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Current Problems in Complex
Networks

* Prediction

* Control

 Network Resilience
* Tipping point
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Complex Networks

Regular: Small World: Random: * Random
High L, High C Low L, High C Low L, Low C networks:

Erdos and
Renyi, 1959
 Small-world
networks:
Watts and
>

Strogatz, 1998

Increasingly random connectivity

Scale-free networks
Barabasi and Albert, 1999




% Modern Network Science and
Engineering
Before 2010
* Complex network topologies and the responsible mechanisms

* Dynamics on complex networks — synchronization, virus
spreading, traffic flows, information propagation, percolation,
cascading dynamics (network security), etc.

* Dynamics of networks — evolution of network structures with
time and how dynamics on networks are affected

After 2010

Prediction

Control

Network Resilience
Tipping point
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A Recent Review Article

Physics Reports 644 (2016) 1-76

Contents lists available at ScienceDirect

PHYSICS REPORTS

Physics Reports

journal homepage: www.elsevier.com/locate/physrep

Data based identification and prediction of nonlinear and @CmssMark
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Wen-Xu Wang *", Ying-Cheng Lai “*¢*, Celso Grebogi ®

4 School of Systems Science, Beijing Normal University, Beijing, 100875, China

b Business School, University of Shanghai for Science and Technology, Shanghai 200093, China

€ School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA

d Department of Physics, Arizona State University, Tempe, AZ 85287, USA

€ Institute for Complex Systems and Mathematical Biology, King’s College, University of Aberdeen, Aberdeen AB24 3UE, UK




Detecting Hidden Nodes

No informationis available from the black node. How can we
ascertain its existence and its location in the network? How can we
distinguish hidden node from local noise sources?



Detecting Hidden Node
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Data Based Prediction of Complex
Networks: Outstanding Problems

* Locating multiple hidden nodes

* Reconstructing full network structure with
incomplete data

* Detecting sources of spreading (diffusion)
based on binary data

* Network analysis based on big data



%l Linear Network Control: Well Done

A dynamical system is controllable if it
can be driven from any initial state to any
desired final state in finite time by
suitable choice of input control signals.

Final state

'ﬁm General Mathematical framework: Kalman’s
Controllability Rank Condition

Focus of existing works: minimal number of signals required to control the network

Structural controllability: Y.-Y. Liu, J.-J. Slotine, and A.-L. Barabasi, “Controllability of complex networks,”
e.g., Nature 473,167 (2011)

Exact controllability: Z.-Z. Yuan, C. Zhao, Z.-R. Di, W.-X. Wang, and Y.-C. Lai, “Exact controllability of

complex networks,” Nat. Commun. 4, 2447 (2013) -
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Energy bounds: G. Yan, J. Ren, Y.-C. Lai, C. H. Lai, B. Li, “Controlling complex 0-001

networks: how much energy is needed?” PRL 108, 218703 (2012).

Energy scaling: Y.-Z. Chen, L.-Z. Wang, W.-X. Wang, and Y.-C. Lai, “Energy
scaling and reduction in controlling complex networks,” Roy. Soc. Open Sci. 3,
160064 (2016).

Physical controllability: L.-Z. Wang, Y.-Z. Chen, W.-X. Wang, and Y.-C. Lai,
“Physical controllability of complex networks,” SREP 7, 40198 (2017).

0.00 -

High probability of
energy divergence




% Controlling Complex Nonlinear

.
2.

Dynamical Networks: DIVERSITY

Lack of a general mathematical control/controllability framework
Extremely diverse nonlinear dynamical behaviors require a diverse array
of control methodologies:

Controlling collective dynamics, e.g., Y.-Z. Chen, Z.-G.

Huang, and Y.-C. Lai, “Controlling extreme events on complex
networks,” SREP 4, 6121 (2014)

Controlling destinations (attractors), e.g., L.-Z. Wang,

R.-Q. Su, Z.-G. Huang, X. Wang, W.-X. Wang, C. Grebogi, and Y.-C. 15
Lai, “A geometrical approach to control and controllability of >
complex nonlinear dynamical networks,” Nat. Commun. 7, 11323
(2016).

