

Early Model

- Capacity of node: maximum load that it can handle.
- In reality, capacity is limited by cost.
- Capacity C_j of node j is assumed to be proportional to its initial load L_j ,

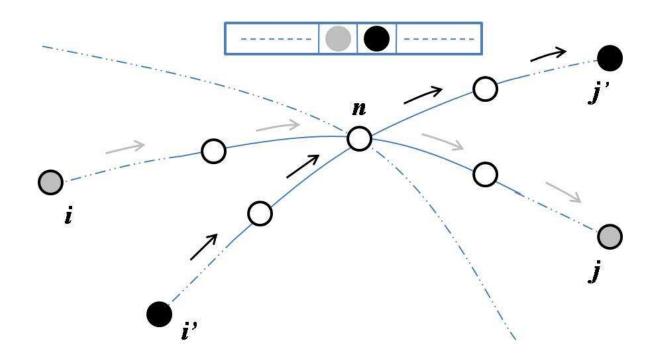
$$C_j = (1 + \alpha)L_j, \quad j = 1, 2, ...N,$$

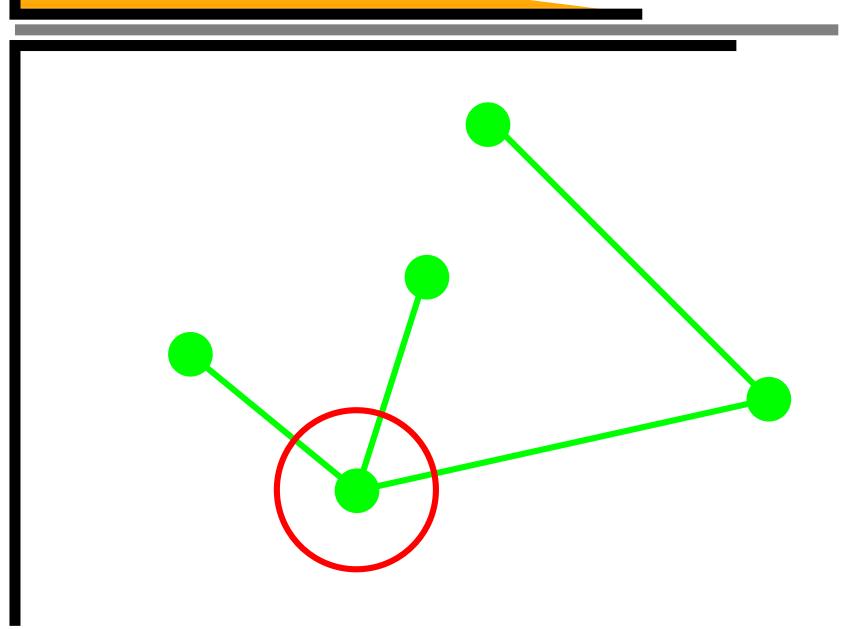
where $\alpha \geq 0$ is the tolerance parameter.

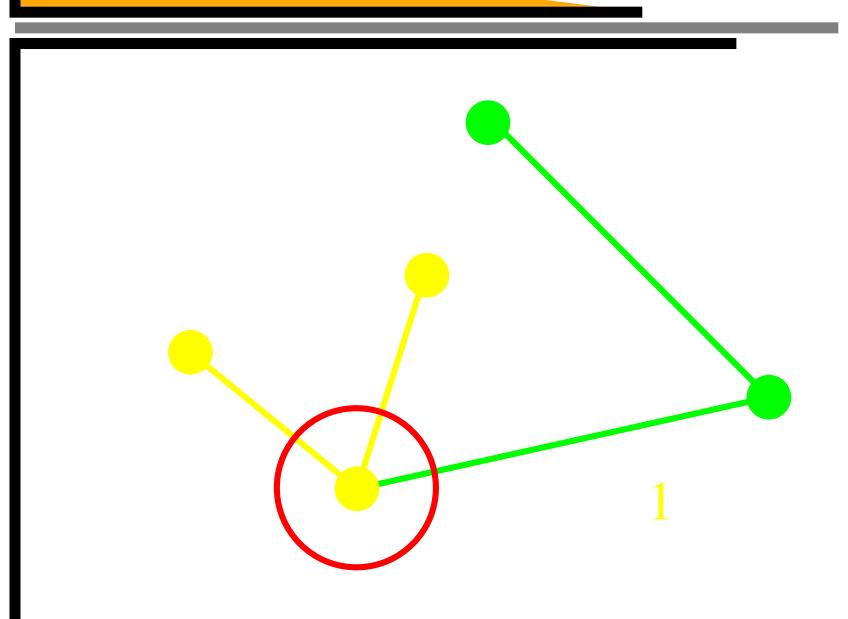
- ullet A node fails if its load > C.
- Cascading failure: nodes fail (due to attack or random failure) \rightarrow load redistribution \rightarrow more nodes fail \rightarrow load redistribution \rightarrow . . .
- A. E. Motter and Y.-C. Lai, Phys. Rev E 66, 065102(R) (2002).

