
Problem 1: Can Catastrophic Events in Dynamical 
Systems be Predicted in Advance?

Early Warning?

A related problem: Can future behaviors of time-varying 
dynamical systems be forecasted?



Problem 2: Reverse Engineering of 
Complex Networks

Network
Measured
Time Series

Full network topology?
Assumption: all nodes are

externally accessible



Problem 3: Detecting Hidden Nodes

No information is available from the black node. How can we 
ascertain its existence and its location in the network? How 
can we distinguish hidden node from local noise sources?



Basic Idea (1)
Dynamical system:    dx/dt = F(x),         x ∈  Rm   
Goal: to determine F(x) from measured time series x(t)!
Power-series expansion of jth component of vector field F(x)
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 - coefficients to be estimated from time series 

- (1+n)m  coefficients altogether
If F(x) contains only a few power-series terms, most of the 
coefficients will be zero. 



Basic Idea (2)
Concrete example:  m = 3 (phase-space dimension): (x,y,z)
                                n = 3 (highest order in power-series expansion)
                                total (1 + n)m = (1+3)3 = 64 unknown coefficients
[F(x)]1 = (a1)0,0,0x

0y0z0 + (a1)1,0,0x
1y0z0 + ... + (a1)3,3,3x
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       - 64×1   

Measurement vector  g(t) = [x(t)0y(t)0z(t)0, x(t)1y(t)0z(t)0, ... , x(t)3y(t)3z(t)3]
                                            1 ×  64
So  [F(x(t))]1 = g(t)•a1      



Basic Idea (3)
Suppose x(t) is available at times t0,t1,t2,...,t10  (11 vector data points)
dx
dt

(t1) = [F(x(t1))]1 = g(t1)•a1

dx
dt

(t2 ) = [F(x(t2 ))]1 = g(t2 )•a1

 ...
dx
dt

(t10 ) = [F(x(t10 ))]1 = g(t10 )•a1

 Derivative vector  dX  = 

(dx/dt)(t1)
(dx/dt)(t2 )
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(dx/dt)(t10 )
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;  Measurement matrix G =  

g(t1)
g(t2 )
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We finally have   dX  = G•a1                 or       dX10×1  = G10×64 • (a1)64×1   



Basic Idea (4)
 dX  = G•a1                 or       dX10×1  = G10×64 • (a1)64×1

Reminder: a1  is the coefficient vector for the first dynamical variable x.
To obtain [F(x)]2,  we expand
[F(x)]2 = (a2 )0,0,0x

0y0z0 + (a2 )1,0,0x
1y0z0 + ... + (a2 )3,3,3x

3y3z3

with a2,  the coefficient vector for the second dynamical variable y. We have
dY  = G•a2                 or       dY10×1  = G10×64 • (a2 )64×1

where

 dY = 

(dy/dt)(t1)
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Note: measurement matrix G is the same.
Similar expressions can be obtained for all components of the velocity field.



Compressive Sensing (1)

Look at 
dX  = G•a1                 or       dX10×1  = G10×64 • (a1)64×1

Note that a1  is sparse   - Compressive sensing!

Data/Image compression:
Φ :  Random projection (not full rank)
x  - sparse vector to be recovered

Goal of compressive sensing: Find a vector x with minimum number of 
entries subject to the constraint  y = Φ•x



Compressive Sensing (2)

 Why l1 − norm? - Simple example in three dimensions

Find a vector x with minimum number of entries 
subject to the constraint  y = Φ•x:  l1 − norm

E. Candes, J. Romberg, and T. Tao, IEEE Trans. Information Theory 52, 489 (2006),
Comm. Pure. Appl. Math. 59, 1207 (2006);

D. Donoho, IEEE Trans. Information Theory 52, 1289 (2006));
Special review: IEEE Signal Process. Mag. 24, 2008



Predicting Catastrophe (1)

Henon map: (xn+1, yn+1) = (1- axn
2 + yn, bxn )

Say the system operates at parameter values: a = 1.2 and b = 0.3.
There is a chaotic attractor.
Can we assess if a catastrophic bifurcation (e.g., crisis) is imminent
based on a limited set of measurements?

Step 1: Predicting system equations

Distribution of predicted values of ten power-series coefficients:
constant,    y,   y2,    y3,   x,   xy,   xy2,   x2,   x2y,   x3 # of data points used: 8



Predicting Catastrophe (2)

Step 2: Performing numerical bifurcation analysis

Boundary
CrisisCurrent operation point

W.-X. Wang, R. Yang, Y.-C. Lai, V. 
Kovanis, and C. Grebogi, 
Physical Review Letters 106, 154101 
(2011).



Reconstructing Full Topology of 
Oscillator Networks (1)

A class of commonly studied oscillator -network models:
dxi
dt

  =  Fi  (x i ) + Cijj=1,j≠i

N
∑ • (x j  - x i )     (i = 1, ... , N)

- dynamical equation of node i 
N - size of network,   xi∈ Rm,  Cij  is the local  coupling matrix
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    - determines full topology

If there is at least one nonzero element in Cij,  nodes i and j are coupled.

Goal: to determine all Fi(xi) and Cij from time series.