Control principle based on feedback vertex set —
ongoing work —

Closed-loop control, Y.-z. Sun, S.-Y. Leng, Y.-C. Lai, C.
Grebogi, and W. Lin, Phys. Reve. Lett. 119, 198301 (2017)

ﬁ

Predicting and controlling tipping point in complex
mutualistic networks

J.-J.Jiang, Z.-G. Huang, T. P. Seager, W. Lin, C. Grebogi, A. Hastings Q Q % Q

and Y.-C. Lai, PNAS (Plus), in press
J.-J. Jiang, A. Hastings, and Y.-C. Lai, "Controlling tipping point in

complex systems,” preprint (2017) ﬁ & & ﬁ ﬁ ﬁ ﬂ R é}, ﬂ

TWil=1 )—X‘
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Controlling Complex Networks:
Outstanding Problems

* General framework of controllability for nonlinear networks
— the role of network topology?

* Data based control of nonlinear networks

* Control of time varying, nonlinear dynamical networks

* Optimizing flows on complex networks through control

* Control of tipping point in complex networks
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Cascading Failures in Complex
Networks — Control?

Without Control With Control

A simple weight-based control scheme:
R. Yang, W.-X. Wang, Y.-C. Lai, G.-R. Chen, Phys. Rev. E 79, 026112 (2009).
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Cascading Dynamics in Complex
Networks: Outstanding
Problems

* Data based prediction of cascading failures

* “Ranking” of nodes or clusters of nodes in terms of their
vulnerability to cascading failures

* (Cascading dynamics in time varying networks

* Control strategies



Tipping point: Prediction &

Control?
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(Generally increases with human population size)

Barnosky, Anthony D., et al. Nature 486, 52-58 (2012).
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Cause of perturbation: global

warming caused climate change,

excessive use of pesticides leading

to death of pollinators, loss of Node loss
habitats due to pollution, etc. @ g

Perturbation Types

Bipartite mutualistic network
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% Nonlinear Network of Mutualistic Interactions

S

dPi= <P) Eﬁ(P)P"' Jl +u

. P>
di = 1+ hzy PA, .
: . Holling type-II
dynamics
A)
dA & Ey’ Y
di_A’ a? - k, —E/o’ff”Aj+ + Uy,
! - 1+ hE yop,

Y. =&, Yo , O =t=1 (r =0: structure has no effect; 7 = 1: structure is important)
17 ij (k )t

g, =1 if plant/pollinator i and pollinator/plant j are connected; O otherwise;
P., A, — Abundance of ith plant and ith pollinator;
S,,S, — numbers of plants and pollinators;

Py ,(A)

o, ’,a;”’ — intrinsic growth rates of ith plant and ith pollinator;

B> B; — intraspecific and interspecific competition strength (8, >> 3,);

Uy, u, — immigration of plants and pollinators;

Yo — strength of mutualistic interaction; } Possible control

K, — pollinator decay rate - bifurcation parameter parameters

* Lever, Nes, Scheffer, and Bascompte, ‘“The sudden collapse of pollinator communities,” Ecol. Lett.
17, 350-359 (2014)

* Rohr, Saavedra, and Bascompte, “On the structural stability of mutualistic systems,” Science 345,
1253497 (2014).

* J.-J. Jiang, Z.-G. Huang, T. P. Seager, W. Lin, C. Grebogi, A. Hastings, and Y.-C. Lai, “Predicting
tipping points in mutualistic networks through dimension reduction,” PNAS (Plus), in press



Predicting Tipping Point:
Data-Driven Method?
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Network Time Series

Full network ]
MWWWMMW MWWWMWW topology + - .
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How to scale to large networks? Crisis
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Tipping Points in Complex
Networked Systems:
Outstanding Problems

* Unified theory for tipping point dynamics (e.g., phase
transition 1n statistical physics)

* Control of tipping point in mutualistic networks

* Predicting tipping points in social networks

* Tipping point in dynamical power grids — prediction and
control?



