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Network Prediction: Inverse

Problem
Is it possible to A

infer network /g B

structure from

time-series

measurements?
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Formulation of Problem
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%‘ Levels of Prediction:

Node Degrees and Network Topology

1 2 3 4 5

/ 1 2 \ Degree 3 2 4 3 2

3 Network topology — Laplacian matrix




FSU

* Universal scaling law relating noise-induced
fluctuations to node degrees (Previous Lecture)

Results

* A general method for time-series based prediction
of FULL TOPOLOGY of network

(Theory and numerical verification)

Key idea

Noise-induced fluctuations
in observed signals
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Noise-Induced Fluctuations
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Mean field: <x> -average value of x(t) over all nodes
E- atany given time.

Average squared fluctuation about mean field:

ae = ([x,(0-(x), 1)



%j Dynamical Correlation
and Network Topology

* We discovered a general one-to-one correspondence
between dynamical correlation and topology
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How does it work?
— Ideal Case

N(Ll]) N(N-1)/2-1

Total number of
existent edges
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% In Reality — Two-Hump Distribution

[é - Z—CL] How to set threshold?
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Predicting Total Number

of Existent Edges
A (72 A 2
LZ—C+ C. =~ © ( —I—IJ
2c T2k, | (k)
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of existent edges B A
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Summing over — 5 Cl-j , starting from the most negative value until
O

the sum is equal to / -- practical way of setting the threshold
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Model networks

Six real-world
networks

J. Ren, W.-X. Wang, B. Li, and Y.-C. Lai, “Noise bridges dynamical correlation

Success Rates

Four types of dynamical systems

SREL/SRNL

consensus

[-Rdssler

N-Rossler

Kuramoto

Random

1.00/1.00

1.00/1.00

0.995/1.00

0.977/0.999

Small-world

0.993/1.00

0.988/1.00

0.979/1.00

0.982/1.00

Scale-free

0.995/1.00

0.990/1.00

0.980/1.00

0.978/1.00

Book

0.971/1.00

0.977/1.00

0.964/1.00

0.967/1.00

Karate

0.962/1.00

0.962/1.00

0.936/1.00

0.949/1.00

Football

0.938/1.00

0.932/1.00

0.928/1.00

0.927/1.00

Elec. Cir.

0.976/1.00

0.973/1.00

0.971/1.00

0.965/1.00

Dolphins

0.984/1.00

0.981/1.00

0.984/1.00

0.973/1.00

C. Elegans

1.00/0.997

1.00/0.996

1.00/0.997

0.993/0.997

SREL — Success Rate of Existent Links
SRNL — Success Rate of Nonexistent Links

and topology in complex oscillator networks,” Physical Review Letters 104,
058701 (2010).
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Success Rates versus Edge Density

SREL consensus N-Rossler
(k) 8 10 12 8 10 12
Random [0.986 0.993 0.996|0.975 0.984 0.989
Small-world{0.952 0977 0.993|0.935 0966 0.977
Scale-free [0.986 0995 09970964 0980 0.987

Success rates tend to increase

with edge density




Scaling Law of Autocorrelation
for Directed Networks
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Network Dynamics with Time Delay

C : dynamical coupling matrix from time series
[X(t) = F[x(¢)]—cL e X(t - T)+ 77] L : Laplacian matrix,

L’ : pseudo inverse of Laplacian matrix

2

C=2-(L +cz-1),
2c

L"=L"+cr -1, so
2 2
c=2L=>L=2c¢
2c 2c

= L.

i7.(i#))

L’

i (%))
so the network 1s predicted by L. We can then obtain the time delay 7 as

2
—SC—U =c7-1,
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Predicting Time Delay -
Improved Method

C ZG—[L—CT-Lz],
2c

2
= L-—C =cr-I?
O

i#j,L;;#0,L7;#0

J. Ren, W.-X. Wang, B. Li, and Y.-C. Lai, “Reverse engineering of complex
dynamical networks in the presence of time-delayed interactions based on noisy
time series,” Chaos 22, 033131 (2012).
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Distribution of o C

Distribution of Dynamical Correlation
Matrix in the Presence of Time Delay
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%‘m Predicting Time delay
- Examples
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J. Ren, W.-X. Wang, B. L1, and Y.-C. Lai, “Reverse engineering of complex
dynamical networks in the presence of time-delayed interactions based on noisy
time series,” Chaos 22, 033131 (2012).



sU Theory

Dynamical correlation =) Network matrix

N
X, :Fl.(xl.)—cZLin(xj)+77i, (1)
j=1

where

c - coupling strength, H - coupling function of oscillators, 7, - noise term,

N
L. =-11f jconnects toi (otherwise 0) fori# jand L, = - ZLU

J
j=lji

Let X, be the counterpart of X, in the absence of noise, and assume a small perturbation &, : x, =X, +¢..

