
Internet
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Early Model

Capacity of node: maximum load that it can handle.
In reality, capacity is limited by cost.
Capacity Cj of node j is assumed to be proportional to
its initial load Lj,

Cj = (1 + α)Lj, j = 1, 2, ...N,

where α ≥ 0 is the tolerance parameter.
A node fails if its load > C.
Cascading failure: nodes fail (due to attack or random
failure) → load redistribution → more nodes fail → load
redistribution → . . .

A. E. Motter and Y.-C. Lai, Phys. Rev E 66, 065102(R)
(2002).
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Load (Idealized)

Load on node n (or link) is defined as the number
of shortest paths between all pairs of nodes
passing through n.
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Load: A Simple Example
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Load: A Simple Example
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Load: A Simple Example

load = 9
Security of Complex Networks – p.



Damage Assessment

Relative size G of the largest connected component,

G = N ′/N,

where N and N ′ are the numbers of nodes in the
largest component before and after the cascade,
respectively.

If α is large, G is close to one. As α is decreased, G
should decrease.

If G is significantly less than unity, the network is
effectively disintegrated.
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Example: Scale-Free Network

P (k)

k

P (k) ∼ k−γ

γ > 0
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Example: Scale-Free Network

P (k)

k

P (k) ∼ k−γ

γ > 0
k1 = 3

k2 = 3

k3 = 6

k4 = 3

k5 = 4

Degree ki (number of links) for node i is chosen at
random according to P (k) ∼ k−γ;
Nodes are connected randomly.
Newman et al., Phys. Rev. E 64, 026118 (2001).
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Example of Cascading Failure

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

α

 G 

Scale-free network - N ≈ 5000 and ⟨k⟩ = 2;
Squares, asterisks, circles - removal of a single node
at random, with highest degree, and with highest load,
respectively.

Security of Complex Networks – p.



Homogeneous Networks Are Safe

0.0 0.2 0.4 0.6 0.8 1.00.0
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0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.2

0.4

0.6

0.8

1.0

α 

 G 

Homogeneous network - N = 5000 and k = 3 for each
node.
Inset: scale-free network with N ≈ 5000 and ⟨k⟩ ≈ 3.
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Cascades on Internet
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Internet at autonomous system level; N = 6474 and
⟨k⟩ ≈ 3.88.
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Cascades in Electrical Power Grid
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N = 4941 and ⟨k⟩ ≈ 2.67.
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Phase Transition

Phase transition point αc ≈ 0.1, below which attack on
a single node can disintegrate the network totally.
For sufficiently large α, network is robust against
cascading breakdown.
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Multiple Attacks
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Theoretical Issues

αc αs
α

breakdown
cascading
immune tototal breakdown

due to attack on
a single node

Focus on single attack to disable the most
influential node.
How to determine αc and αs?
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Theoretical Estimate of αc (1)

Degree and load distribution
P (k) = ak−γ and L(k) = bkη,
K.-I. Goh, B. Kahng, and D. Kim, Phys. Rev. Lett. 87,
278701 (2001).
Say N - total number of nodes and S - total load
∫ kmax

1

P (k)dk = N and
∫ kmax

1

P (k)L(k)dk = S.

We obtain

a =
(1− γ)N

[k1−γ
max − 1]

and b =
βS

a(1− kmax)−β
,

where β ≡ γ − η − 1.
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Theoretical Estimate of αc (2)

Say the highest-degree node has been removed. We
have

P ′(k) = a′k−γ′

≈ a′k−γ and L′(k) = b′kη′ ≈ b′kη.

and similarly

a′ =
(1− γ)(N − 1)

k1−γ
max − 1

and b′ =
S′

a′(1− kmax)−β
,

where S′ is the new total load.
Change in the load

∆L(k) ≈ (b′ − b)kη = (
b′

b
− 1)L(k).
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Theoretical Estimate of αc (3)

Change in the load

∆L(k) ≈ (b′ − b)kη = (b′/b− 1)L(k).

Maximum load increase that the node can handle

C(k)− L(k) = αL(k)

Thus, if (b′/b− 1) < α, the node still functions. It fails if
(b′/b− 1) > α. This gives

αc = b′/b− 1

≈

{

1− k−β
max′

[

−1 +

(

kmax

kmax′

)

−β]}(

S′

S

)

− 1.
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Theoretical Estimate of αc (4)

αc is independent of network size N , insofar as it is
large.
Example: scale-free network with N = 2000, kmax = 81,
k′

max = 60, S ≈ 1.86× 107, and S′ ≈ 1.91× 107

theoretical estimate gives αc ≈ 0.1.

L. Zhao, K. Park, and Y.-C. Lai, Phys. Rev. E 70, 035101(R) (2004).
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Theoretical Issues

αc αs
α

breakdown
cascading
immune tototal breakdown

due to attack on
a single node

How to determine αc and αs?
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Prevention of Cascades

A closely related issue: How to prevent catastrophic
cascades caused by attacks?

Lowering the average loads in the network by removing
a small set of nodes that contribute to the loads in the
network but they themselves process little load.

Cascades can be prevented or their sizes can be
reduced significantly by intentionally removing a small,
carefully selected set of “unimportant” nodes.