Reconstructing Full Topology of 
Oscillator Networks (2)

X  = 

x1

x2

...
xN
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−Network equation is dX
dt

 = G(X), where

                                  [G(X)]i  = Fi  (x i ) + Cijj=1,j≠i

N
∑ • (x j  - x i )

• A very high-dimensional (Nm-dimensional) dynamical system;
• For complex networks (e.g, random, small-world, scale-free), 
   node-to-node connections are typically sparse;
• In power-series expansion of [G(X)]i,  most coefficients will be
   zero - guaranteeing sparsity condition for compressive sensing.

W.-X. Wang, R. Yang, Y.-C. Lai, V. Kovanis, M. A. F. Harrison, “Time-series based 
prediction of complex oscillator networks via compressive sensing”, Europhysics
Letters 94, 48006 (2011).  



Evolutionary-Game Dynamics 

Strategies:   cooperation    S(C) = 1
0
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Payoff matrix:      P(PD) = 1 0
b 0
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Payoff of agent x  from playing PDG with agent y:      M x←y = Sx
TPSy

For example,   MC←C = 1
                        MD←D = 0
                        MC←D = 0
                        MD←C = b

Prisoner’s dilemma game



Evolutionary Game on Network 
(Social and Economical Systems) 

Full social network structure
Compressive sensing

Time series of
agents 
(Detectable)

(1) payoffs
(2) strategies

A network of agents playing games with one another:

     Adjacency matrix =
... ... ...
... axy ...

... ... ...
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:   
axy =1  if x  connects with y
axy = 0  if no connection

'
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Payoff of agent x  from agent y: M x←y = axySx
TPSy



Prediction as a CS Problem
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Compressive sensing

Payoff of x  at time t:  Mx (t) = ax1Sx
T (t)PS1(t)+ ax2Sx

T (t)PS2 (t)++ axNSx
T (t)PSN (t)   
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              X : connection vector of agent x    (to be predicted)

Φ =

Sx
T (t1)PS1(t1) Sx

T (t1)PS2 (t1)  Sx
T (t1)PSN (t1)
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 Y     =      Φ•X          Y,Φ:  from time series

• W.-X. Wang, Y.-C. Lai, C. Grebogi, and J.-P. Ye,
“Network reconstruction based on evolutionary
game data,” Physical Review X 1, 021021, 
1-7 (2011).



Reverse Engineering of a Real Social Network 

Friendship network

Experimental record of two players
22 students play PDG together and
write down their payoffs and strategies

Observation: Large-degree 
nodes are not necessarily winners

W.-X. Wang, Y.-C. Lai, C. Grebogi, 
and  J.-P. Ye, “Network reconstruction 
based on evolutionary game data,”
Physical Review X 1, 021021 (2011).



Detecting Hidden Node 
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• Two green nodes: immediate
neighbors of hidden node

• Information from green nodes
is not complete

• Anomalies in the prediction of 
connections of green nodes 

• R.-Q. Su, W.-X. Wang, and Y.-C. Lai, “Detecting hidden nodes in 
Complex networks from time series,” Physical Review E 106, 058701R (2012).

• R.-Q. Su, Y.-C. Lai, X. Wang, and Y.-H. Do, “Uncovering hidden nodes in
Complex networks in the presence of noise,” Scientific Reports 4,  Article number 3944 (2014).

Variance of predicted 
coefficients



Locating Hidden Source 
in Complex Spreading Network 

Using Binary Time Series

• Z.-S. Shen, W.-X. Wang, Y. Fan, Z.-R. Di, and Y.-C. Lai, “Reconstructing propagation 
networks with natural diversity and identifying hidden source,” Nature Communications 5, 
Article number 4323 (2014).

• Z.-L. Hu, X. Han, Y.-C. Lai, and W.-X. Wang, “Optimal localization of diffusion sources in 
complex networks,” Royal Society Open Science 4, Article number 170091 (2017).
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(F) Final geo-spatial network (3D)

Reconstruction of complex 
geospatial networks

R.-Q. Su, W.-X. Wang, X. Wang, and Y.-C. Lai, “Data-based reconstruction of complex geospatial networks, 
nodal positioning and detection of hidden nodes,” Royal Society Open Science 3, 150577 (2016).



Discussion 

1. Key requirement of compressive sensing – the vector to be 
determined must be sparse.
Dynamical systems - three cases:

• Vector field/map contains a few Fourier-series terms - Yes
• Vector field/map contains a few power-series terms - Yes
• Vector field /map contains many terms – not known

Mathematical question: given an arbitrary function, can one find 
a suitable base of expansion so that the function can be 
represented by a limited number of terms?

Ikeda Map:   F(x, y)= [A + B(xcosφ − ysinφ),B(xsinφ + ycosφ)]

        where    φ ≡ p− k
1+ x2 + y2      - describes dynamics in an optical cavity



Data Analysis and Complex Systems

Data-based Research is becoming increasingly important for understanding, 
predicting, and controlling Complex Dynamical Systems

Complex 
Dynamical 
Systems

Big or 
Small Data 
Analysis

Big Data 
or Small 
Data?

2. Networked systems described by evolutionary games – Yes
3. Measurements of ALL dynamical variables are needed. 

Outstanding issue
If this is not the case, say, if only one dynamical variable can be measured, the CS-

based method would not work.  Delay-coordinate embedding method? - gives 
only a topological equivalent of the underlying dynamical system (e.g., Takens’ 
embedding theorem guarantees only a one-to-one correspondence between the true 
system and the reconstructed system).   

Discussion 


