

A Recent Review Article

Physics Reports 644 (2016) 1–76

Contents lists available at ScienceDirect

Physics Reports

journal homepage: www.elsevier.com/locate/physrep

Data based identification and prediction of nonlinear and complex dynamical systems

Wen-Xu Wang a,b, Ying-Cheng Lai c,d,e,*, Celso Grebogi e

- ^a School of Systems Science, Beijing Normal University, Beijing, 100875, China
- ^b Business School, University of Shanghai for Science and Technology, Shanghai 200093, China
- ^c School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA
- ^d Department of Physics, Arizona State University, Tempe, AZ 85287, USA
- ^e Institute for Complex Systems and Mathematical Biology, King's College, University of Aberdeen, Aberdeen AB24 3UE, UK

Detecting Nodal Degree – Early Works

An unknown network system

Developed two methods based on

- 1. Principal component analysis;
- 2. Universal scaling law of fluctuations about mean field

Potential Applications

Adverse social organization detection

The most "important" node (person)?

- Detect the hubs of adverse social networks by monitoring a proper public area.

Distributed adverse electronic system detection

Adverse organization embedded in Internet

Sensor network

Identify hub nodes to launch attacks to effectively disable the network.

Adjacency Matrix - Network Connectivity

Adjacency matrix A: $A_{ij} = 1$ if nodes i and j are connected, otherwise $A_{ij} = 0$

- \triangleright Degree $k_i = \sum_{i=1}^N A_{ij}$.
- Hubs: nodes with many links

Idea

Theory -- Adjacency Matrix

$$k_i \sim e_{1,i}$$

From singular value decomposition:

$$\mathbf{A} = \sum_{i=1}^{N} \lambda_i \mathbf{e}_i \mathbf{e}_i^T$$

- $-\lambda_i$, e_i are the i'th eigenvalue and eigenvector
- $(\mathbf{e}_i \mathbf{e}_i^T)_{ik} = e_{i,j} \times e_{i,k}$
- Sort eigenvalues:

$$\left| \lambda_{1} \right| \geq \left| \lambda_{2} \right| \geq \dots \geq \left| \lambda_{N} \right|$$

Principal Component of Adjacency Matrix

ightharpoonup If $\left|\lambda_1\right| >> \left|\lambda_2\right|$,

$$\mathbf{A} = \sum_{i} \lambda_{i} \mathbf{e}_{i} \mathbf{e}_{i}^{T} \quad \Longrightarrow \quad \mathbf{A} \approx \lambda_{1} \mathbf{e}_{1} \mathbf{e}_{1}^{T}$$

Summing up rows:

$$k_{i} = \sum_{j} A_{ij} \approx \sum_{j} \lambda_{1} e_{1,i} e_{1,j} = C \lambda_{1} e_{1,i}$$

$$k_i \sim e_{1,i}$$

Ratio of Eigenvalues

- ightharpoonup Validity for $|\lambda_1| >> |\lambda_2|$
 - For random networks, $|\lambda_2/\lambda_1| \sim N^{-1/2}$

$$|\lambda_2/\lambda_1| \sim N^{-1/2}$$

[1] I. J. Farkas, I. Derenyi, A.-L. Barabasi, and T. Vicsek, Phys. Rev. E 64, 026704 (2001).

Components of Principal Eigenvector

Random networks ($\langle k \rangle$ = 30) (a)(b); Scale-free networks ($\langle k \rangle$ = 6) (c)(d). N=1000.

Proposal

From measurements, if we can construct a matrix with properties similar to those of the adjacency matrix, the components of the principal eigenvector can be an indicator of the degrees.

How?

Synchronization-probability matrix

Example: Coupled Chaotic Network

Coupled Rössler System:

$$\frac{\mathrm{d}\mathbf{x}_{i}}{\mathrm{d}t} = \mathbf{F}(\mathbf{x}_{i}) - \varepsilon \sum_{j=1}^{N} G_{ij} \mathbf{H}(\mathbf{x}_{j}),$$

-
$$\mathbf{F}(\mathbf{x}) = [-(y+z), x + a_i y, 0.2 + z(x-9)]^T$$

- $-a_i$ is random in [0.16, 0.24]
- $-\mathcal{E}$ is coupling constant
- $-G_{ii}=1$, $G_{ij}=-A_{ij}/k_i$
- $\mathbf{H}(\mathbf{x}) = [x,0,0]^T$

Synchronization Probability

Synchronization probability Φ_{ij} : fraction of time during which $|x_i - x_j| < \delta$

- (a) Not connected $\Phi_{1.22} = 0.725$
- (b) Connected $\Phi_{1.59} = 0.943$

(Random network p=0.1, N=100)

Synchronization probability

(Random network, p=0.1, N=100)

Distribution of sync probability

Circles: for node-pairs without a link;

<u>Triangles</u>: for node-pairs with a direct link.

