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The Internet has a very complex connectivity recently modeled by the class of scale-free networks.
This feature, which appears to be very efficient for a communications network, favors at the same time the
spreading of computer viruses. We analyze real data from computer virus infections and find the average
lifetime and persistence of viral strains on the Internet. We define a dynamical model for the spreading
of infections on scale-free networks, finding the absence of an epidemic threshold and its associated
critical behavior. This new epidemiological framework rationalizes data of computer viruses and could
help in the understanding of other spreading phenomena on communication and social networks.
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Many social, biological, and communication systems
can be properly described by complex networks whose
nodes represent individuals or organizations, and links
mimic the interactions among them [1,2]. Particularly in-
teresting examples are the Internet [3,4] and the World
Wide Web [5], which have been extensively studied be-
cause of their technological and economical relevance.
These studies have revealed, among other facts, that the
probability that a node of these networks has k connec-
tions follows a scale-free distribution P!k" # k2g , with
an exponent g that ranges between 2 and 3. The presence
of nodes with a very large number of connections (local
clustering) is indeed the key ingredient in the modeling of
these networks with the recent introduction of scale-free
(SF) graphs [6].

In view of the wide occurrence of complex networks
in nature it is of great interest to inspect the effect of
their features on epidemic and disease spreading [7], and
more in general in the context of the nonequilibrium phase
transitions typical of these phenomena [8]. The study of
epidemics on these networks finds an immediate practical
application in the understanding of computer virus spread-
ing [9,10], and could also be relevant to the fields of epi-
demiology [11] and pollution control [12].

In this Letter, we analyze data from real computer virus
epidemics, providing a statistical characterization that
points out the importance of incorporating the peculiar
topology of scale-free networks in the theoretical descrip-
tion of these infections. With this aim, we study by large
scale simulations and analytical methods the susceptible-
infected-susceptible (SIS) [11] model on SF graphs. We
find the absence of an epidemic threshold and its associ-
ated critical behavior, which implies that SF networks are
prone to the spreading and the persistence of infections at
whatever spreading rate the epidemic agents possess. The
absence of the epidemic threshold — a standard element
in mathematical epidemiology [11]— radically changes
many of the standard conclusions drawn in epidemic
modeling. The present results are also relevant in the field

of absorbing-state phase transitions and catalytic reac-
tions [8].

The analysis of computer viruses has been the subject of
a continuous interest in the computer science community
[10,13–15], mainly following approaches borrowed from
biological epidemiology [11]. The standard model used
in the study of computer virus infections is the SIS epi-
demiological model. Each node of the network represents
an individual and each link is a connection along which
the infection can spread to other systems. Individuals ex-
ist only in two discrete states, “healthy” or “infected.” At
each time step, each susceptible (healthy) node is infected
with rate n if it is connected to one or more infected nodes.
At the same time, infected nodes are cured and become
again susceptible with rate d, defining an effective spread-
ing rate l ! n$d [16]. Without lack of generality, we can
set d ! 1. This model implicitly considers the presence
of antivirus software, since all infected individuals even-
tually return to the susceptible state, and represents the
case in which computer users do not become more alert
with respect to viral infection once they have cleaned their
computers which can again become infected [15]. The
updating can be performed with both parallel and sequen-
tial dynamics [8]. In models with local connectivity (Eu-
clidean lattices) and random graphs, the most significant
result is the general prediction of a nonzero epidemic
threshold lc [8,11]. If the value of l is above the thresh-
old, l $ lc, the infection spreads and becomes persistent.
Below it, l , lc, the infection dies out exponentially fast.
The epidemic threshold is actually equivalent to a critical
point in a nonequilibrium phase transition. In this case, the
critical point separates an active phase with a stationary
density of infected nodes from a phase with only healthy
nodes and null activity. In particular, it is easy to rec-
ognize that the SIS model is a generalization of the con-
tact process model that has been extensively studied in the
context of absorbing-state phase transitions [8]. Statistical
observations of virus incidents in the wild, on the other
hand, indicate that all surviving viruses saturate to a very
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Epidemic Threshold ~ Inverse of Second Moment 
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low level of persistence, affecting just a tiny fraction of
the total number of computers [10]. This fact is in striking
contradiction with the theoretical predictions unless in the
very unlikely chance that all computer viruses have an ef-
fective spreading rate tuned just infinitesimally above the
threshold. This points out that the view obtained so far
with the modeling of computer virus epidemics is very in-
structive but not completely adequate to represent the real
phenomenon.