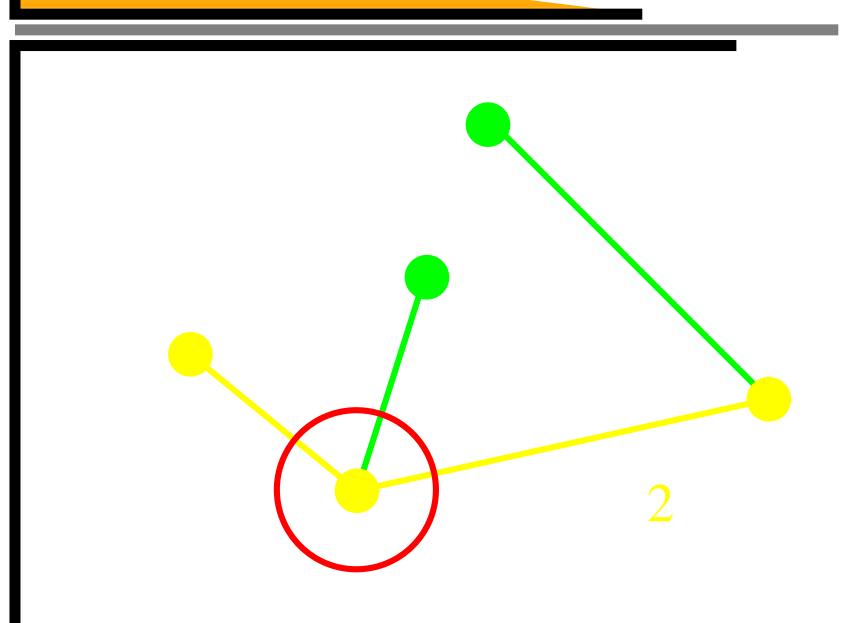
Load (Idealized)

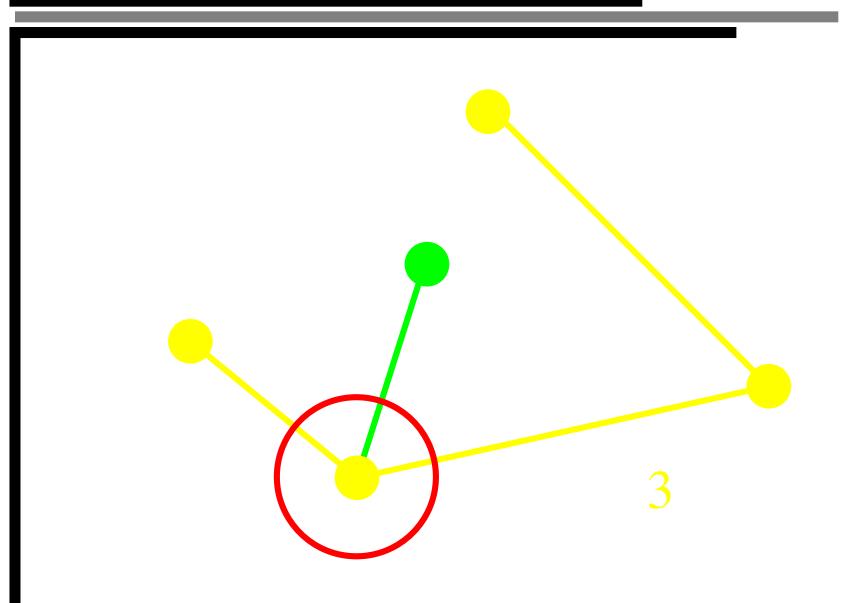
Load on node n (or link) is defined as the number of shortest paths between all pairs of nodes passing through n.

