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% Detecting Nodal Degree — Early Works

Signals

Measurements

N

Node degrees

An unknown network system

Developed two methods based on
1. Principal component analysis;
2. Universal scaling law of fluctuations about mean field



Sl Potential Applications

» Adverse social organization detection

The most “important” node (person)?
- Detect the hubs of adverse social
networks by monitoring a proper
public area.

Concurrence of human activitiey

» Distributed adverse electronic system detection

Adverse organization
embedded in Internet

Sensor network

|dentify hub nodes to
launch attacks to
effectively disable the
network.




%l Adjacency Matrix - Network

Connectivity

» Adjacency matrix A: 4, =1 if nodes i and

J are connected, otherwise 4, =0
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» Degree k=) 4,

» Hubs: nodes with many links
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Idea

@tecting hubs

@ency matrix

“Some” matrix
from
measurement




%IJ Theory -- Adjacency Matrix

o k ~ eli

l

» From singular value decomposition:
N
A = Z/Il.el.eiT
i=l1

— 4, ,¢, are the i'th eigenvalue and
eigenvector

— (eieiT)jk =€ X€,
» Sort eigenvalues: A=Az 2|4y



%l Principal Component of
Adjacency Matrix

T
A=) lee, A= Aee,

» Summing up rows:

ki = ZJ- Agj ~ Zj ﬂ’lel,iel,j — Cﬂ'lel,i

l

k; ~ €.i




FSU  Ratio of Eigenvalues

> Validity for |4,|>>|4,]
— For random networks, |4, /4|~ N
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[1] I.J. Farkas, |. Derenyi, A.-L. Barabasi, and T. Vicsek, Phys. Rev. E 64, 026704 (2001).

| (k)=0.008N



FSU

0.08

0.06|

0.02}

0.08

0.06 |

(

0.02

0

Random networks ( <k> — 30 ) (a)(b); Scale-free networks ( <k> — 6 ) (c)(d).

N=1000.

< 0.04}

< 0.04}

Components of Principal

Eigenvector
(a)
0 26 46 60
kj
(b)
0 2l0 4l0 60
k

(c)
2
X
>2< X

e
0 50 100 150 200

k.
. .J
(d)

% o
0 50 100 150 200
k



FSi Proposal

» From measurements, if we can construct
a matrix with properties similar to those of
the adjacency matrix, the components of
the principal eigenvector can be an
indicator of the degrees.

or How?
Synchronization-probability matrix

O, ~ A4,




%l Example: Coupled Chaotic
Network

» Coupled Rossler System:
dx,
d¢

N
=F(x,)-¢)_ G H(x)),
j=1

— F(x)=[-(y+2),x+a,y,02+z(x-9)]"
— a, I1srandom in [0.16, 0.24]

— & Is coupling constant
- G, =1, G,=-4,/k

y

— H(x)=[x,0,01




1561 | Synchronization Probability

» Synchronization probability @, : fraction of
time during which | x; —x;, |< 0

10_(8.) *
5| o ©;~ 4
A MWMWMMW (a) Not connected
5L i
ol r | | | | | CI)L22 =0.725
0 500 1000 1500 2000 2500 3000
10, :
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ﬁ% 0 .|' ®1,59 — 0.943
) 5L i
1ol r r r r r | (Random network
0 500 1000 1500 2000 2500 3000

: 0=0.1, N=100)



%ﬂ Synchronization probability
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Distribution of sync probability
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Synchronization Probability

Circles: for node-pairs without a link;
Triangles: for node-pairs with a direct link.
Random networks: p=0.1, N=100, € = 0.5, 6 = 1. T0=3000.




Sl Synchronization-Probability
Matrix

\/

0‘0

Expect ¢, of matrix [CD ij to be
positively correlated with %, (a heuristic
argument can be worked out)

» Hubs can be identified as nodes with
large e, ; values



%ﬁ Numerical Test: Chaotic Rossler
Network

0.115.
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0.105 |-
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K

Random networks: p=0.1, N=100, € = 0.5, 6 = 1. T0=3000.




%ﬁ Kuramoto Network

do,
dz

N
=, + gz A, sm(@p; —@,)
j=1
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X, (t) - A set of oscillatory signals measured
from various points in network

A New Phenomenon

- Noise 1s present

Then, calculate

(Ax]), = (v~ (x(0),).

* Time averaged fluctuation about mean field
* Scales inversely with square root of node degree

1.One-to-one correspondence with node degree;
2. Universality



FSU

Setting

Oscillatory networked dynamical system

X, (?) = F(Xl.)+cZN:Gl.].H(Xj)+§,

Gy. -- Coupling matrix (network connections)

H (x) -- Coupling function

5 -- a stochastic process (noise)

Node state | Node dynamics | noise Coupling Network
x.(1) F(x) & strengthc topology

measurable | unknown present | unknown ?7?7?




