

Network Prediction: Inverse Problem

Is it possible to infer network structure from time-series measurements?

Formulation of Problem

Levels of Prediction: Node Degrees and Network Topology

Degree

1	2	3	4	5
2				
-5		4	•	

Network topology – Laplacian matrix

	1	2	3	4	5	
1	3	-1	-1	-1	0	
2	-1	2 -1 2 -1 0	-1	0	0	
3	-1	-1	4	-1	-1	
4	-1	0	-1	3	-1	
5	0	0	-1	-1	2	

Results

- Universal scaling law relating noise-induced fluctuations to node degrees (Previous Lecture)
- A general method for time-series based prediction of FULL TOPOLOGY of network

(Theory and numerical verification)

Key idea

Noise-induced fluctuations in observed signals

Noise-Induced Fluctuations

Mean field: $\langle x \rangle_E$ -average value of x(t) over all nodes at any given time.

Average squared fluctuation about mean field:

$$\Delta x_j^2 \equiv \left\langle \left[x_j(t) - \left\langle x \right\rangle_E \right]^2 \right\rangle_T$$

Dynamical Correlation and Network Topology

• We discovered a general one-to-one correspondence between **dynamical correlation** and topology

Dynamical correlation matrix

$$C_{ij} = \langle [\mathbf{x}_i(t) - \overline{\mathbf{x}}(t)] \cdot [\mathbf{x}_j(t) - \overline{\mathbf{x}}(t)] \rangle$$

How does it work? - Ideal Case

In Reality – Two-Hump Distribution

$$\hat{\mathbf{C}} = \frac{\sigma^2}{2c} \hat{\mathbf{L}}^+$$

How to set threshold?

Predicting Total Number of Existent Edges

$$\hat{\mathbf{L}} = \frac{\sigma^2}{2c} \hat{\mathbf{C}}^+ \qquad \qquad C_{ii} \approx \frac{\sigma^2}{2ck_i} \left(1 + \frac{1}{\langle k \rangle} \right)$$

$$S \equiv \sum_{i=1}^{N} \frac{1}{C_{ii}} = \frac{2cl^2}{\sigma^2(N+l)}$$

$$\mathbb{P}$$
Predicted total number of existent edges
$$l = \frac{S\sigma^2 + \sqrt{S^2\sigma^4 + 8cNS\sigma^2}}{4c}$$

Summing over $\frac{2c}{\sigma^2}C_{ij}$, starting from the most negative value until

the sum is equal to l — practical way of setting the threshold

Success Rates

Four types of dynamical systems

Model networks

Six real-world networks

SREL/SRNL	consensus	I-Rössler	N-Rössler	Kuramoto
Random	1.00/1.00	1.00/1.00	0.995/1.00	0.977/0.999
Small-world	0.993/1.00	0.988/1.00	0.979/1.00	0.982/1.00
Scale-free	0.995/1.00	0.990/1.00	0.980/1.00	0.978/1.00
Book	0.971/1.00	0.977/1.00	0.964/1.00	0.967/1.00
Karate	0.962/1.00	0.962/1.00	0.936/1.00	0.949/1.00
Football	0.938/1.00	0.932/1.00	0.928/1.00	0.927/1.00
Elec. Cir.	0.976/1.00	0.973/1.00	0.971/1.00	0.965/1.00
Dolphins	0.984/1.00	0.981/1.00	0.984/1.00	0.973/1.00
C. Elegans	1.00/0.997	1.00/0.996	1.00/0.997	0.993/0.997

SREL – Success Rate of Existent Links

SRNL – Success Rate of Nonexistent Links

J. Ren, W.-X. Wang, B. Li, and Y.-C. Lai, "Noise bridges dynamical correlation and topology in complex oscillator networks," *Physical Review Letters* **104**, 058701 (2010).