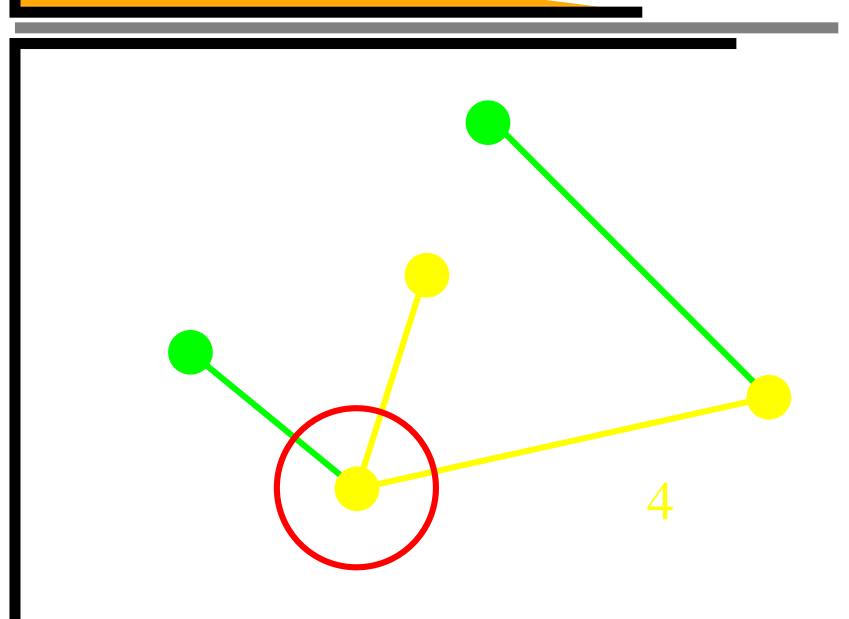


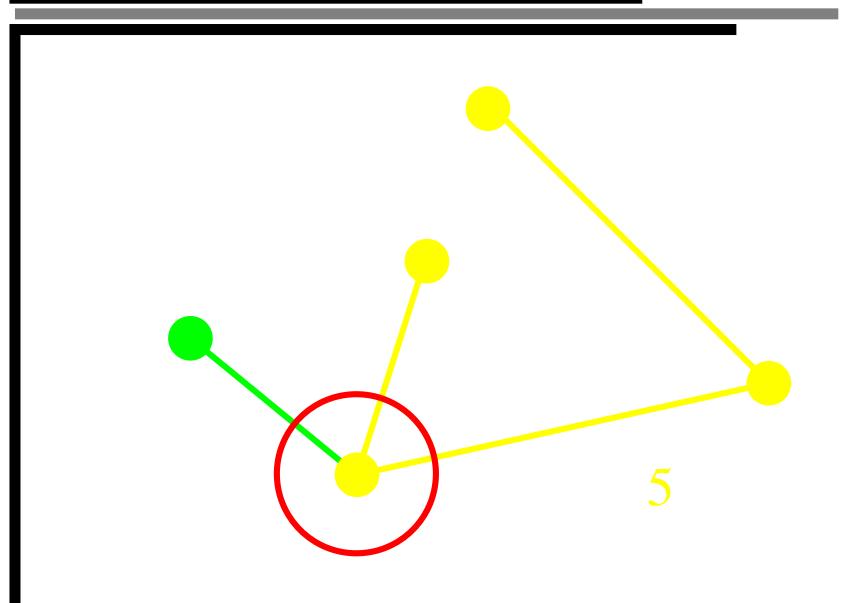


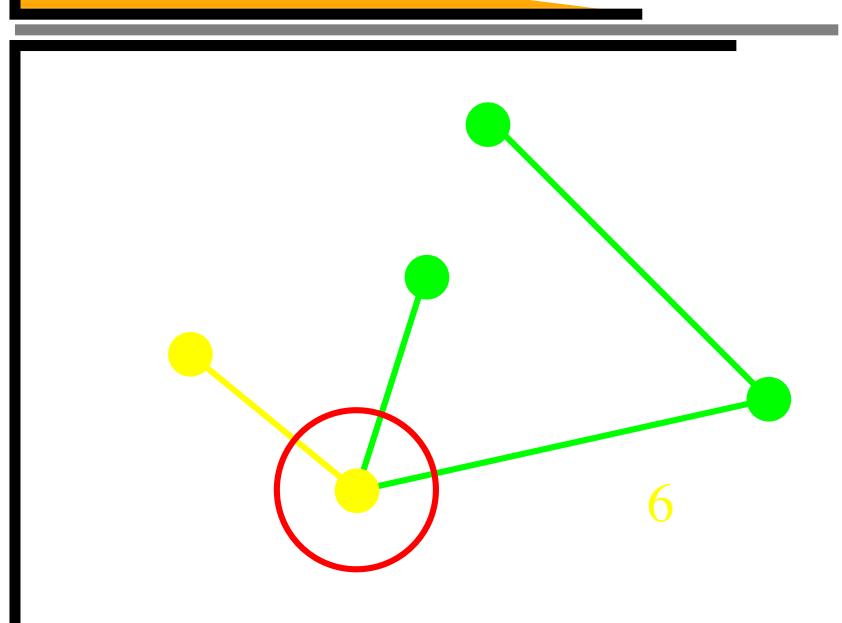


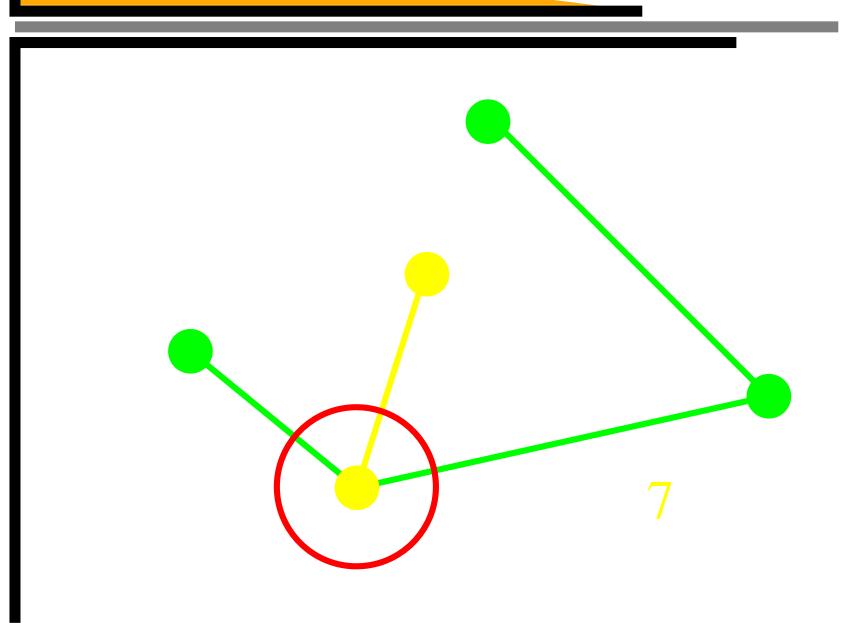


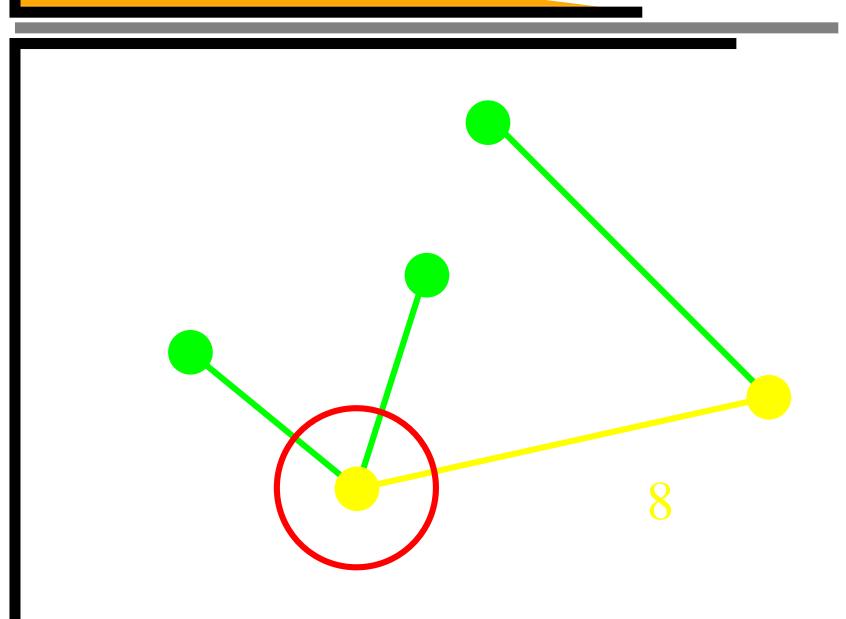


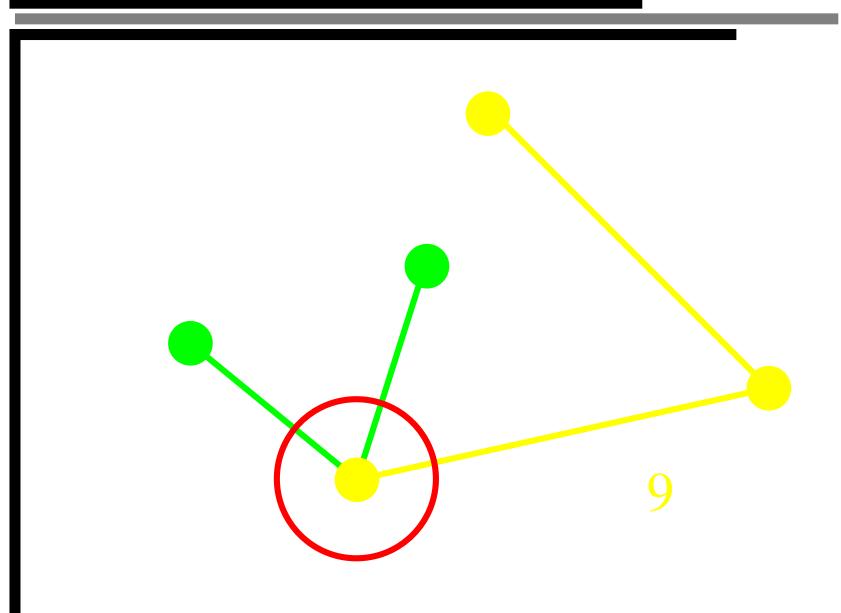


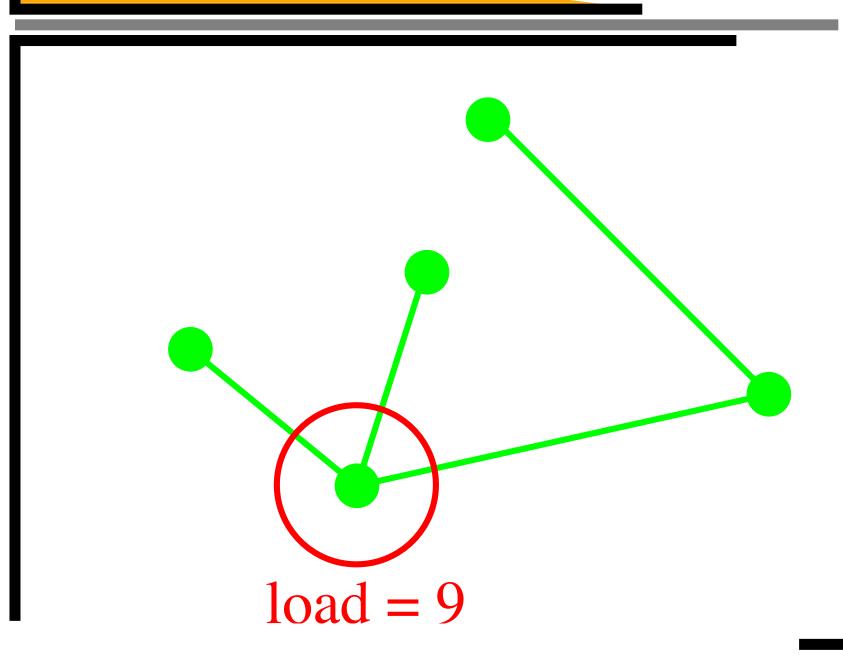












Damage Assessment

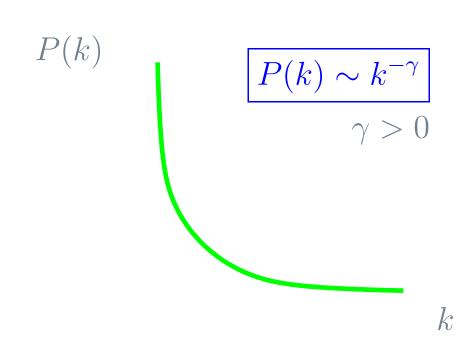
Relative size G of the largest connected component,

$$G = N'/N,$$

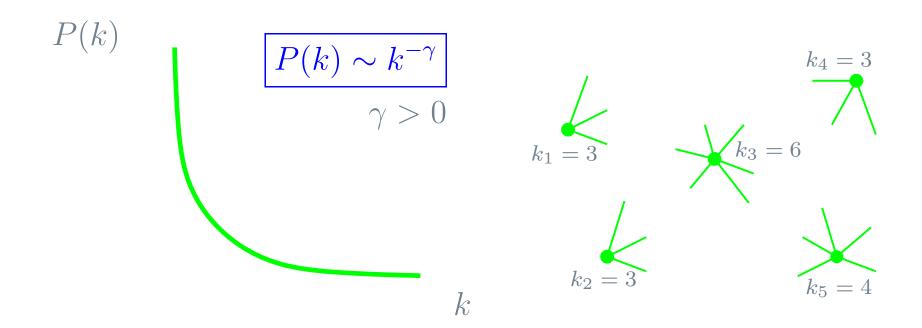
where N and N' are the numbers of nodes in the largest component before and after the cascade, respectively.

- If α is large, G is close to one. As α is decreased, G should decrease.
- If G is significantly less than unity, the network is effectively disintegrated.

Example: Scale-Free Network

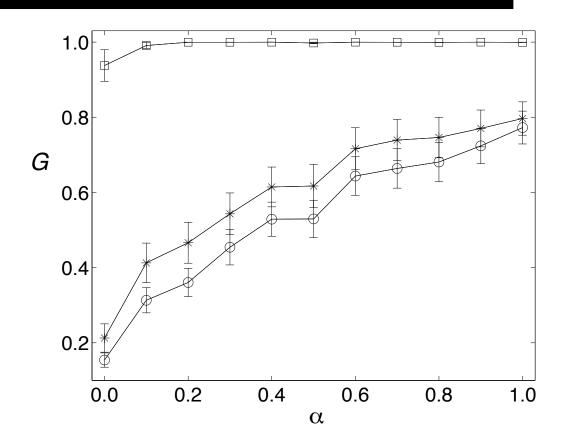


Example: Scale-Free Network



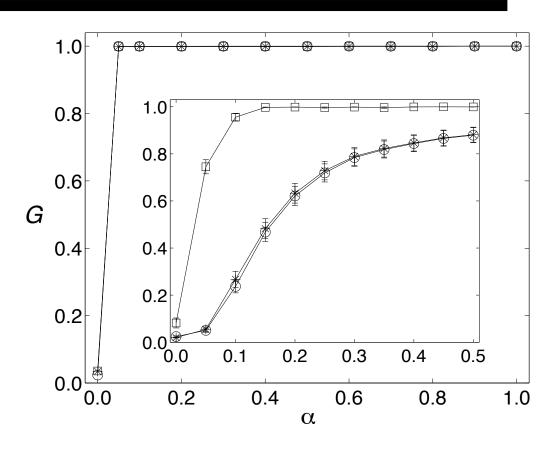
- **●** Degree k_i (number of links) for node i is chosen at random according to $P(k) \sim k^{-\gamma}$;
- Nodes are connected randomly.
- Newman et al., Phys. Rev. E 64, 026118 (2001).

Example of Cascading Failure



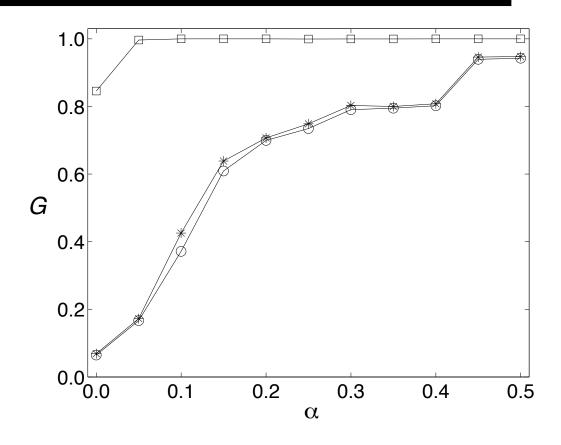
- Scale-free network $N \approx 5000$ and $\langle k \rangle = 2$;
- Squares, asterisks, circles removal of a single node at random, with highest degree, and with highest load, respectively.

Homogeneous Networks Are Safe



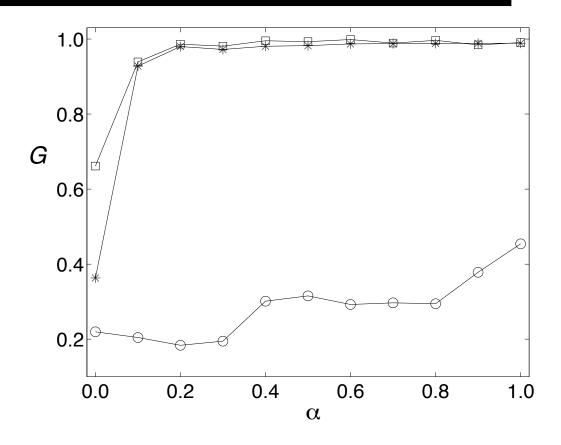
- Homogeneous network N = 5000 and k = 3 for each node.
- Inset: scale-free network with $N \approx 5000$ and $\langle k \rangle \approx 3$.