%l Average Fluctuation about
Mean Field

(Ax]), = (k. (0 =(x(@),])
<x (t )> r -— ensemble average over all nodes’ states at time ¢
<> T --—-average over time
Key issue: scaling law between <‘AX, >T and kl-
Will consider three different
types of node dynamics: Degree of node i

© Consensus dynamics
© Chaotic system
© Kuramoto system



156 | Example 1: Consensus
dynamics
X (1) = —CZ Aylx, (1) =x ()] +¢,

: : : : 2
5 --- Gaussian white noise of zero mean and variance O

1, N
A; = . --- adjacency matrix
0, =]

Rewrite

X, =—clLx+¢&,

L --- Laplacian Matrix defined as

—1 E
=7t J
J {k, 1:]

1



%ﬁ Consensus Dynamics on
Scale-Free Networks

Linear plot Logarithmic plot
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Network size is 500. Results are obtained from a single network by choosing
different variance of noise and coupling strengths. Data points are from
simulations and lines are from theoretical predictions.



%ﬂ Consensus Dynamics on
Small-World Networks

> ~ 1s proportional
holds regardless of network structure

The phenomenon that <‘Axl
1
to

NG



| | Analysis

N
%(0) ==Y A, [x(6) = x, (D] + &, H(s)=——ki
Jj=1 S+Ckl.
Variational equation about Variance of Ax.
consensus state: !
N7
Ab, = —ckAx,— ¢S A Ax, + &, (A7), = [ Sa, (Nf
J=1 Z _:j
Ax . bei ~ 0
we haw o random = JIHG2A) P S (N
. ' where S, (f) and S.(f) are the
Ax, = —ck (Ax; + &),

power spectral denS|ty (PSD) forAx,
and &, , respectively. Since Sa(f)
where £ and | HZ (j27zf) | are even
l.’ -2 functions of f, we have

ck,

Regarding &£ as input and Ax;, as <Axi2> _ 2]‘| HG27f) P S..(f)df.
output, the system’s transfer T ) z
function is



£Sil

Definition of PSD:

Q0

So ()= J(&+DED), exp(-j22f )T = (D)) =

—00

o’ --variance of Gaussian noise

Analysis (cont.)

2
O

27 2
ck;

Note that H(s) is the transfer function of a low-pass filter, we have

7T

H(j27f) P~ U(0) - U[ * j

— <Axl,2>Tz2 o kai = o :

Or <|sz|>T ~ <Axi2

U(x) -- unit step function

W.-X. Wang, Q.-F. Chen, L. Huang,
Y.-C. Lai, and M. A. F. Harrison,
“Scaling of noisy fluctuations in complex
networks and applications to network
detection,” Phys. Rev. E 80, 016116
(2009).



156 | Example 2: Chaotic
Oscillator Network

x; = —(y, _Zi)+czf47'j(xj —x;)+¢,

N
S Y =x+02y,+cD A (v, — ),
j=1

N
z, =02+z,(x;, —9.0) + cz A (z,—z),
j=1

Noiseless system can be expressed as

X =F(X)—clLX

AX. = DF(X)AX —cLDH (X)AX



%l Chaotic Oscillator Network:
Heuristic Analysis

Looking at x-component

Ax. = DF (x,)Ax, — ck,Ax, -I—CZA Ax, + &

Ax; being random > =0

For large coupling strength c and nodes with high degree k
DF (x,)Ax, << ck,Ax,
Ax, = —ck Ax, + &

----- same equation as for consensus dynamics

<‘Ax(k)‘> \/7 \/—



Numerical Verification

Scale-free Small-world

£=1.0 c=1.2 |] 045 ¢

< > o0 O

<A x(K)>,

10 10° 3 4 5 6 7 8 9 10 111213141516



156 | Example 3: Kuramoto
%\Ietwork

0, =w,+cy Asin(@ —0)+¢&
=1

Natural frequency of oscillator i
Near synchronization state () =) =...= 0, sin(Hj -0)~ 9]. -0,

. N
@za)l.Jcm (0, —0)+¢g
j=! = —ck.0, +CZA9 + @ + &

Variational equation

AO, = —ck.A6, +cZA A +& =~ —ck,AO, + &

j=I1
--- same as that for consensus dynamics!

(a0, ~ 2
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Scaling Law: Numerical
Support

Scale-free network Small-world network
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Consensus dynamics

Oscillatory Dynamics on
Real-World Networks
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Rossler system
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Kuramoto Dynamics on
Real-World Networks

p)
S__ Kuramoto model

B 7
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Rescaled results on all considered
real-world networks converge to



%ﬂ Heterogeneous Coupling
— Weighted Networks

c' =ck/’

Consensus dynamics

%, (8) = —cki 3 Alx, () = x,(D]+ &

N
Ak, =—ck]“Ax, —ck! Y A,Ax, +E  ~—ck; " Ax, + &

J=1

A number of algebraic steps leads to

e
(axf), ~ —*&

The same scaling law holds for Rossler and Kuramoto dynamics.




Numerical Support

Consensus dynamics Rossler dynamics

<|A x(k)|>,

Weighted scale-free networks



%ﬂ Kuramoto Dynamics on Weighted
Scale-Free Networks

<[ A6 (k) [>

In all cases, there is robust one-to-one correspondence between
time-averaged fluctuations about mean field and node degree!
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Conclusions

* Developed two methods for detecting
complex networks from time series:

(1) Principal component analysis;

(2) Time-averaged fluctuation about mean
field.

» Universal scaling law:

The fluctuation scales inversely with
square root of node degree.