A. E. Motter, Phys. Rev. Lett. 93, 098701 (2004).
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A closely Related Problem

G

ρc

ρ

Fraction of intentionally?
removed nodes

How to estimate ρc?
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Theoretical Estimate of λs and ρc (1)

Capacity parameter: λ = 1 + α.
Total load can be written as

S =
(1−ρ)N
∑

i=1

Li +
N
∑

i=N(1−ρ)+1

Li ≡ S0 + S1,

where removed nodes are labeled by (1−ρ)N +1 to N .
After removing a ρ fraction of nodes

S′ =
N(1−ρ)
∑

i=1

L′

i ≈
N(1−ρ)
∑

i=1

σLi,

where 0 < σ < 1 is a shifting constant. What is σ?
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Theoretical Estimate of λs and ρc (2)

Note

S = N(N − 1)D ≈ N 2D,

S′ = N(1− ρ)[N(1− ρ)− 1]D′ ≈ (1− ρ)2N 2D′,

where D ≈ D′ are network diameters before and after
the removal.
This gives σ ≈ (1− ρ)2 ≈ 1− 2ρ.
On average, the difference between the loads of node i

before and after the removal is ∆Li = Li − L′

i ≈ 2ρLi.
This results in an extra amount of load tolerance 2ρLi,
or, λ′ = λ+ 2ρ.
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Theoretical Estimate of λs and ρc (3)

G(λ, ρ) - relative size of largest connected
component in presence of both controlled
removal and attack.
G(λ, 0) ≡ G0(λ) - the size without controlled
removal.
We have

G(λ, ρ) ≈ G0(λ+ 2ρ)(1− ρ).

Note: G(λ, ρ)/(1− ρ) versus λ′ ≡ λ+ 2ρ is
independent of ρ.
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A Universal Relation in G

0.4 0.6 0.8 1 1.2 1.4 1.60

0.5

1

λ

G
0% removed
5% removed
10% removed
15% removed
20% removed

0.8 1 1.2 1.4 1.6 1.80

0.5

1

λ+2ρ

G
/(1
−ρ

)

0% removed
5% removed
10% removed
15% removed
20% removed

(a) 

(b) 

Scale-free network of N = 3000 nodes.
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Theoretical Estimate of λs and ρc (4)

λs - critical capacity parameter value above which the
network is resilient to global cascades even without
any protection (i.e., ρ = 0).
For λ < λs, in the event of attack, it is necessary to
intentionally remove a small fraction of nodes to
protect the network. For fixed λ, we have

∂G/∂ρ|λ<λs,ρ=0 > 0.

For λ > λs, the network is secure against cascading
breakdown. Removing a small fraction of nodes would
simply reduce G(λ, ρ) by a small amount. Thus,

∂G/∂ρ|λ>λs,ρ=0 < 0.
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Theoretical Estimate of λs and ρc (5)

Criterion for estimating λs: ∂G/∂ρ|λ=λs,ρ=0 = 0.

Utilizing G(λ, ρ) ≈ G0(λ+ 2ρ)(1− ρ) gives

dG0

dλ

∣

∣

∣

λ=λs

≈
G0(λs)

2
.

Say λ0 - initial capacity. Controlled removal of a ρc
fraction of low-degree nodes is equivalent to increasing
λ0 to λs with ρ = 0. Thus, λs ≈ λ0 + 2ρc or

ρc ≈ (λs − λ0)/2.

L. Zhao, K. Park, Y.-C. Lai, and N. Ye, Phys. Rev. E
(Rapid Communications) 72, 025104 (2005).
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Numerical Verification

0 0.1 0.2 0.3 0.40
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1 1.1 1.2 1.3 1.4 1.5 1.60
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0.4
0.6
0.8

1

λ

G
0

λs 
λc

slope = 0.44 

ρc ≈ 0.23   
λ=1.1           

(a) 

(b) 

Scale-free network of N = 3000 nodes.
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Soft Control Strategy

Control strategy without having to remove any
nodes.
Weighted networks: Wij = Aij(kikj)θ.
θ - Control parameter
More realistic capacity-load relation:
Ci = α + βLi

[Kim and Motter, J. Phys. A: Math. Theor. 41,
224019 (2008)]
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Soft Control Strategy - Examples

R. Yang, W.-X. Wang, Y.-C. Lai, G.-R. Chen, “Optimal
weighting scheme for suppressing cascades and traffic
congestion in complex networks,” Physical Review E
79, 026112 (2009).
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Complex Clustered Networks
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Cacades and Control

M1 M2 M3 M4

L2

L1 L1

1 1.2 1.4 1.6 1.8 2 2.2
0

0.2

0.4

0.6

0.8

1

λ
G

L. Huang, Y.-C. Lai, and G.-R. Chen, “Understanding and preventing cascading
breakdown in complex clustered networks,” Physical Review E 78, 036116(1-5)
(2008).
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Conclusions

Cascading failures caused by intentional attack can be
catastrophic for complex networks. Intentional removal
of a small fraction of “unimportant” (low-degree) nodes
can protect the network to some extent.

Physical theory for cascading failures.

Soft control strategy for preventing cascades and traffic
congestions.

Cascading dynamics associated with evolutionary
games on complex networks.

Work supported by AFOSR and NSF.
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