
Current Problems in Complex 
Networks

• Prediction
• Control
• Network Resilience
• Tipping point



Complex Networks

Scale-free networks
Barabasi and Albert, 1999

• Random 
networks: 
Erdos and 
Renyi, 1959

• Small-world 
networks: 
Watts and 
Strogatz, 1998



Modern Network Science and 
Engineering 

• Complex network topologies and the responsible mechanisms  
• Dynamics on complex networks – synchronization, virus 

spreading, traffic flows, information propagation, percolation, 
cascading dynamics (network security), etc.

• Dynamics of networks – evolution of network structures with 
time and how dynamics on networks are affected

Before 2010

After 2010
• Prediction
• Control
• Network Resilience
• Tipping point
• …



Reverse Engineering of Complex Networks

Network
Measured
Time Series

Full network topology?
Assumption: all nodes are

externally accessible
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a b s t r a c t

The problem of reconstructing nonlinear and complex dynamical systems from measured
data or time series is central to many scientific disciplines including physical, biological,
computer, and social sciences, as well as engineering and economics. The classic approach
to phase-space reconstruction through the methodology of delay-coordinate embedding
has been practiced for more than three decades, but the paradigm is effective mostly
for low-dimensional dynamical systems. Often, the methodology yields only a topological
correspondence of the original system. There are situations in various fields of science and
engineering where the systems of interest are complex and high dimensional with many
interacting components. A complex system typically exhibits a rich variety of collective
dynamics, and it is of great interest to be able to detect, classify, understand, predict,
and control the dynamics using data that are becoming increasingly accessible due to
the advances of modern information technology. To accomplish these goals, especially
prediction and control, an accurate reconstruction of the original system is required.

Nonlinear and complex systems identification aims at inferring, from data, the
mathematical equations that govern the dynamical evolution and the complex interaction
patterns, or topology, among the various components of the system. With successful
reconstruction of the system equations and the connecting topology, it may be possible
to address challenging and significant problems such as identification of causal relations
among the interacting components and detection of hidden nodes. The ‘‘inverse’’ problem
thus presents a grand challenge, requiring new paradigms beyond the traditional delay-
coordinate embedding methodology.

The past fifteen years have witnessed rapid development of contemporary complex
graph theory with broad applications in interdisciplinary science and engineering. The
combination of graph, information, and nonlinear dynamical systems theories with tools
from statistical physics, optimization, engineering control, applied mathematics, and
scientific computing enables the development of a number of paradigms to address the
problem of nonlinear and complex systems reconstruction. In this Review, we describe the
recent advances in this forefront and rapidly evolving field, with a focus on compressive
sensing based methods. In particular, compressive sensing is a paradigm developed in
recent years in applied mathematics, electrical engineering, and nonlinear physics to
reconstruct sparse signals using only limited data. It has broad applications ranging from
image compression/reconstruction to the analysis of large-scale sensor networks, and it
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Detecting Hidden Nodes

No information is available from the black node. How can we 
ascertain its existence and its location in the network? How can we 
distinguish hidden node from local noise sources?



Detecting Hidden Node 
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• Two green nodes: immediate
neighbors of hidden node

• Information from green nodes
is not complete

• Anomalies in the prediction of 
connections of green nodes 

Variance of predicted 
coefficients



Data Based Prediction of Complex 
Networks: Outstanding Problems

• Locating multiple hidden nodes
• Reconstructing full network structure with 

incomplete data
• Detecting sources of spreading (diffusion) 

based on binary data
• Network analysis based on big data 
• …



Linear Network Control: Well Done 

x1

x2

x3
Initial state

Final state

A dynamical system is controllable if it 
can be driven from any initial state to any
desired final state in finite time by 
suitable choice of input control signals.

Focus of existing works: minimal number of signals required to control the network

Issue: controllability is mathematically well defined but physically,
control may be difficult 

Structural controllability: Y.-Y. Liu, J.-J. Slotine, and A.-L. Barabasi, “Controllability of complex networks,” 
Nature 473, 167 (2011)
Exact controllability: Z.-Z. Yuan, C. Zhao, Z.-R. Di, W.-X. Wang, and Y.-C. Lai, “Exact controllability of 
complex networks,” Nat. Commun. 4, 2447 (2013)

e.g.,

In terms of ENERGY

Energy bounds: G. Yan, J. Ren, Y.-C. Lai, C. H. Lai, B. Li, “Controlling complex 
networks: how much energy is needed?” PRL 108, 218703 (2012).
Energy scaling: Y.-Z. Chen, L.-Z. Wang, W.-X. Wang,  and Y.-C. Lai, “Energy 
scaling and reduction in controlling complex networks,” Roy. Soc. Open Sci. 3, 
160064 (2016).
Physical controllability: L.-Z. Wang, Y.-Z. Chen, W.-X. Wang, and Y.-C. Lai, 
“Physical controllability of complex networks,” SREP 7, 40198 (2017). High probability of 

energy divergence

General Mathematical framework: Kalman’s
Controllability Rank Condition



• Controlling collective dynamics, e.g., Y.-Z. Chen, Z.-G. 
Huang, and Y.-C. Lai, “Controlling extreme events on complex 
networks,” SREP 4, 6121 (2014)