In order to gain further insight into the spreading proper-
ties of viruses in the wild, we have analyzed the prevalence
data reported by the Virus Bulletin [17] from February
1996 to March 2000, covering a time window of 50 months.
We have analyzed in particular the surviving probability of
homogeneous groups of viruses, classified according to
their infection mechanism [9]. We consider the total num-
ber of viruses of a given strain that are born and died within
our observation window. Hence, we calculate the surviv-
ing probability Ps!t" of the strain as the fraction of viruses
still alive at time t after their birth. Figure 1 shows that
the surviving probability suffers a sharp drop in the first
two months of a virus’ life. This is a well-known feature
[10,13] indicating that statistically only a small percentage
of viruses gives rise to a significant outbreak in the com-
puter community. Figure 1, on the other hand, shows for
larger times a clean exponential tail, Ps!t" # exp!2t$t",
where t represents the characteristic lifetime of the virus
strain [18]. The numerical fit of the data yields t % 14
months for boot and macroviruses and t % 6 9 months
for file viruses. The values of t are relatively independent
of the observation window considered, i.e., the analysis of
the viruses that are born and die in a time range of less
than 50 months yields results compatible with the full data
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FIG. 1. Surviving probability for viruses in the wild. The 814
different viruses analyzed have been grouped in three main
strains [9]: file viruses infect a computer when running an infect-
ed application; boot viruses also spread via infected applications,
but copy themselves into the boot sector of the hard drive and
are thus immune to a computer reboot; macroviruses infect data
files and are thus platform independent. The presence of an ex-
ponential decay is evident in the plot, with characteristic time t.

set, with larger fluctuations, however, due to the smaller
statistics. These characteristic times are impressively large
if compared with the interval in which antivirus software is
available on the market (usually within days or weeks after
the first incident report) and corresponds to the occurrence
of metastable endemic states. Such a long lifetime on the
scale of the typical spread/recovery rates would suggest
an effective spreading rate much larger than the epidemic
threshold. On the other hand, this is again discordant with
the always low prevalence levels of computer viruses.

The key point in understanding the puzzling properties
exhibited by computer viruses resides in the capacity of
many of them to propagate via data exchange with com-
munication protocols (FTP, emails, etc.) [10]. Viruses
will spread preferentially to computers which are highly
connected to the outer world and thus are proportionally
exchanging more data and information. It is thus rather in-
tuitive to consider the Internet topology as the effective one
on which the spreading occurs. The scale-free connectiv-
ity of the Internet implies that each node has a statistically
significant probability of having a very large number of
connections compared to the average connectivity &k' of
the network. That opposes conventional random networks
(local or nonlocal) in which each node has approximately
the same number of links k % &k' [19]. It is then natural
to foresee that scale-free properties should be included in
a theory of epidemic spreading of computer viruses.

To address the effects of scale-free connectivity in epi-
demic spreading we study the SIS model on SF networks.
As a prototypical example, we consider the graph gener-
ated by using the algorithm devised in Ref. [6]. We start
from a small number m0 of disconnected nodes; every time
step a new node is added, with m links that are connected
to an old node i with ki links according to the probability
ki$

P
j kj . After iterating this scheme a sufficient number

of times, we obtain a network composed by N nodes with
connectivity distribution P!k" # k23 and average connec-
tivity &k' ! 2m. In this work we take m ! 3. We have
performed numerical simulations on graphs with the num-
ber of nodes ranging from N ! 103 to N ! 8.5 3 106

and studied the variation in time and the stationary prop-
erties of the density of infected nodes r in surviving in-
fections; i.e., the virus prevalence. Initially we infect half
of the nodes in the network, and iterate the rules of the
SIS model with parallel updating. After an initial tran-
sient regime, the system stabilizes in a steady state with a
constant average density of infected nodes. In this steady
state, nodes are infected recurrently, without apparent pe-
riodicity. The prevalence is computed averaging over at
least 100 different starting configurations, performed on at
least 10 different realizations of the random networks.

The first arresting evidence from simulations is the ab-
sence of an epidemic threshold, i.e., lc ! 0. In Fig. 2 we
show the virus prevalence in the steady state that decays
with decreasing l as r # exp!2C$l", where C is a con-
stant. This implies that for any finite value of l the virus
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λc ~ 1/<k2> 
Mean-field theory predicts:


