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important consequence of nonlinear gravitational processes if the
initial conditions are gaussian, and is a potentially powerful signa-
ture to exploit in statistical tests of this class of models; see Fig. 1.

The information needed to fully specify a non-gaussian field (or,
in a wider context, the information needed to define an image8)
resides in the complete set of Fourier phases. Unfortunately,
relatively little is known about the behaviour of Fourier phases in
the nonlinear regime of gravitational clustering9–14, but it is essential
to understand phase correlations in order to design efficient
statistical tools for the analysis of clustering data. A first step on
the road to a useful quantitative description of phase information is
to represent it visually. We do this using colour, as shown in Fig. 2.
To view the phase coupling in an N-body simulation, we Fourier-
transform the density field; this produces a complex array contain-
ing the real (R) and imaginary (I) parts of the transformed ‘image’,
with the pixels in this array labelled by wavenumber k rather than
position x. The phase for each wavenumber, given by
f ¼ arctanðI=RÞ, is then represented as a hue for that pixel.

The rich pattern of phase information revealed by this method
(see Fig. 3) can be quantified, and related to the gravitational
dynamics of its origin. For example, in our analysis of phase
coupling5 we introduced a quantity Dk:

Dk ! fkþ1 ! fk ð4Þ

This quantity measures the difference in phase of modes with
neighbouring wavenumbers in one dimension. We refer to Dk as
the phase gradient. To apply this idea to a two-dimensional
simulation, we simply calculate gradients in the x and y directions
independently. Because the difference between two circular random
variables is itself a circular random variable, the distribution of Dk

should initially be uniform. As the fluctuations evolve waves begin
to collapse, spawning higher-frequency modes in phase with the
original15. These then interact with other waves to produce the non-
uniform distribution of Dk seen in Fig. 3.

It is necessary to develop quantitative measures of phase infor-
mation that can describe the structure displayed in the colour
representations. In the beginning, the phases fk are random and
so are the Dk obtained from them. This corresponds to a state of
minimal information, or in other words, maximum entropy. As
information flows into the phases, the information content must
increase and the entropy decrease. This can be quantified by
defining an information entropy for the set of phase gradients5.
We construct a frequency distribution, f(D), of the values of Dk

obtained from the whole map. The entropy is then defined as

SðDÞ ¼ ! !f ðDÞ log½f ðDÞÿdD ð5Þ

where the integral is taken over all values of D, that is, from 0 to 2p.
The use of D, rather than f itself, to define entropy is one way of
accounting for the lack of translation invariance of f, a problem that
was missed in previous attempts to quantify phase entropy16. A
uniform distribution of D is a state of maximum entropy (mini-
mum information), corresponding to gaussian initial conditions
(random phases). This maximal value of Smax ¼ logð2pÞ is a
characteristic of gaussian fields. As the system evolves, it moves
into states of greater information content (that is, lower entropy).
The scaling of S with clustering growth displays interesting
properties5, establishing an important link between the spatial
pattern and the physical processes driving clustering growth. This
phase information is a unique ‘fingerprint’ of gravitational instabil-
ity, and it therefore also furnishes statistical tests of the presence of
any initial non-gaussianity17–19. !
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Many complex systems display a surprising degree of tolerance
against errors. For example, relatively simple organisms grow,
persist and reproduce despite drastic pharmaceutical or
environmental interventions, an error tolerance attributed to
the robustness of the underlying metabolic network1. Complex
communication networks2 display a surprising degree of robust-
ness: although key components regularly malfunction, local fail-
ures rarely lead to the loss of the global information-carrying
ability of the network. The stability of these and other complex
systems is often attributed to the redundant wiring of the func-
tional web defined by the systems’ components. Here we demon-
strate that error tolerance is not shared by all redundant systems:
it is displayed only by a class of inhomogeneously wired networks,
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called scale-free networks, which include the World-Wide Web3–5,
the Internet6, social networks7 and cells8. We find that such
networks display an unexpected degree of robustness, the ability
of their nodes to communicate being unaffected even by un-
realistically high failure rates. However, error tolerance comes at a
high price in that these networks are extremely vulnerable to
attacks (that is, to the selection and removal of a few nodes that
play a vital role in maintaining the network’s connectivity). Such
error tolerance and attack vulnerability are generic properties of
communication networks.

The increasing availability of topological data on large networks,
aided by the computerization of data acquisition, had led to great
advances in our understanding of the generic aspects of network
structure and development9–16. The existing empirical and theo-
retical results indicate that complex networks can be divided into
two major classes based on their connectivity distribution P(k),
giving the probability that a node in the network is connected to k
other nodes. The first class of networks is characterized by a P(k)
that peaks at an average ⟨k⟩ and decays exponentially for large k. The
most investigated examples of such exponential networks are the
random graph model of Erdös and Rényi9,10 and the small-world
model of Watts and Strogatz11, both leading to a fairly homogeneous
network, in which each node has approximately the same number
of links, k ! ⟨k⟩. In contrast, results on the World-Wide Web
(WWW)3–5, the Internet6 and other large networks17–19 indicate
that many systems belong to a class of inhomogeneous networks,
called scale-free networks, for which P(k) decays as a power-law,
that is PðkÞ"k! g, free of a characteristic scale. Whereas the prob-
ability that a node has a very large number of connections (k q ⟨k⟩)
is practically prohibited in exponential networks, highly connected
nodes are statistically significant in scale-free networks (Fig. 1).

We start by investigating the robustness of the two basic con-
nectivity distribution models, the Erdös–Rényi (ER) model9,10 that
produces a network with an exponential tail, and the scale-free
model17 with a power-law tail. In the ER model we first define the N
nodes, and then connect each pair of nodes with probability p. This
algorithm generates a homogeneous network (Fig. 1), whose con-
nectivity follows a Poisson distribution peaked at ⟨k⟩ and decaying
exponentially for k q ⟨k⟩.

The inhomogeneous connectivity distribution of many real net-
works is reproduced by the scale-free model17,18 that incorporates
two ingredients common to real networks: growth and preferential
attachment. The model starts with m0 nodes. At every time step t a
new node is introduced, which is connected to m of the already-
existing nodes. The probability Πi that the new node is connected
to node i depends on the connectivity ki of node i such that
Πi ¼ ki=Sjkj. For large t the connectivity distribution is a power-
law following PðkÞ ¼ 2m2=k3.

The interconnectedness of a network is described by its diameter
d, defined as the average length of the shortest paths between any
two nodes in the network. The diameter characterizes the ability of
two nodes to communicate with each other: the smaller d is, the
shorter is the expected path between them. Networks with a very
large number of nodes can have quite a small diameter; for example,
the diameter of the WWW, with over 800 million nodes20, is around
19 (ref. 3), whereas social networks with over six billion individuals

Exponential Scale-free
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Figure 1 Visual illustration of the difference between an exponential and a scale-free
network. a, The exponential network is homogeneous: most nodes have approximately
the same number of links. b, The scale-free network is inhomogeneous: the majority of
the nodes have one or two links but a few nodes have a large number of links,
guaranteeing that the system is fully connected. Red, the five nodes with the highest
number of links; green, their first neighbours. Although in the exponential network only
27% of the nodes are reached by the five most connected nodes, in the scale-free
network more than 60% are reached, demonstrating the importance of the connected
nodes in the scale-free network Both networks contain 130 nodes and 215 links
(⟨k ⟩ ¼ 3:3). The network visualization was done using the Pajek program for large
network analysis: ⟨http://vlado.fmf.uni-lj.si/pub/networks/pajek/pajekman.htm⟩.
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Figure 2 Changes in the diameter d of the network as a function of the fraction f of the
removed nodes. a, Comparison between the exponential (E) and scale-free (SF) network
models, each containing N ¼ 10;000 nodes and 20,000 links (that is, ⟨k ⟩ ¼ 4). The blue
symbols correspond to the diameter of the exponential (triangles) and the scale-free
(squares) networks when a fraction f of the nodes are removed randomly (error tolerance).
Red symbols show the response of the exponential (diamonds) and the scale-free (circles)
networks to attacks, when the most connected nodes are removed. We determined the f
dependence of the diameter for different system sizes (N ¼ 1;000; 5,000; 20,000) and
found that the obtained curves, apart from a logarithmic size correction, overlap with
those shown in a, indicating that the results are independent of the size of the system. We
note that the diameter of the unperturbed (f ¼ 0) scale-free network is smaller than that
of the exponential network, indicating that scale-free networks use the links available to
them more efficiently, generating a more interconnected web. b, The changes in the
diameter of the Internet under random failures (squares) or attacks (circles). We used the
topological map of the Internet, containing 6,209 nodes and 12,200 links (⟨k ⟩ ¼ 3:4),
collected by the National Laboratory for Applied Network Research ⟨http://moat.nlanr.net/
Routing/rawdata/⟩. c, Error (squares) and attack (circles) survivability of the World-Wide
Web, measured on a sample containing 325,729 nodes and 1,498,353 links3, such that
⟨k ⟩ ¼ 4:59.
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called scale-free networks, which include the World-Wide Web3–5,
the Internet6, social networks7 and cells8. We find that such
networks display an unexpected degree of robustness, the ability
of their nodes to communicate being unaffected even by un-
realistically high failure rates. However, error tolerance comes at a
high price in that these networks are extremely vulnerable to
attacks (that is, to the selection and removal of a few nodes that
play a vital role in maintaining the network’s connectivity). Such
error tolerance and attack vulnerability are generic properties of
communication networks.

The increasing availability of topological data on large networks,
aided by the computerization of data acquisition, had led to great
advances in our understanding of the generic aspects of network
structure and development9–16. The existing empirical and theo-
retical results indicate that complex networks can be divided into
two major classes based on their connectivity distribution P(k),
giving the probability that a node in the network is connected to k
other nodes. The first class of networks is characterized by a P(k)
that peaks at an average ⟨k⟩ and decays exponentially for large k. The
most investigated examples of such exponential networks are the
random graph model of Erdös and Rényi9,10 and the small-world
model of Watts and Strogatz11, both leading to a fairly homogeneous
network, in which each node has approximately the same number
of links, k ! ⟨k⟩. In contrast, results on the World-Wide Web
(WWW)3–5, the Internet6 and other large networks17–19 indicate
that many systems belong to a class of inhomogeneous networks,
called scale-free networks, for which P(k) decays as a power-law,
that is PðkÞ"k! g, free of a characteristic scale. Whereas the prob-
ability that a node has a very large number of connections (k q ⟨k⟩)
is practically prohibited in exponential networks, highly connected
nodes are statistically significant in scale-free networks (Fig. 1).

We start by investigating the robustness of the two basic con-
nectivity distribution models, the Erdös–Rényi (ER) model9,10 that
produces a network with an exponential tail, and the scale-free
model17 with a power-law tail. In the ER model we first define the N
nodes, and then connect each pair of nodes with probability p. This
algorithm generates a homogeneous network (Fig. 1), whose con-
nectivity follows a Poisson distribution peaked at ⟨k⟩ and decaying
exponentially for k q ⟨k⟩.

The inhomogeneous connectivity distribution of many real net-
works is reproduced by the scale-free model17,18 that incorporates
two ingredients common to real networks: growth and preferential
attachment. The model starts with m0 nodes. At every time step t a
new node is introduced, which is connected to m of the already-
existing nodes. The probability Πi that the new node is connected
to node i depends on the connectivity ki of node i such that
Πi ¼ ki=Sjkj. For large t the connectivity distribution is a power-
law following PðkÞ ¼ 2m2=k3.

The interconnectedness of a network is described by its diameter
d, defined as the average length of the shortest paths between any
two nodes in the network. The diameter characterizes the ability of
two nodes to communicate with each other: the smaller d is, the
shorter is the expected path between them. Networks with a very
large number of nodes can have quite a small diameter; for example,
the diameter of the WWW, with over 800 million nodes20, is around
19 (ref. 3), whereas social networks with over six billion individuals
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Figure 1 Visual illustration of the difference between an exponential and a scale-free
network. a, The exponential network is homogeneous: most nodes have approximately
the same number of links. b, The scale-free network is inhomogeneous: the majority of
the nodes have one or two links but a few nodes have a large number of links,
guaranteeing that the system is fully connected. Red, the five nodes with the highest
number of links; green, their first neighbours. Although in the exponential network only
27% of the nodes are reached by the five most connected nodes, in the scale-free
network more than 60% are reached, demonstrating the importance of the connected
nodes in the scale-free network Both networks contain 130 nodes and 215 links
(⟨k ⟩ ¼ 3:3). The network visualization was done using the Pajek program for large
network analysis: ⟨http://vlado.fmf.uni-lj.si/pub/networks/pajek/pajekman.htm⟩.
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Figure 2 Changes in the diameter d of the network as a function of the fraction f of the
removed nodes. a, Comparison between the exponential (E) and scale-free (SF) network
models, each containing N ¼ 10;000 nodes and 20,000 links (that is, ⟨k ⟩ ¼ 4). The blue
symbols correspond to the diameter of the exponential (triangles) and the scale-free
(squares) networks when a fraction f of the nodes are removed randomly (error tolerance).
Red symbols show the response of the exponential (diamonds) and the scale-free (circles)
networks to attacks, when the most connected nodes are removed. We determined the f
dependence of the diameter for different system sizes (N ¼ 1;000; 5,000; 20,000) and
found that the obtained curves, apart from a logarithmic size correction, overlap with
those shown in a, indicating that the results are independent of the size of the system. We
note that the diameter of the unperturbed (f ¼ 0) scale-free network is smaller than that
of the exponential network, indicating that scale-free networks use the links available to
them more efficiently, generating a more interconnected web. b, The changes in the
diameter of the Internet under random failures (squares) or attacks (circles). We used the
topological map of the Internet, containing 6,209 nodes and 12,200 links (⟨k ⟩ ¼ 3:4),
collected by the National Laboratory for Applied Network Research ⟨http://moat.nlanr.net/
Routing/rawdata/⟩. c, Error (squares) and attack (circles) survivability of the World-Wide
Web, measured on a sample containing 325,729 nodes and 1,498,353 links3, such that
⟨k ⟩ ¼ 4:59.
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called scale-free networks, which include the World-Wide Web3–5,
the Internet6, social networks7 and cells8. We find that such
networks display an unexpected degree of robustness, the ability
of their nodes to communicate being unaffected even by un-
realistically high failure rates. However, error tolerance comes at a
high price in that these networks are extremely vulnerable to
attacks (that is, to the selection and removal of a few nodes that
play a vital role in maintaining the network’s connectivity). Such
error tolerance and attack vulnerability are generic properties of
communication networks.

The increasing availability of topological data on large networks,
aided by the computerization of data acquisition, had led to great
advances in our understanding of the generic aspects of network
structure and development9–16. The existing empirical and theo-
retical results indicate that complex networks can be divided into
two major classes based on their connectivity distribution P(k),
giving the probability that a node in the network is connected to k
other nodes. The first class of networks is characterized by a P(k)
that peaks at an average ⟨k⟩ and decays exponentially for large k. The
most investigated examples of such exponential networks are the
random graph model of Erdös and Rényi9,10 and the small-world
model of Watts and Strogatz11, both leading to a fairly homogeneous
network, in which each node has approximately the same number
of links, k ! ⟨k⟩. In contrast, results on the World-Wide Web
(WWW)3–5, the Internet6 and other large networks17–19 indicate
that many systems belong to a class of inhomogeneous networks,
called scale-free networks, for which P(k) decays as a power-law,
that is PðkÞ"k! g, free of a characteristic scale. Whereas the prob-
ability that a node has a very large number of connections (k q ⟨k⟩)
is practically prohibited in exponential networks, highly connected
nodes are statistically significant in scale-free networks (Fig. 1).

We start by investigating the robustness of the two basic con-
nectivity distribution models, the Erdös–Rényi (ER) model9,10 that
produces a network with an exponential tail, and the scale-free
model17 with a power-law tail. In the ER model we first define the N
nodes, and then connect each pair of nodes with probability p. This
algorithm generates a homogeneous network (Fig. 1), whose con-
nectivity follows a Poisson distribution peaked at ⟨k⟩ and decaying
exponentially for k q ⟨k⟩.

The inhomogeneous connectivity distribution of many real net-
works is reproduced by the scale-free model17,18 that incorporates
two ingredients common to real networks: growth and preferential
attachment. The model starts with m0 nodes. At every time step t a
new node is introduced, which is connected to m of the already-
existing nodes. The probability Πi that the new node is connected
to node i depends on the connectivity ki of node i such that
Πi ¼ ki=Sjkj. For large t the connectivity distribution is a power-
law following PðkÞ ¼ 2m2=k3.

The interconnectedness of a network is described by its diameter
d, defined as the average length of the shortest paths between any
two nodes in the network. The diameter characterizes the ability of
two nodes to communicate with each other: the smaller d is, the
shorter is the expected path between them. Networks with a very
large number of nodes can have quite a small diameter; for example,
the diameter of the WWW, with over 800 million nodes20, is around
19 (ref. 3), whereas social networks with over six billion individuals
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Figure 1 Visual illustration of the difference between an exponential and a scale-free
network. a, The exponential network is homogeneous: most nodes have approximately
the same number of links. b, The scale-free network is inhomogeneous: the majority of
the nodes have one or two links but a few nodes have a large number of links,
guaranteeing that the system is fully connected. Red, the five nodes with the highest
number of links; green, their first neighbours. Although in the exponential network only
27% of the nodes are reached by the five most connected nodes, in the scale-free
network more than 60% are reached, demonstrating the importance of the connected
nodes in the scale-free network Both networks contain 130 nodes and 215 links
(⟨k ⟩ ¼ 3:3). The network visualization was done using the Pajek program for large
network analysis: ⟨http://vlado.fmf.uni-lj.si/pub/networks/pajek/pajekman.htm⟩.
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Figure 2 Changes in the diameter d of the network as a function of the fraction f of the
removed nodes. a, Comparison between the exponential (E) and scale-free (SF) network
models, each containing N ¼ 10;000 nodes and 20,000 links (that is, ⟨k ⟩ ¼ 4). The blue
symbols correspond to the diameter of the exponential (triangles) and the scale-free
(squares) networks when a fraction f of the nodes are removed randomly (error tolerance).
Red symbols show the response of the exponential (diamonds) and the scale-free (circles)
networks to attacks, when the most connected nodes are removed. We determined the f
dependence of the diameter for different system sizes (N ¼ 1;000; 5,000; 20,000) and
found that the obtained curves, apart from a logarithmic size correction, overlap with
those shown in a, indicating that the results are independent of the size of the system. We
note that the diameter of the unperturbed (f ¼ 0) scale-free network is smaller than that
of the exponential network, indicating that scale-free networks use the links available to
them more efficiently, generating a more interconnected web. b, The changes in the
diameter of the Internet under random failures (squares) or attacks (circles). We used the
topological map of the Internet, containing 6,209 nodes and 12,200 links (⟨k ⟩ ¼ 3:4),
collected by the National Laboratory for Applied Network Research ⟨http://moat.nlanr.net/
Routing/rawdata/⟩. c, Error (squares) and attack (circles) survivability of the World-Wide
Web, measured on a sample containing 325,729 nodes and 1,498,353 links3, such that
⟨k ⟩ ¼ 4:59.
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are believed to have a diameter of around six21. To compare the two
network models properly, we generated networks that have the same
number of nodes and links, such that P(k) follows a Poisson
distribution for the exponential network, and a power law for the
scale-free network.

To address the error tolerance of the networks, we study the
changes in diameter when a small fraction f of the nodes is removed.
The malfunctioning (absence) of any node in general increases the
distance between the remaining nodes, as it can eliminate some
paths that contribute to the system’s interconnectedness. Indeed, for
the exponential network the diameter increases monotonically with
f (Fig. 2a); thus, despite its redundant wiring (Fig. 1), it is increas-
ingly difficult for the remaining nodes to communicate with each
other. This behaviour is rooted in the homogeneity of the network:
since all nodes have approximately the same number of links, they
all contribute equally to the network’s diameter, thus the removal of
each node causes the same amount of damage. In contrast, we
observe a drastically different and surprising behaviour for the
scale-free network (Fig. 2a): the diameter remains unchanged under
an increasing level of errors. Thus even when as many as 5% of

the nodes fail, the communication between the remaining nodes
in the network is unaffected. This robustness of scale-free net-
works is rooted in their extremely inhomogeneous connectivity
distribution: because the power-law distribution implies that the
majority of nodes have only a few links, nodes with small
connectivity will be selected with much higher probability. The
removal of these ‘small’ nodes does not alter the path structure of
the remaining nodes, and thus has no impact on the overall network
topology.

An informed agent that attempts to deliberately damage a net-
work will not eliminate the nodes randomly, but will preferentially
target the most connected nodes. To simulate an attack we first
remove the most connected node, and continue selecting and
removing nodes in decreasing order of their connectivity k. Measur-
ing the diameter of an exponential network under attack, we find
that, owing to the homogeneity of the network, there is no
substantial difference whether the nodes are selected randomly or
in decreasing order of connectivity (Fig. 2a). On the other hand, a
drastically different behaviour is observed for scale-free networks.
When the most connected nodes are eliminated, the diameter of the
scale-free network increases rapidly, doubling its original value if
5% of the nodes are removed. This vulnerability to attacks is rooted
in the inhomogeneity of the connectivity distribution: the connec-
tivity is maintained by a few highly connected nodes (Fig. 1b),
whose removal drastically alters the network’s topology, and

0.00 0.04 0.08 0.12
0

1

2

3

0.0 0.1
0

1

<s
> 

an
d 

S

0.0 0.2 0.4
0

1

2

0.0 0.2 0.4
0

1

2

10–1

100

101

102

0.0 0.4 0.8
0

1

f

ba

fcfc

Failure
Attack

S  <s>

Internet
WWW

SFE

dc

Figure 3 Network fragmentation under random failures and attacks. The relative size of
the largest cluster S (open symbols) and the average size of the isolated clusters ⟨s⟩ (filled
symbols) as a function of the fraction of removed nodes f for the same systems as in
Fig. 2. The size S is defined as the fraction of nodes contained in the largest cluster (that is,
S ¼ 1 for f ¼ 0). a, Fragmentation of the exponential network under random failures
(squares) and attacks (circles). b, Fragmentation of the scale-free network under random
failures (blue squares) and attacks (red circles). The inset shows the error tolerance curves
for the whole range of f, indicating that the main cluster falls apart only after it has been
completely deflated. We note that the behaviour of the scale-free network under errors is
consistent with an extremely delayed percolation transition: at unrealistically high error
rates ( f max ! 0:75) we do observe a very small peak in ⟨s⟩ (⟨smax⟩ ! 1:06) even in the
case of random failures, indicating the existence of a critical point. For a and b we
repeated the analysis for systems of sizes N ¼ 1;000, 5,000 and 20,000, finding that the
obtained S and ⟨s⟩ curves overlap with the one shown here, indicating that the overall
clustering scenario and the value of the critical point is independent of the size of the
system. c, d, Fragmentation of the Internet (c) and WWW (d), using the topological data
described in Fig. 2. The symbols are the same as in b. ⟨s⟩ in d in the case of attack is
shown on a different scale, drawn in the right side of the frame. Whereas for small f we
have ⟨s⟩ ! 1:5, at f w

c ¼ 0:067 the average fragment size abruptly increases, peaking at
⟨smax⟩ ! 60, then decays rapidly. For the attack curve in d we ordered the nodes as a
function of the number of outgoing links, kout. We note that while the three studied
networks, the scale-free model, the Internet and the WWW have different g, ⟨k⟩ and
clustering coefficient11, their response to attacks and errors is identical. Indeed, we find
that the difference between these quantities changes only fc and the magnitude of d, S
and ⟨s⟩, but not the nature of the response of these networks to perturbations.
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Figure 4 Summary of the response of a network to failures or attacks. a–f, The cluster
size distribution for various values of f when a scale-free network of parameters given in
Fig. 3b is subject to random failures (a–c) or attacks (d–f). Upper panels, exponential
networks under random failures and attacks and scale-free networks under attacks
behave similarly. For small f, clusters of different sizes break down, although there is still a
large cluster. This is supported by the cluster size distribution: although we see a few
fragments of sizes between 1 and 16, there is a large cluster of size 9,000 (the size of the
original system being 10,000). At a critical fc (see Fig. 3) the network breaks into small
fragments between sizes 1 and 100 (b) and the large cluster disappears. At even higher f
(c) the clusters are further fragmented into single nodes or clusters of size two. Lower
panels, scale-free networks follow a different scenario under random failures: the size of
the largest cluster decreases slowly as first single nodes, then small clusters break off.
Indeed, at f ¼ 0:05 only single and double nodes break off (d). At f ¼ 0:18, the network
is fragmented (b) under attack, but under failures the large cluster of size 8,000 coexists
with isolated clusters of sizes 1 to 5 (e). Even for an unrealistically high error rate of
f ¼ 0:45 the large cluster persists, the size of the broken-off fragments not exceeding
11 (f).
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f – fraction of removed nodes
S – Relative size of the largest cluster
<s> - average size of the isolated clusters
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are believed to have a diameter of around six21. To compare the two
network models properly, we generated networks that have the same
number of nodes and links, such that P(k) follows a Poisson
distribution for the exponential network, and a power law for the
scale-free network.

To address the error tolerance of the networks, we study the
changes in diameter when a small fraction f of the nodes is removed.
The malfunctioning (absence) of any node in general increases the
distance between the remaining nodes, as it can eliminate some
paths that contribute to the system’s interconnectedness. Indeed, for
the exponential network the diameter increases monotonically with
f (Fig. 2a); thus, despite its redundant wiring (Fig. 1), it is increas-
ingly difficult for the remaining nodes to communicate with each
other. This behaviour is rooted in the homogeneity of the network:
since all nodes have approximately the same number of links, they
all contribute equally to the network’s diameter, thus the removal of
each node causes the same amount of damage. In contrast, we
observe a drastically different and surprising behaviour for the
scale-free network (Fig. 2a): the diameter remains unchanged under
an increasing level of errors. Thus even when as many as 5% of

the nodes fail, the communication between the remaining nodes
in the network is unaffected. This robustness of scale-free net-
works is rooted in their extremely inhomogeneous connectivity
distribution: because the power-law distribution implies that the
majority of nodes have only a few links, nodes with small
connectivity will be selected with much higher probability. The
removal of these ‘small’ nodes does not alter the path structure of
the remaining nodes, and thus has no impact on the overall network
topology.

An informed agent that attempts to deliberately damage a net-
work will not eliminate the nodes randomly, but will preferentially
target the most connected nodes. To simulate an attack we first
remove the most connected node, and continue selecting and
removing nodes in decreasing order of their connectivity k. Measur-
ing the diameter of an exponential network under attack, we find
that, owing to the homogeneity of the network, there is no
substantial difference whether the nodes are selected randomly or
in decreasing order of connectivity (Fig. 2a). On the other hand, a
drastically different behaviour is observed for scale-free networks.
When the most connected nodes are eliminated, the diameter of the
scale-free network increases rapidly, doubling its original value if
5% of the nodes are removed. This vulnerability to attacks is rooted
in the inhomogeneity of the connectivity distribution: the connec-
tivity is maintained by a few highly connected nodes (Fig. 1b),
whose removal drastically alters the network’s topology, and

0.00 0.04 0.08 0.12
0

1

2

3

0.0 0.1
0

1

<s
> 

an
d 

S

0.0 0.2 0.4
0

1

2

0.0 0.2 0.4
0

1

2

10–1

100

101

102

0.0 0.4 0.8
0

1

f

ba

fcfc

Failure
Attack

S  <s>

Internet
WWW

SFE

dc

Figure 3 Network fragmentation under random failures and attacks. The relative size of
the largest cluster S (open symbols) and the average size of the isolated clusters ⟨s⟩ (filled
symbols) as a function of the fraction of removed nodes f for the same systems as in
Fig. 2. The size S is defined as the fraction of nodes contained in the largest cluster (that is,
S ¼ 1 for f ¼ 0). a, Fragmentation of the exponential network under random failures
(squares) and attacks (circles). b, Fragmentation of the scale-free network under random
failures (blue squares) and attacks (red circles). The inset shows the error tolerance curves
for the whole range of f, indicating that the main cluster falls apart only after it has been
completely deflated. We note that the behaviour of the scale-free network under errors is
consistent with an extremely delayed percolation transition: at unrealistically high error
rates ( f max ! 0:75) we do observe a very small peak in ⟨s⟩ (⟨smax⟩ ! 1:06) even in the
case of random failures, indicating the existence of a critical point. For a and b we
repeated the analysis for systems of sizes N ¼ 1;000, 5,000 and 20,000, finding that the
obtained S and ⟨s⟩ curves overlap with the one shown here, indicating that the overall
clustering scenario and the value of the critical point is independent of the size of the
system. c, d, Fragmentation of the Internet (c) and WWW (d), using the topological data
described in Fig. 2. The symbols are the same as in b. ⟨s⟩ in d in the case of attack is
shown on a different scale, drawn in the right side of the frame. Whereas for small f we
have ⟨s⟩ ! 1:5, at f w

c ¼ 0:067 the average fragment size abruptly increases, peaking at
⟨smax⟩ ! 60, then decays rapidly. For the attack curve in d we ordered the nodes as a
function of the number of outgoing links, kout. We note that while the three studied
networks, the scale-free model, the Internet and the WWW have different g, ⟨k⟩ and
clustering coefficient11, their response to attacks and errors is identical. Indeed, we find
that the difference between these quantities changes only fc and the magnitude of d, S
and ⟨s⟩, but not the nature of the response of these networks to perturbations.
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Figure 4 Summary of the response of a network to failures or attacks. a–f, The cluster
size distribution for various values of f when a scale-free network of parameters given in
Fig. 3b is subject to random failures (a–c) or attacks (d–f). Upper panels, exponential
networks under random failures and attacks and scale-free networks under attacks
behave similarly. For small f, clusters of different sizes break down, although there is still a
large cluster. This is supported by the cluster size distribution: although we see a few
fragments of sizes between 1 and 16, there is a large cluster of size 9,000 (the size of the
original system being 10,000). At a critical fc (see Fig. 3) the network breaks into small
fragments between sizes 1 and 100 (b) and the large cluster disappears. At even higher f
(c) the clusters are further fragmented into single nodes or clusters of size two. Lower
panels, scale-free networks follow a different scenario under random failures: the size of
the largest cluster decreases slowly as first single nodes, then small clusters break off.
Indeed, at f ¼ 0:05 only single and double nodes break off (d). At f ¼ 0:18, the network
is fragmented (b) under attack, but under failures the large cluster of size 8,000 coexists
with isolated clusters of sizes 1 to 5 (e). Even for an unrealistically high error rate of
f ¼ 0:45 the large cluster persists, the size of the broken-off fragments not exceeding
11 (f).
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