Cascades on Internet



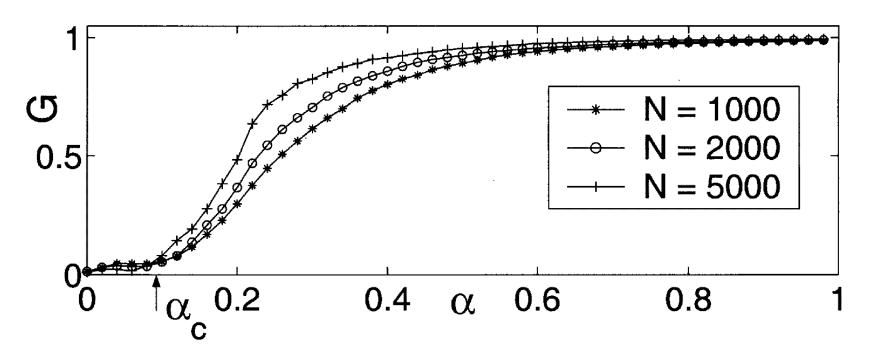
• Internet at autonomous system level; N=6474 and $\langle k \rangle \approx 3.88$.

Cascades in Electrical Power Grid



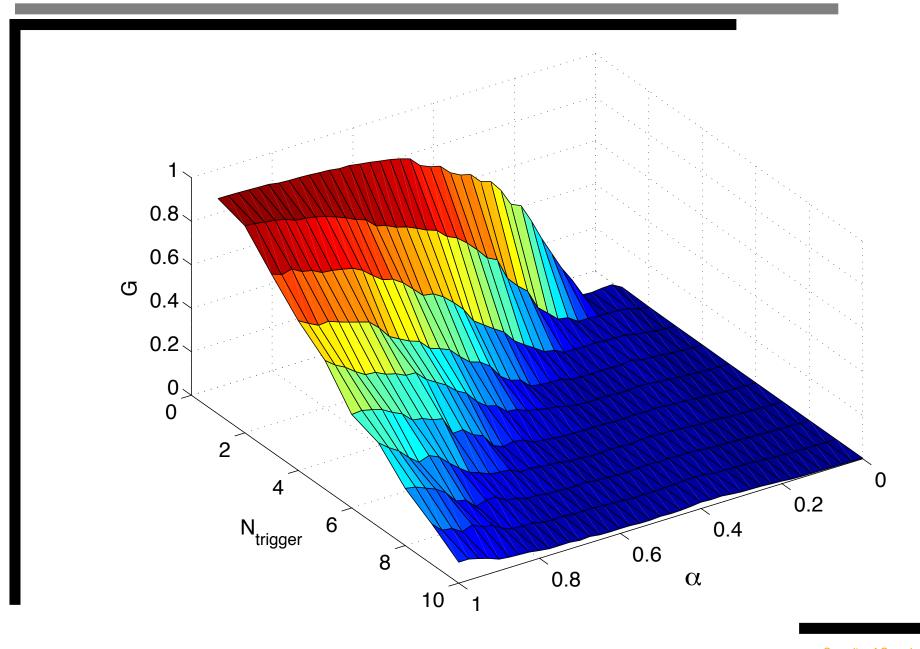
• N=4941 and $\langle k \rangle \approx 2.67$.

Phase Transition

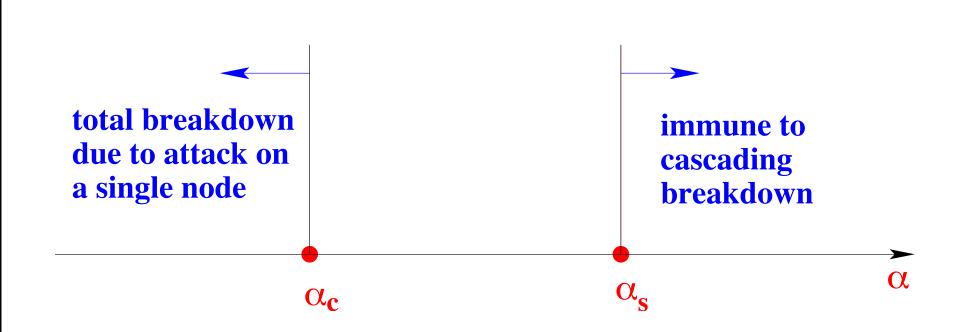


- Phase transition point $\alpha_c \approx 0.1$, below which attack on a single node can disintegrate the network totally.
- For sufficiently large α , network is robust against cascading breakdown.

Multiple Attacks



Theoretical Issues



- Focus on single attack to disable the most influential node.
- How to determine α_c and α_s ?

Theoretical Estimate of α_c (1)

Degree and load distribution

$$P(k) = ak^{-\gamma} \text{ and } L(k) = bk^{\eta},$$

K.-I. Goh, B. Kahng, and D. Kim, Phys. Rev. Lett. 87, 278701 (2001).

ullet Say N - total number of nodes and S - total load

$$\int_1^{k_{max}} P(k)dk = N \text{ and } \int_1^{k_{max}} P(k)L(k)dk = S.$$

We obtain

$$a = \frac{(1-\gamma)N}{[k_{max}^{1-\gamma}-1]}$$
 and $b = \frac{\beta S}{a(1-k_{max})^{-\beta}}$,

where $\beta \equiv \gamma - \eta - 1$.

Theoretical Estimate of α_c (2)

Say the highest-degree node has been removed. We have

$$P'(k) = a'k^{-\gamma'} \approx a'k^{-\gamma}$$
 and $L'(k) = b'k^{\eta'} \approx b'k^{\eta}$.

and similarly

$$a' = \frac{(1-\gamma)(N-1)}{k_{max}^{1-\gamma}-1}$$
 and $b' = \frac{S'}{a'(1-k_{max})^{-\beta}}$,

where S' is the new total load.

