
Network Prediction: Inverse 
Problem

Is it possible to 
infer network 
structure from 
time-series 
measurements?



Formulation of Problem

Noise +   Signal

network
Measured
Time Series

Network structure



Levels of Prediction:
Node Degrees and Network Topology
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Network topology – Laplacian matrix



Results 

Key idea 

Noise-induced fluctuations 
in observed signals

• Universal scaling law relating noise-induced 
fluctuations to node degrees  (Previous Lecture)

• A general method for time-series based prediction 
of FULL TOPOLOGY of network 
(Theory and numerical verification)



Noise-Induced Fluctuations

E
x - average value of x(t) over all nodes 

at any given time.

Δx j
2 ≡ x j (t)− x
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Mean field: 

Average squared fluctuation about mean field:



Dynamical Correlation
and Network Topology

• We discovered a general one-to-one correspondence 
between dynamical correlation and topology
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How does it work? 
– Ideal Case
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In Reality – Two-Hump Distribution
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Predicting Total Number 
of Existent Edges
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Summing over                 , starting from the most negative value until

the sum is equal to        -- practical way of setting the thresholdl



Success Rates
Four types of dynamical systems

Model networks

Six  real-world 
networks

SREL – Success Rate of Existent Links
SRNL – Success Rate of Nonexistent Links

J. Ren, W.-X. Wang, B. Li, and Y.-C. Lai, “Noise bridges dynamical correlation 
and topology in complex oscillator networks,” Physical Review Letters 104, 
058701 (2010).



Success Rates versus Edge Density

Success rates tend to increase 
with edge density



Scaling Law of Autocorrelation 
for Directed Networks
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Network Dynamics with Time Delay
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Predicting Time Delay -
Improved Method
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J. Ren, W.-X. Wang, B. Li, and Y.-C. Lai, “Reverse engineering of complex 
dynamical networks in the presence of time-delayed interactions based on noisy 
time series,” Chaos 22, 033131 (2012).



Distribution of Dynamical Correlation 
Matrix in the Presence of Time Delay
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Predicting Time delay 
- Examples 
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J. Ren, W.-X. Wang, B. Li, and Y.-C. Lai, “Reverse engineering of complex 
dynamical networks in the presence of time-delayed interactions based on noisy 
time series,” Chaos 22, 033131 (2012).



Theory
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Dynamical correlation Network matrix



Let  ξξ T  =  Ĉ,   where  Cij = ξiξ j  and  .  is time average.  We have

0 = d(ξξ T ) / dt = −B̂Ĉ− ĈB̂+ ηξ T + ξηT ,            (3)

where B̂ = −DF̂(x)− cL̂⊗DĤ(x).  To obtain the expression of ηξ T  and ξηT ,   we get the solution

ξ (t) from Eq. (2):

ξ (t) = Ĝ(t − t0 )ξ (t0 )+ dt '
t0

t

∫ Ĝ(t − t ')η(t '),

where Ĝ = exp(−B̂t).   In the absence of divergence of state variables, Ĝ(∞) = 0.
Setting t0 →−∞,  without loss of generality, we have

ξ (t) = dt '
t0

t

∫ Ĝ(t − t ')η(t ').

Note that Ĝ(0) = Î,  we hence obtain

ξηT = Ĝ(t − t ') η(t)ηT (t ')
−∞

t

∫ dt ' = Ĝ(t − t ')D̂δ(t − t ')
−∞

t

∫ dt ' = D̂
2

,

where D̂ is the covariance matrix of noise.  Analogously, we have

ηξ T =
D̂
2

. 



Therefore, Eq. (3) can be simplified to:

B̂Ĉ+ ĈB̂T = D̂.                               (4)

Since B̂ = −DF̂(x)+ cL̂⊗DĤ(x),  the above equality reveals a general relationship between

the dynamical correlation Ĉ and the connecting matrix L̂ in the presence of noise as characterized by D̂.

The general solution of Ĉ can be written as 

vec(Ĉ) = vec(D̂)
Î⊗ B̂+ B̂⊗ Î

,

where vec(X̂) is a vector containing all columns of matrix X̂.
Consider one-dimensional state variable and linear coupling such that

DĤ =1,  with Gaussian white noise D̂ =σ 2Î,  and further regard the intrinsic dynamics DF̂ as small
perturbations. Then Eq. (4) can be simplified to

L̂Ĉ+ ĈL̂ = σ
2Î
c

.

For an undirected network with symmetric coupling matrix, the solution of Ĉ can be expressed as

Ĉ = σ
2

2c
L̂+,                             (5)

where L̂+  denotes the pseudo inverse of the Laplacian matrix.



Path integral Local structures
We can decompose L̂ into two parts:           L̂ = K̂− Â,

where  Â is the adjacency matrix with Aij =1 if node j  connects i, otherwise 0, and

K̂ = diag(k1,,kN ),  where ki  is the degree of node i.

The matrix Ĉ can thus be expressed in a series:

Ĉ ~ (K̂− Â)−1 = K̂−1 + K̂−1ÂK̂−1 + K̂−1ÂK̂−1ÂK̂−1 +.

For the second term K̂−1ÂK̂−1,   if nodes j  connects to i,   its element (i, j) is (kik j )
-1  and otherwise 0.

For the third term K̂−1ÂK̂−1ÂK̂−1,  if there are multiple two-step paths connecting j  to i through node

m1  or m2,,mr,  its element (i, j) is ki
−1( kq

−1

q=m1

mr

∑ )kj
−1.

We thus have      Cij =
σ 2

2c path
∑ 1

kmm∈path
∏ ,                          (6)

where "path" means all paths from j  to i, and m denotes the nodes on them. 
This path-integral represetation directly reveals a relation between autocorrelation

Cii  in the matrix Ĉ and node degree ki.
For nth-order approximation, we count all paths whose lengths are equal to or less 
than n. Under second-order approximation, we have

Cii =
σ 2
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where mean-field approximation is applied and Γi  denotes the neighbors of node i.



Conclusions

1. In the presence of noise, dynamical correlation matrix 
reveals full topology of network.
J. Ren, W.-X. Wang, B. Li, and Y.-C. Lai, “Noise bridges dynamical  
correlation and topology in complex oscillator networks,” Physical     
Review Letters 104, 058701 (2010).

2. The theory works even when there is small time delay 
J. Ren, W.-X. Wang, B. Li, and Y.-C. Lai, “Reverse engineering of 
complex dynamical networks in the presence of time-delayed interactions 
based on noisy time series,” Chaos 22, 033131 (2012).

3. Compressive-sensing based methods for time-series based 
prediction of network topology and dynamics 
Next Lecture


