simulation runs, the results show
that configurations with several centers are almost as effi-
cient as the single-center configuration, as long as the sub-
network of shortcuts is connected and its nodes are uni-
formly distributed. The single-center solution was found for
smaller networks with N!100 and m!5, for which the
computation is less demanding.
Any other values of k should lead to similar results. The

case of k!2 is shown in Fig. 6. In fact, due to the generality
of the argument given earlier, we expect that the results can
be extended to the case where the shortcuts are added to a
lattice of higher dimension, or to a regular network of an-
other type.
The result of these simulations using the GAmethodology

shows that design elements for efficient networks are !1"
connectedness of the shortcut subnetwork, !2" uniform dis-
tribution of nodes in the subnetwork, and !3" existence of
centers.
We expect to see many examples of real networks with

such structures. Our computations on the neural network of
C. elegans !which has 285 nodes, 2347 links, and 112 short-
cuts" show that the structures are indeed present: !i" the
shortcut subnetwork has much fewer (!15) connected com-
ponents than the average (#47) for randomly chosen short-
cuts, and the size of its giant component (!75) is signifi-
cantly larger than the average (#12) over random shortcuts;
!ii" most (#88%) of the nodes are within one step of a
shortcut; !iii" there are a few nodes having many shortcuts
!11 shortcuts in the main center". In general, a network with
such structures is robust against random failures, although it
is sensitive to deliberate attacks to the centers. This property,
which is shared by scale-free networks $13%, is shown to

characterize many real networks such as the Internet and the
WWW $14%. However, some biological networks may be ro-
bust even against attacks on the centers since loss of a center
can result in shortcuts reconnecting to nearby nodes followed
by the optimization process that quickly recovers the small-
est configuration.
We have shown that among the small-world networks

having a fixed number of shortcuts, the average path length
is smallest when there exists a single center through which
all of the shortcuts are connected and shortcut nodes are
uniformly distributed in the network. We have also shown
that the average path length is almost as small when the
shortcuts are connected and have a few centers, which was
supported by the result of the GA simulations. Our results
have important consequences in situations where the effi-
ciency of information flow over a large network is required.
The fact that the architecture of connected shortcuts with
centers arises through genetic algorithms suggests the possi-
bility that such a structure could emerge in networks in natu-
ral organisms !e.g., the neural network of C. elegans", al-
though the fitness used in GA here is not necessarily related
to that of natural selection in biology. In particular, it pro-
vides a potential mechanism for the appearance of highly
connected nodes while keeping high clustering in networks
that are evolving but not necessarily growing, such as neural
and metabolic networks.
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