Change in the load

$$\Delta L(k) \approx (b' - b)k^{\eta} = (\frac{b'}{b} - 1)L(k).$$

Theoretical Estimate of α_c (3)

Change in the load

$$\Delta L(k) \approx (b'-b)k^{\eta} = (b'/b-1)L(k).$$

Maximum load increase that the node can handle

$$C(k) - L(k) = \alpha L(k)$$

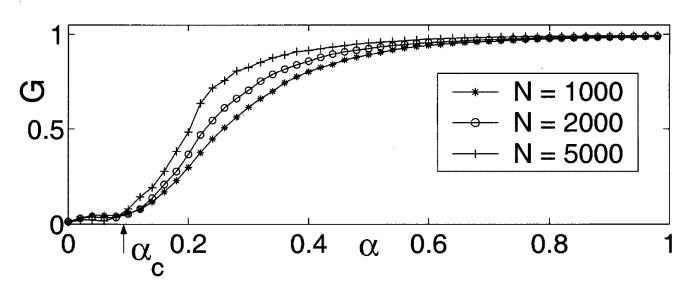
▶ Thus, if $(b'/b - 1) < \alpha$, the node still functions. It fails if $(b'/b - 1) > \alpha$. This gives

$$\alpha_c = b'/b - 1$$

$$\approx \left\{ 1 - k_{max'}^{-\beta} \left[-1 + \left(\frac{k_{max}}{k_{max'}} \right)^{-\beta} \right] \right\} \left(\frac{S'}{S} \right) - 1.$$

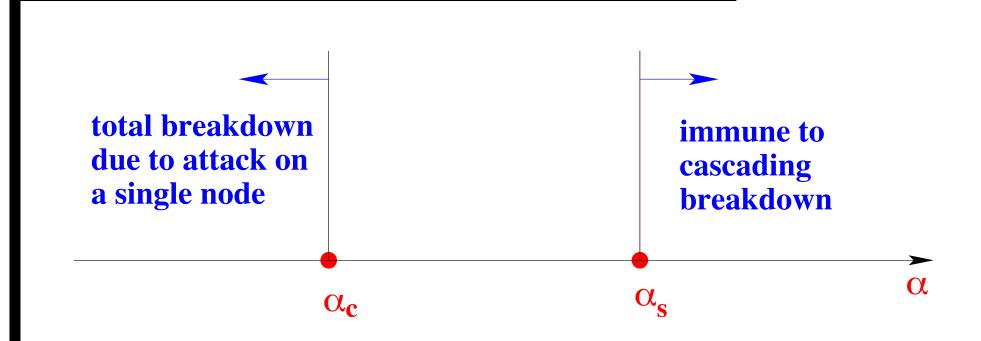
Theoretical Estimate of α_c (4)

- α_c is independent of network size N, insofar as it is large.
- Example: scale-free network with N=2000, $k_{max}=81$, $k'_{max}=60$, $S\approx 1.86\times 10^7$, and $S'\approx 1.91\times 10^7$ theoretical estimate gives $\alpha_c\approx 0.1$.



L. Zhao, K. Park, and Y.-C. Lai, Phys. Rev. E 70, 035101(R) (2004).

Theoretical Issues

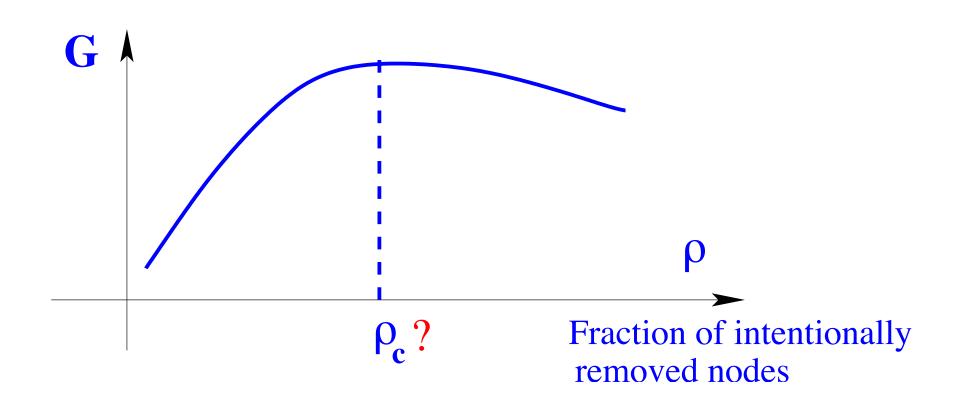


• How to determine α_c and α_s ?

Prevention of Cascades

- A closely related issue: How to prevent catastrophic cascades caused by attacks?
- Lowering the average loads in the network by removing a small set of nodes that contribute to the loads in the network but they themselves process little load.
- Cascades can be prevented or their sizes can be reduced significantly by intentionally removing a small, carefully selected set of "unimportant" nodes.
- A. E. Motter, Phys. Rev. Lett. 93, 098701 (2004).

A closely Related Problem



• How to estimate ρ_c ?

Theoretical Estimate of λ_s and ρ_c (1)

- Capacity parameter: $\lambda = 1 + \alpha$.
- Total load can be written as

$$S = \sum_{i=1}^{(1-\rho)N} L_i + \sum_{i=N(1-\rho)+1}^{N} L_i \equiv S_0 + S_1,$$

where removed nodes are labeled by $(1-\rho)N+1$ to N.