Success Rates versus Edge Density

SREL	consensus			N-Rössler		
$\langle k \rangle$	8	10	12	8	10	12
Random	0.986	0.993	0.996	0.975	0.984	0.989
Small-world	0.952	0.977	0.993	0.935	0.966	0.977
Scale-free	0.986	0.995	0.997	0.964	0.980	0.987

Success rates tend to increase with edge density

Scaling Law of Autocorrelation for Directed Networks

$$C_{ii} \approx \frac{\sigma^2}{2ck_{\rm in}^i} \left(1 + \frac{1}{\langle k_{\rm in} \rangle}\right)$$
, where $k_{\rm in}^i$ is the in - degree of node i

Network Dynamics with Time Delay

$$\dot{\mathbf{x}}(t) = \mathbf{F}[\mathbf{x}(t)] - c\mathbf{L} \bullet \mathbf{x}(t - \tau) + \eta$$

C: dynamical coupling matrix from time series

L: Laplacian matrix,

L⁺: pseudo inverse of Laplacian matrix

$$\mathbf{C} = \frac{\sigma^2}{2c} (\mathbf{L}^+ + c \, \tau \cdot \mathbf{I}),$$

$$\mathbf{L'}^+ \equiv \mathbf{L}^+ + c \, \tau \cdot \mathbf{I}$$
, so

$$\mathbf{C} = \frac{\sigma^2}{2c} \mathbf{L}'' \Rightarrow \mathbf{L}' = \frac{\sigma^2}{2c} \mathbf{C}^+$$

$$\mathbf{L}'_{ij,(i\neq j)} = \mathbf{L}_{ij,(i\neq j)}$$

so the network is predicted by L. We can then obtain the time delay τ as

$$\frac{2c}{\sigma^2}\mathbf{C} - \mathbf{L}^+ = c\,\tau \cdot \mathbf{I},$$

$$\Rightarrow \tau \approx \frac{1}{Nc} \sum_{i=1}^{N} \left(\frac{2c}{\sigma^2} \mathbf{C} - \mathbf{L}^+ \right)_{ii}$$

Predicting Time Delay - Improved Method

$$\mathbf{C}^{+} = \frac{\sigma^{2}}{2c} [\mathbf{L} - c\tau \cdot \mathbf{L}^{2}],$$

$$\Rightarrow \mathbf{L} - \frac{2c}{\sigma^{2}} \mathbf{C}^{+} = c\tau \cdot \mathbf{L}^{2}$$

$$\tau \approx \left\langle \sum_{i=1}^{N} \sum_{j=1}^{N} \frac{\left(\mathbf{L} - \frac{2c}{\sigma^{2}} \mathbf{C}\right)_{ij}}{c\mathbf{L}^{2}_{ij}} \right\rangle$$

$$i \neq i, \mathbf{L}_{ii} \neq 0, \mathbf{L}^{2}_{ij} \neq 0$$

J. Ren, W.-X. Wang, B. Li, and Y.-C. Lai, "Reverse engineering of complex dynamical networks in the presence of time-delayed interactions based on noisy time series," *Chaos* **22**, 033131 (2012).

Distribution of Dynamical Correlation Matrix in the Presence of Time Delay

Center of distribution different from - 1 due to the term $c\tau \cdot \mathbf{I}$

Predicting Time delay - Examples

J. Ren, W.-X. Wang, B. Li, and Y.-C. Lai, "Reverse engineering of complex dynamical networks in the presence of time-delayed interactions based on noisy time series," *Chaos* **22**, 033131 (2012).

Theory

Dynamical correlation Network matrix

$$\dot{\mathbf{x}}_{i} = \mathbf{F}_{i}(\mathbf{x}_{i}) - c \sum_{j=1}^{N} L_{ij} \mathbf{H}(\mathbf{x}_{j}) + \eta_{i}, \tag{1}$$

where

c - coupling strength, H - coupling function of oscillators, η_i - noise term,

$$L_{ij} = -1$$
 if j connects to i (otherwise 0) for $i \neq j$ and $L_{ii} = -\sum_{j=1, j \neq i}^{N} L_{ij}$.

Let $\bar{\mathbf{x}}_i$ be the counterpart of \mathbf{x}_i in the absence of noise, and assume a small perturbation ξ_i : $\mathbf{x}_i = \bar{\mathbf{x}}_i + \xi_i$. Variational equation :

$$\dot{\xi} = [D\hat{\mathbf{F}}(\overline{\mathbf{x}}) - c\hat{\mathbf{L}} \otimes D\hat{\mathbf{H}}(\overline{\mathbf{x}})]\xi + \eta, \tag{2}$$

where $\xi = [\xi_1, \xi_2, \dots, \xi_N]^T$, $\eta = [\eta_1, \eta_2, \dots, \eta_N]^T$ is the noise vector, $\hat{\mathbf{L}}$ is the Laplacian matrix,

$$D\hat{\mathbf{F}}(\overline{\mathbf{x}}) = \operatorname{diag}[D\hat{\mathbf{F}}(\overline{\mathbf{x}}_1), D\hat{\mathbf{F}}(\overline{\mathbf{x}}_2), \cdots, D\hat{\mathbf{F}}(\overline{\mathbf{x}}_N)], \otimes \operatorname{denotes direct product, and}$$

 $D\hat{\mathbf{H}}$ is the Jacobian matrix of \mathbf{H} .