Random networks: p=0.1, N=100, ε = 0.5, δ = 1. T0=3000.

Synchronization-Probability Matrix

Expect $e_{1,i}$ of matrix $[\Phi_{jk}]$ to be positively correlated with k_i (a heuristic argument can be worked out)

 \succ Hubs can be identified as nodes with large $e_{1,i}$ values

Numerical Test: Chaotic Rössler Network

<u>Random networks</u>: p=0.1, N=100, ε = 0.5, δ = 1. T0=3000.

Kuramoto Network

$$\frac{\mathrm{d}\,\varphi_i}{\mathrm{d}\,t} = \omega_i + \varepsilon \sum_{j=1}^N A_{ij} \sin(\varphi_j - \varphi_i)$$

Random

Scale-Free

A New Phenomenon

- $x_i(t)$ A set of oscillatory signals measured from various points in network
 - Noise is present

Then, calculate

$$\langle |\Delta x_i| \rangle_T = \langle |x_i(t) - \langle x(t) \rangle_E | \rangle_T$$

- Time averaged fluctuation about mean field
- Scales inversely with square root of node degree
- 1. One-to-one correspondence with node degree;
- 2. Universality

Setting

Oscillatory networked dynamical system

$$\dot{\mathbf{x}}_i(t) = F(\mathbf{x}_i) + c \sum_{j=1}^N G_{ij} H(\mathbf{x}_j) + \xi,$$

 G_{ij} -- Coupling matrix (network connections)

$$H(x)$$
 -- Coupling function

$$\xi$$
 -- a stochastic process (noise)

Node state $x_i(t)$	Node dynamics $F(x)$	noise E	Coupling strength	Network topology
measurable	unknown	present	unknown	???

Average Fluctuation about Mean Field

$$\langle |\Delta x_i| \rangle_T = \langle |x_i(t) - \langle x(t) \rangle_E | \rangle_T$$

$$\langle x(t) \rangle_E$$
 --- ensemble average over all nodes' states at time t $\langle ... \rangle_T$ --- average over time .

Key issue: scaling law between
$$\left<\left|\Delta x_i\right|\right>_T$$
 and $\left.k_i\right|$

Will consider three different types of node dynamics:

Degree of node i

- **Consensus dynamics**
- **Chaotic system**
- Kuramoto system

Example 1: Consensus dynamics

$$\dot{x}_{i}(t) = -c \sum_{j=1}^{N} A_{ij} [x_{i}(t) - x_{j}(t)] + \xi,$$

 ξ --- Gaussian white noise of zero mean and variance σ^2

$$A_{ij} = \begin{cases} 1, & i \neq j \\ 0, & i = j \end{cases}$$
 --- adjacency matrix

Rewrite

$$\dot{x}_i = -cLx + \xi,$$

L --- Laplacian Matrix defined as

$$L_{ij} = \begin{cases} -1, & i \neq j \\ k_i, & i = j \end{cases}$$

Consensus Dynamics on Scale-Free Networks

Network size is 500. Results are obtained from a single network by choosing different variance of noise and coupling strengths. Data points are from simulations and lines are from theoretical predictions.

Consensus Dynamics on Small-World Networks

The phenomenon that $\langle |\Delta x_i| \rangle_T$ is proportional to $\frac{1}{\sqrt{k_i}}$ holds regardless of network structure

Analysis

$$\dot{x}_{i}(t) = -c\sum_{j=1}^{N} A_{ij}[x_{i}(t) - x_{j}(t)] + \xi,$$

Variational equation about consensus state:

$$\begin{split} \Delta \dot{x}_i &= -ck_i \Delta x_i - c\sum_{j=1}^N A_{ij} \Delta x_j + \xi, \\ \Delta x_j & \text{ being random } \Longrightarrow \sum \approx 0 \\ \text{we have} \end{split}$$

$$\Delta \dot{x}_i = -ck_i(\Delta x_i + \xi_i'),$$

where اع

$$\xi_i' = -\frac{\xi}{ck_i}.$$

Regarding ξ_i' as input and Δx_i as output, the system's transfer function is

$$H(s) = -\frac{ck_i}{s + ck_i}.$$

Variance of Δx_i

$$\left\langle \Delta x_i^2 \right\rangle_T = \int_{-\infty}^{\infty} S_{\Delta x_i}(f) df$$
$$= \int_{-\infty}^{\infty} |H(j2\pi f)|^2 S_{\xi_i'}(f) df$$

where $S_{\Delta x_i}(f)$ and $S_{\xi_i'}(f)$ are the power spectral density (PSD) for Δx_i and ξ_i' , respectively. Since $S_{\xi_i'}(f)$ and $|H(j2\pi f)|^2$ are even functions of f, we have

$$\left\langle \Delta x_i^2 \right\rangle_T = 2 \int_0^\infty |H(j2\pi f)|^2 S_{\xi_i'}(f) df.$$

Analysis (cont.)