• Controlling destinations (attractors), e.g., L.-Z. Wang, 
R.-Q. Su, Z.-G. Huang, X. Wang, W.-X. Wang, C. Grebogi, and Y.-C. 
Lai, “A geometrical approach to control and controllability of 
complex nonlinear dynamical networks,” Nat. Commun. 7, 11323 
(2016).

• Control principle based on feedback vertex set –
ongoing work

• Closed-loop control,  Y.-Z. Sun, S.-Y. Leng, Y.-C. Lai, C. 
Grebogi, and W. Lin, Phys. Reve. Lett. 119, 198301 (2017) 

• Predicting and controlling tipping point in complex 
mutualistic networks

1. J.-J. Jiang, Z.-G. Huang, T. P. Seager, W. Lin, C. Grebogi, A. Hastings, 
and Y.-C. Lai, PNAS (Plus), in press

2. J.-J. Jiang, A. Hastings, and Y.-C. Lai, ”Controlling tipping point in 
complex systems,” preprint (2017)

1. Lack of a general mathematical control/controllability framework
2. Extremely diverse nonlinear dynamical behaviors require a diverse array 

of control methodologies:
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Controlling Complex Nonlinear 
Dynamical Networks: DIVERSITY



Controlling Complex Networks: 
Outstanding Problems

• General framework of controllability for nonlinear networks 
– the role of network topology?

• Data based control of nonlinear networks
• Control of time varying, nonlinear dynamical networks
• Optimizing flows on complex networks through control
• Control of tipping point in complex networks



Cascading Failures in Complex 
Networks – Control?

Without Control With Control

A simple weight-based control scheme:
R. Yang, W.-X. Wang, Y.-C. Lai, G.-R. Chen, Phys. Rev. E 79, 026112 (2009).



Cascading Dynamics in Complex 
Networks: Outstanding 

Problems

• Data based prediction of cascading failures
• “Ranking” of nodes or clusters of nodes in terms of their 

vulnerability to cascading failures
• Cascading dynamics in time varying networks
• Control strategies 
• …



Tipping point: Prediction & 
Control?

Barnosky, Anthony D., et al. Nature 486, 52-58 (2012).



Perturbation Types

Parameter 
change 

Bipartite mutualistic network

Cause of perturbation: global 
warming caused climate change, 
excessive use of pesticides leading 
to death of pollinators, loss of 
habitats due to pollution, etc.



Nonlinear Network of Mutualistic Interactions 
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γ ij = εij
γ0

(ki )
t ,  0 ≤ t ≤1 (t = 0: structure has no effect; t =1: structure is important)

εij =1 if plant/pollinator i and pollinator/plant j  are connected; 0 otherwise;
Pi,Ai −  Abundance of ith plant and ith pollinator;
SP,SA −  numbers of plants and pollinators; 
αi

(P ),αi
(A) −  intrinsic growth rates of ith plant and ith pollinator;

βii,βij −  intraspecific and interspecific competition strength (βii >> βij );
µP,µA −  immigration of plants and pollinators;
γ0 −  strength of mutualistic interaction;
κ i −  pollinator decay rate - bifurcation parameter

• Lever, Nes, Scheffer, and Bascompte, “The sudden collapse of pollinator communities,” Ecol. Lett. 
17, 350-359 (2014)

• Rohr, Saavedra, and Bascompte, “On the structural stability of mutualistic systems,” Science 345, 
1253497 (2014).

• J.-J. Jiang, Z.-G. Huang, T. P. Seager, W. Lin, C. Grebogi, A. Hastings, and Y.-C. Lai, “Predicting 
tipping points in mutualistic networks  through dimension reduction,” PNAS (Plus), in press

Holling type-II 
dynamics

Possible control 
parameters



Predicting Tipping Point: 
Data-Driven Method?

Problem 2: Reverse Engineering of 
Complex Networks

Network
Measured
Time Series

Full network topology?

Full network 
topology + 
dynamical 
equations

CrisisHow to scale to large networks?



Tipping Points in Complex 
Networked Systems: 

Outstanding Problems

• Unified theory for tipping point dynamics (e.g., phase 
transition in statistical physics)

• Control of tipping point in mutualistic networks
• Predicting tipping points in social networks
• Tipping point in dynamical power grids – prediction and 

control?
• …