Let $\langle \xi \xi^T \rangle = \hat{\mathbf{C}}$, where $C_{ij} = \langle \xi_i \xi_j \rangle$ and $\langle . \rangle$ is time average. We have

$$0 = \left\langle d(\xi \xi^T) / dt \right\rangle = -\hat{\mathbf{B}}\hat{\mathbf{C}} - \hat{\mathbf{C}}\hat{\mathbf{B}} + \left\langle \eta \xi^T \right\rangle + \left\langle \xi \eta^T \right\rangle, \tag{3}$$

where $\hat{\mathbf{B}} = -D\hat{\mathbf{F}}(\overline{\mathbf{x}}) - c\hat{\mathbf{L}} \otimes D\hat{\mathbf{H}}(\overline{\mathbf{x}})$. To obtain the expression of $\langle \eta \xi^T \rangle$ and $\langle \xi \eta^T \rangle$, we get the solution $\xi(t)$ from Eq. (2):

$$\xi(t) = \hat{\mathbf{G}}(t - t_0)\xi(t_0) + \int_{t_0}^{t} dt \, \hat{\mathbf{G}}(t - t')\eta(t'),$$

where $\hat{\mathbf{G}} = \exp(-\hat{\mathbf{B}}t)$. In the absence of divergence of state variables, $\hat{\mathbf{G}}(\infty) = 0$.

Setting $t_0 \rightarrow -\infty$, without loss of generality, we have

$$\xi(t) = \int_{t_0}^t dt \, \hat{\mathbf{G}}(t-t') \eta(t').$$

Note that $\hat{\mathbf{G}}(0) = \hat{\mathbf{I}}$, we hence obtain

$$\left\langle \xi \boldsymbol{\eta}^{T} \right\rangle = \int_{-\infty}^{t} \hat{\mathbf{G}}(t-t') \left\langle \boldsymbol{\eta}(t) \boldsymbol{\eta}^{T}(t') \right\rangle dt' = \int_{-\infty}^{t} \hat{\mathbf{G}}(t-t') \hat{\mathbf{D}} \delta(t-t') dt' = \frac{\hat{\mathbf{D}}}{2},$$

where $\hat{\mathbf{D}}$ is the covariance matrix of noise. Analogously, we have

$$\langle \eta \xi^T \rangle = \frac{\hat{\mathbf{D}}}{2}.$$

Therefore, Eq. (3) can be simplified to:

$$\hat{\mathbf{B}}\hat{\mathbf{C}} + \hat{\mathbf{C}}\hat{\mathbf{B}}^T = \hat{\mathbf{D}}.$$
 (4)

Since $\hat{\mathbf{B}} = -D\hat{\mathbf{F}}(\bar{\mathbf{x}}) + c\hat{\mathbf{L}} \otimes D\hat{\mathbf{H}}(\bar{\mathbf{x}})$, the above equality reveals a general relationship between the dynamical correlation $\hat{\mathbf{C}}$ and the connecting matrix $\hat{\mathbf{L}}$ in the presence of noise as characterized by $\hat{\mathbf{D}}$. The general solution of $\hat{\mathbf{C}}$ can be written as

$$\operatorname{vec}(\hat{\mathbf{C}}) = \frac{\operatorname{vec}(\hat{\mathbf{D}})}{\hat{\mathbf{I}} \otimes \hat{\mathbf{B}} + \hat{\mathbf{B}} \otimes \hat{\mathbf{I}}},$$

where $\text{vec}(\hat{\mathbf{X}})$ is a vector containing all columns of matrix $\hat{\mathbf{X}}$.

