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a b s t r a c t

The problem of reconstructing nonlinear and complex dynamical systems from measured
data or time series is central to many scientific disciplines including physical, biological,
computer, and social sciences, as well as engineering and economics. The classic approach
to phase-space reconstruction through the methodology of delay-coordinate embedding
has been practiced for more than three decades, but the paradigm is effective mostly
for low-dimensional dynamical systems. Often, the methodology yields only a topological
correspondence of the original system. There are situations in various fields of science and
engineering where the systems of interest are complex and high dimensional with many
interacting components. A complex system typically exhibits a rich variety of collective
dynamics, and it is of great interest to be able to detect, classify, understand, predict,
and control the dynamics using data that are becoming increasingly accessible due to
the advances of modern information technology. To accomplish these goals, especially
prediction and control, an accurate reconstruction of the original system is required.

Nonlinear and complex systems identification aims at inferring, from data, the
mathematical equations that govern the dynamical evolution and the complex interaction
patterns, or topology, among the various components of the system. With successful
reconstruction of the system equations and the connecting topology, it may be possible
to address challenging and significant problems such as identification of causal relations
among the interacting components and detection of hidden nodes. The ‘‘inverse’’ problem
thus presents a grand challenge, requiring new paradigms beyond the traditional delay-
coordinate embedding methodology.

The past fifteen years have witnessed rapid development of contemporary complex
graph theory with broad applications in interdisciplinary science and engineering. The
combination of graph, information, and nonlinear dynamical systems theories with tools
from statistical physics, optimization, engineering control, applied mathematics, and
scientific computing enables the development of a number of paradigms to address the
problem of nonlinear and complex systems reconstruction. In this Review, we describe the
recent advances in this forefront and rapidly evolving field, with a focus on compressive
sensing based methods. In particular, compressive sensing is a paradigm developed in
recent years in applied mathematics, electrical engineering, and nonlinear physics to
reconstruct sparse signals using only limited data. It has broad applications ranging from
image compression/reconstruction to the analysis of large-scale sensor networks, and it
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Detecting Nodal Degree – Early Works 

Signals

An unknown network system

Measurements

Developed two methods based on 
1. Principal component analysis;
2. Universal scaling law of fluctuations about mean field



Potential Applications

Concurrence of human activities

The most “important” node (person)?
- Detect the hubs of adverse social 
networks by monitoring a proper 
public  area.

?

Identify hub nodes to 
launch attacks to 
effectively disable  the 
network.

Ø Adverse social organization detection

Ø Distributed adverse electronic system detection
Adverse organization 
embedded in Internet

Sensor network



Ø Adjacency matrix A:            if nodes i and 
j are connected, otherwise            

Ø Degree .
Ø Hubs: nodes with many links
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Adjacency Matrix  - Network 
Connectivity



Detecting hubs

Adjacency matrix

“Some” matrix
from

measurements

Idea



Ø From singular value decomposition:

– ,      are the i’th eigenvalue and 
eigenvector

–
Ø Sort eigenvalues:
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Theory  -- Adjacency Matrix



Ø If                  ,

Ø Summing up rows:
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Ø Validity for 
– For random networks,                      
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2/1

12 ~ -Nll

[1]  I. J. Farkas, I. Derenyi, A.-L. Barabasi, and T. Vicsek, Phys. Rev. E 64, 026704 (2001).
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Ratio of Eigenvalues

Random
network

Scale-free 
network



Random networks (                   ) (a)(b); Scale-free networks (                ) (c)(d). 
N=1000.
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Components of Principal 
Eigenvector



Ø From measurements, if we can construct 
a matrix with properties similar to those of
the adjacency matrix, the components of 
the principal eigenvector can be an 
indicator of the degrees.

Ø How?
Synchronization-probability matrix 
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Proposal



Ø Coupled Rössler System:

–
– is random in [0.16, 0.24]
– is coupling constant
– ,                         
–
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Example: Coupled Chaotic 
Network



Ø Synchronization probability      : fraction of 
time during which                   
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(a) Not connected
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(Random network
p=0.1, N=100)
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Circles: for node-pairs without a link; 
Triangles: for node-pairs with a direct link.
Random networks: p=0.1, N=100, ε = 0.5, δ = 1. T0=3000.

Distribution of sync probability 



Expect         of matrix            to be 
positively correlated with       (a heuristic 
argument can be worked out)

Ø Hubs can be identified as nodes with 
large       values
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Random networks: p=0.1, N=100, ε = 0.5, δ = 1. T0=3000.

Numerical Test: Chaotic Rössler 
Network
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Kuramoto Network
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A New Phenomenon
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- A set of oscillatory signals measured 
from various points in network

- Noise is present
Then, calculate

• Time averaged fluctuation about mean field
• Scales inversely with square root of  node degree

1.One-to-one correspondence with node degree;
2.Universality
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Setting
Oscillatory networked dynamical system
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Node state Node dynamics noise Coupling 
strength

Network 
topology

measurable unknown present unknown ???
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-- Coupling matrix (network connections)

-- Coupling function
-- a stochastic process (noise)



Average Fluctuation about 
Mean Field

Consensus dynamics
Chaotic system
Kuramoto system
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--- ensemble average over all nodes’ states at time t 

--- average over time      .

E
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T
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TixD ikKey issue: scaling law between                   and 

Degree of node i
Will consider three different 
types of node dynamics:



Example 1: Consensus 
dynamics
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Consensus Dynamics on 
Scale-Free Networks
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Network size is 500. Results are obtained from a single network by choosing 
different variance of noise and coupling strengths. Data points are from 
simulations and lines are from theoretical predictions.
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Consensus Dynamics on 
Small-World Networks
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The phenomenon that                  is proportional 
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Analysis
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Variational equation about 
consensus state:
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Regarding     as input and       as 
output, the system’s transfer 
function is

ix ¢ ixD

.)(
i

i

cks
cksH
+

-=

Variance of      ixD

dffSx
ixTi )(2 ò

¥

¥-
D=D

dffSfjH
i
)(|)2(| 2ò

¥

¥-
¢= xp

where              and               are the 
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Definition of PSD:
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Note that H(s) is the transfer function of a low-pass filter, we have

Analysis (cont.)

W.-X. Wang, Q.-F. Chen, L. Huang, 
Y.-C. Lai, and M. A. F. Harrison,  
“Scaling of noisy fluctuations in complex 
networks and applications to network 
detection,” Phys. Rev. E 80, 016116 
(2009).



Example 2: Chaotic 
Oscillator Network
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Noiseless system can be expressed as



Looking at x-component
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----- same equation as for consensus dynamics

Chaotic Oscillator Network: 
Heuristic Analysis



Numerical Verification
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Example 3: Kuramoto 
Network
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Scaling Law: Numerical 
Support
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Rössler system

Chaotic dynamicsConsensus dynamics

Oscillatory Dynamics on 
Real-World Networks
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Kuramoto Dynamics on 
Real-World Networks

Rescaled results on all considered 
real-world networks converge to x

y 1
=



Heterogeneous Coupling 
– Weighted Networks
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The same scaling law holds for Rössler and Kuramoto dynamics.
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A number of algebraic steps leads to 



Numerical Support
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Kuramoto Dynamics on Weighted 
Scale-Free Networks 
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In all cases, there is robust one-to-one correspondence between 
time-averaged fluctuations about mean field and node degree!



Conclusions

• Developed two methods for detecting 
complex networks from time series: 

(1) Principal component analysis;
(2) Time-averaged fluctuation about mean 

field.
• Universal scaling law:

The fluctuation scales inversely with 
square root of node degree.