Definition of PSD:

$$S_{\xi_i'}(f) = \int_{-\infty}^{\infty} \left\langle \xi_i'(t+\tau)\xi_i'(t) \right\rangle_T \exp(-j2\pi f\tau) d\tau = \left\langle \xi_i'(t)^2 \right\rangle_T = \frac{\sigma^2}{c^2 k_i^2}$$

 σ^2 -- variance of Gaussian noise

Note that H(s) is the transfer function of a low-pass filter, we have

$$|H(j2\pi f)|^2 \approx U(0) - U\left(\frac{ck_i}{2\pi}\right),$$

$$U(x)$$
 -- unit step function

$$\langle \Delta x_i^2 \rangle_T \approx 2 \frac{\sigma^2}{c^2 k_i^2} \times \frac{c k_i}{2\pi} = \frac{\sigma^2}{\pi k_i c}.$$

Or
$$\left\langle \left| \Delta x_i \right| \right\rangle_T \approx \sqrt{\left\langle \Delta x_i^2 \right\rangle} = \frac{\sigma}{\sqrt{\pi c}} \frac{1}{\sqrt{k_i}}.$$

W.-X. Wang, Q.-F. Chen, L. Huang, Y.-C. Lai, and M. A. F. Harrison, "Scaling of noisy fluctuations in complex networks and applications to network detection," *Phys. Rev. E* **80**, 016116 (2009).

Example 2: Chaotic Oscillator Network

$$\begin{cases} \dot{x}_i = -(y_i - z_i) + c \sum_{j=1}^{N} A_{ij}(x_j - x_i) + \xi, \\ \dot{y}_i = x + 0.2y_i + c \sum_{j=1}^{N} A_{ij}(y_j - y_i), \\ \dot{z}_i = 0.2 + z_i(x_i - 9.0) + c \sum_{j=1}^{N} A_{ij}(z_j - z_i), \end{cases}$$

Noiseless system can be expressed as

$$\dot{X}_i = F(X) - cLX$$

Chaotic Oscillator Network: Heuristic Analysis

Looking at x-component

$$\Delta \dot{x}_i = DF(x_i) \Delta x_i - ck_i \Delta x_i + c \sum_{j=1}^N A_{ij} \Delta x_j + \xi.$$

$$\Delta x_j \text{ being random } \sum \approx 0$$

For large coupling strength c and nodes with high degree k

---- same equation as for consensus dynamics

$$\left| \Delta x(k) \right|_T \approx \frac{\sigma}{\sqrt{\pi c}} \frac{1}{\sqrt{k}}$$

Numerical Verification

Scale-free

Small-world

Example 3: Kuramoto

Network

$$\dot{\theta}_i = \omega_i + c \sum_{j=1}^N A_{ij} \sin(\theta_j - \theta_i) + \xi$$

Natural frequency of oscillator i

Near synchronization state $\theta_1 = \theta_2 = \dots = \theta_N \implies \sin(\theta_j - \theta_i) \approx \theta_j - \theta_i$

$$\Delta \dot{\theta}_{i} = -ck_{i}\Delta\theta_{i} + c\sum_{i=1}^{N} A_{ij}\Delta\theta_{j} + \xi \quad \approx -ck_{i}\Delta\theta_{i} + \xi$$

--- same as that for consensus dynamics!

$$\left| \left| \Delta \theta(k) \right| \right\rangle_T \approx \frac{\sigma}{\sqrt{\pi c}} \frac{1}{\sqrt{k}}$$

Scaling Law: Numerical Support

Scale-free network

Small-world network

Oscillatory Dynamics on Real-World Networks

Consensus dynamics

Chaotic dynamics

Kuramoto Dynamics on Real-World Networks

Rescaled results on all considered real-world networks converge to

$$y = \frac{1}{\sqrt{x}}$$

Heterogeneous Coupling

Weighted Networks

$$c' = ck_i^{\alpha}$$

Consensus dynamics

$$\dot{x}_{i}(t) = -ck_{i}^{\alpha} \sum_{j=1}^{N} A_{ij} [x_{i}(t) - x_{j}(t)] + \xi$$

A number of algebraic steps leads to

$$\langle |\Delta x| \rangle_T \approx \frac{\sigma}{\sqrt{\pi c}} k^{-\frac{1+\alpha}{2}}$$

The same scaling law holds for Rössler and Kuramoto dynamics.

Numerical Support

Consensus dynamics

Rössler dynamics

Weighted scale-free networks

Kuramoto Dynamics on Weighted Scale-Free Networks

In all cases, there is robust one-to-one correspondence between time-averaged fluctuations about mean field and node degree!

Conclusions

- Developed two methods for detecting complex networks from time series:
- (1) Principal component analysis;
- (2) Time-averaged fluctuation about mean field.
- Universal scaling law:
 - The fluctuation scales inversely with square root of node degree.