Consider one-dimensional state variable and linear coupling such that

 $D\hat{\mathbf{H}} = 1$, with Gaussian white noise $\hat{\mathbf{D}} = \sigma^2 \hat{\mathbf{I}}$, and further regard the intrinsic dynamics $D\hat{\mathbf{F}}$ as small perturbations. Then Eq. (4) can be simplified to

$$\hat{\mathbf{L}}\hat{\mathbf{C}} + \hat{\mathbf{C}}\hat{\mathbf{L}} = \frac{\sigma^2 \hat{\mathbf{I}}}{c}.$$

For an undirected network with symmetric coupling matrix, the solution of $\hat{\mathbf{C}}$ can be expressed as

$$\hat{\mathbf{C}} = \frac{\sigma^2}{2c}\hat{\mathbf{L}}^+,\tag{5}$$

where $\hat{\mathbf{L}}^{\dagger}$ denotes the pseudo inverse of the Laplacian matrix.

Path integral — Local structures

We can decompose $\hat{\mathbf{L}}$ into two parts: $\hat{\mathbf{L}} = \hat{\mathbf{K}} - \hat{\mathbf{A}}$,

$$\hat{\mathbf{L}} = \hat{\mathbf{K}} - \hat{\mathbf{A}},$$

where $\hat{\mathbf{A}}$ is the adjacency matrix with $A_{ij} = 1$ if node j connects i, otherwise 0, and

 $\hat{\mathbf{K}} = \operatorname{diag}(k_1, \dots, k_N)$, where k_i is the degree of node i.

The matrix $\hat{\mathbf{C}}$ can thus be expressed in a series:

$$\hat{\mathbf{C}} \sim (\hat{\mathbf{K}} - \hat{\mathbf{A}})^{-1} = \hat{\mathbf{K}}^{-1} + \hat{\mathbf{K}}^{-1} \hat{\mathbf{A}} \hat{\mathbf{K}}^{-1} + \hat{\mathbf{K}}^{-1} \hat{\mathbf{A}} \hat{\mathbf{K}}^{-1} \hat{\mathbf{A}} \hat{\mathbf{K}}^{-1} + \cdots.$$

For the second term $\hat{\mathbf{K}}^{-1}\hat{\mathbf{A}}\hat{\mathbf{K}}^{-1}$, if nodes j connects to i, its element (i,j) is $(k_ik_j)^{-1}$ and otherwise 0.

For the third term $\hat{\mathbf{K}}^{-1}\hat{\mathbf{A}}\hat{\mathbf{K}}^{-1}\hat{\mathbf{A}}\hat{\mathbf{K}}^{-1}$, if there are multiple two-step paths connecting j to i through node

$$m_1$$
 or m_2, \dots, m_r , its element (i, j) is $k_i^{-1} (\sum_{q=m_i}^{m_r} k_q^{-1}) k_j^{-1}$.

We thus have
$$C_{ij} = \frac{\sigma^2}{2c} \sum_{\text{path}} \prod_{m \in \text{path}} \frac{1}{k_m},$$
 (6)

where "path" means all paths from j to i, and m denotes the nodes on them.

This path-integral representation directly reveals a relation between autocorrelation

 C_{ii} in the matrix $\hat{\mathbf{C}}$ and node degree k_i .

For *n*th-order approximation, we count all paths whose lengths are equal to or less than n. Under second-order approximation, we have

$$C_{ii} = \frac{\sigma^2}{2c} \left(\frac{1}{k_i} + \frac{1}{k_i^2} \sum_{q \in \Gamma_i} \frac{1}{k_q} \right) \approx \frac{\sigma^2}{2ck_i} \left(1 + \frac{1}{\langle k \rangle} \right), \tag{7}$$

where mean-field approximation is applied and Γ_i denotes the neighbors of node *i*.

Conclusions

- 1. In the presence of noise, dynamical correlation matrix reveals full topology of network.
 - J. Ren, W.-X. Wang, B. Li, and Y.-C. Lai, "Noise bridges dynamical correlation and topology in complex oscillator networks," *Physical Review Letters* **104**, 058701 (2010).
- 2. The theory works even when there is small time delay
 - J. Ren, W.-X. Wang, B. Li, and Y.-C. Lai, "Reverse engineering of complex dynamical networks in the presence of time-delayed interactions based on noisy time series," *Chaos* **22**, 033131 (2012).
- 3. Compressive-sensing based methods for time-series based prediction of network topology and dynamics

Next Lecture