Variational equation :

& =[DF(X) - cL ® DH()IE + 1, 2)

where & =[&£,&,,, 1", n=[n,n,,,n,]" is the noise vector, L is the Laplacian matrix,
DF(X) = diag[ DF(X,), DF(X,),--, DF(X)], ® denotes direct product, and

DH is the Jacobian matrix of H.



Let <§§T> = C, where C, = <Z§iéj j> and <> is time average. We have

0= <d(§§T)/dt> --BC-CB +<17§T>+<§77T>, (3)

where B = -DF(X) - cL ® DH(X). To obtain the expression of <77§T> and <§17T>, we get the solution
&(t) from Eq. (2):

E1) =Gt =1)E(ty) + [d'G-1"m("),

where G = exp(—ﬁt). In the absence of divergence of state variables, (A}(OO) =0.

Setting ¢, — —oo, without loss of generality, we have
E@) = [dr'G(t-1m().

Note that é(O) = i, we hence obtain

A

(&n" )= f Gt -1)(n()m" (¢"))dt' = f G(t-1)DS(t—1')dt' = g

where D is the covariance matrix of noise. Analogously, we have

A

(ne')-2.



Therefore, Eq. (3) can be simplified to:

BC+CB’ =D. (4)

Since B = —Df‘(i) +cL® DI:I(X), the above equality reveals a general relationship between

the dynamical correlation C and the connecting matrix L in the presence of noise as characterized by D.
The general solution of C can be written as

Vec(ﬁ)
I®B+BQI’

where Vec(X) is a vector containing all columns of matrix X.

VeC(C) =

Consider one-dimensional state variable and linear coupling such that

DH =1, with Gaussian white noise D = oI, and further regard the intrinsic dynamics DF as small
perturbations. Then Eq. (4) can be simplified to

23

I

C

LC+CL=

For an undirected network with symmetric coupling matrix, the solution of C can be expressed as

é=—L+ 5
Yy ()

where L denotes the pseudo inverse of the Laplacian matrix.



Path integral e=) Local structures

A A

We can decompose L into two parts: L=K-A,
where A is the adjacency matrix with A, =1 if node j connects i, otherwise 0, and
K= diag(k,,---,k, ), where k; is the degree of node i.
The matrix C can thus be expressed in a series:
~(K-A)'=K"'+K'AK"'+K"'AK'AK ™" +---
For the second term K‘IAK‘I, if nodes j connects to i, its element (i, j) is (kl.kj )' and otherwise 0.

For the third term K'AK'AK™, if there are multiple two-step paths connecting j to i through node

m, or my,--,m,, its element (i, j) is k' (Y, k;" ;.

q=m

We thus have  C. ——E H — (6)

path mEpath m

where "path" means all paths from j to i, and m denotes the nodes on them.

This path-integral represetation directly reveals a relation between autocorrelation

C, in the matrix C and node degree k..
For nth-order approximation, we count all paths whose lengths are equal to or less

than n. Under second-order approximation, we have

0,2

ii
2c

2

- klzzi) Z(Zk( <k>) 7

i g€l q

where mean-field approximation is applied and I'. denotes the neighbors of node i.



%l Conclusions

1. In the presence of noise, dynamical correlation matrix
reveals full topology of network.
J. Ren, W.-X. Wang, B. Li, and Y.-C. Lai, “Noise bridges dynamical

correlation and topology in complex oscillator networks,” Physical
Review Letters 104, 058701 (2010).

2. The theory works even when there is small time delay

J. Ren, W.-X. Wang, B. Li, and Y.-C. Lai, “Reverse engineering of
complex dynamical networks in the presence of time-delayed interactions
based on noisy time series,” Chaos 22, 033131 (2012).

3. Compressive-sensing based methods for time-series based
prediction of network topology and dynamics

Next Lecture