• After removing a ρ fraction of nodes

$$S' = \sum_{i=1}^{N(1-\rho)} L'_i \approx \sum_{i=1}^{N(1-\rho)} \sigma L_i,$$

where $0 < \sigma < 1$ is a shifting constant. What is σ ?

Theoretical Estimate of λ_s and ρ_c (2)

Note

$$S = N(N-1)D \approx N^2D,$$

 $S' = N(1-\rho)[N(1-\rho)-1]D' \approx (1-\rho)^2N^2D',$

where $D \approx D'$ are network diameters before and after the removal.

- This gives $\sigma \approx (1-\rho)^2 \approx 1-2\rho$.
- On average, the difference between the loads of node i before and after the removal is $\Delta L_i = L_i L_i' \approx 2\rho L_i$.
- **●** This results in an extra amount of load tolerance $2\rho L_i$, or, $\lambda' = \lambda + 2\rho$.

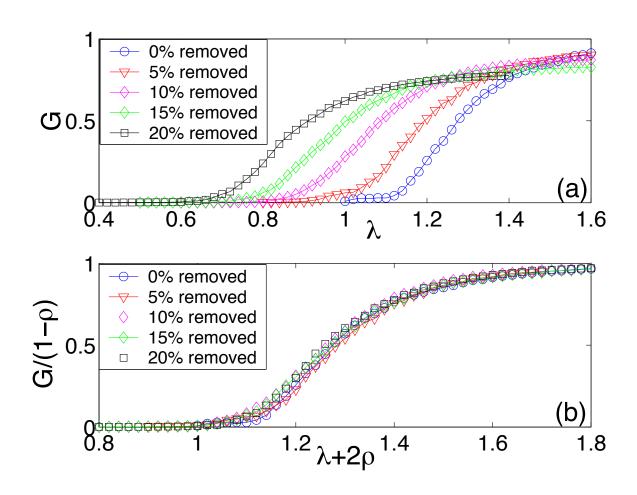
Theoretical Estimate of λ_s and ρ_c (3)

- $G(\lambda, \rho)$ relative size of largest connected component in presence of both controlled removal and attack.
- $G(\lambda,0) \equiv G^0(\lambda)$ the size without controlled removal.
- We have

$$G(\lambda, \rho) \approx G^0(\lambda + 2\rho)(1 - \rho).$$

• Note: $G(\lambda, \rho)/(1-\rho)$ versus $\lambda' \equiv \lambda + 2\rho$ is independent of ρ .

A Universal Relation in G



• Scale-free network of N=3000 nodes.

Theoretical Estimate of λ_s and ρ_c (4)

- λ_s critical capacity parameter value above which the network is resilient to global cascades even without any protection (i.e., $\rho = 0$).
- For $\lambda < \lambda_s$, in the event of attack, it is necessary to intentionally remove a small fraction of nodes to protect the network. For fixed λ , we have

$$\partial G/\partial \rho|_{\lambda<\lambda_s,\rho=0}>0.$$

• For $\lambda > \lambda_s$, the network is secure against cascading breakdown. Removing a small fraction of nodes would simply reduce $G(\lambda, \rho)$ by a small amount. Thus,

$$\partial G/\partial \rho|_{\lambda > \lambda_s, \rho=0} < 0.$$

Theoretical Estimate of λ_s and ρ_c (5)

- Criterion for estimating λ_s : $\partial G/\partial \rho|_{\lambda=\lambda_s,\rho=0}=0$.
- Utilizing $G(\lambda, \rho) \approx G^0(\lambda + 2\rho)(1 \rho)$ gives

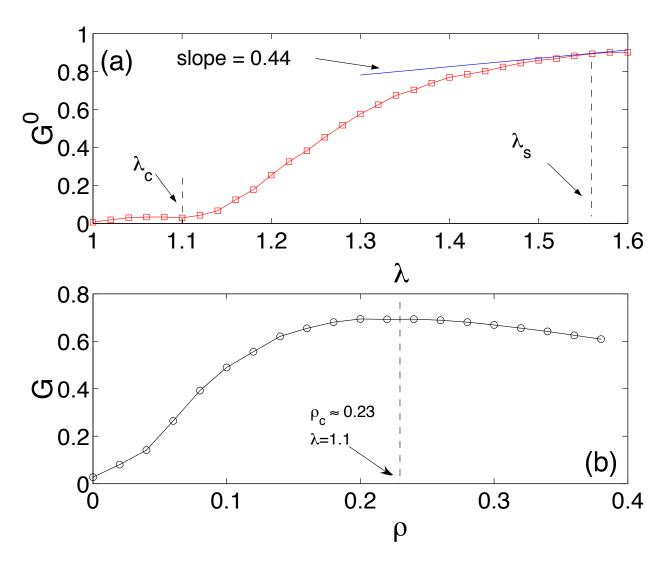
$$\left. \frac{dG^0}{d\lambda} \right|_{\lambda = \lambda_s} \approx \frac{G^0(\lambda_s)}{2}.$$

• Say λ_0 - initial capacity. Controlled removal of a ρ_c fraction of low-degree nodes is equivalent to increasing λ_0 to λ_s with $\rho=0$. Thus, $\lambda_s\approx\lambda_0+2\rho_c$ or

$$\rho_c \approx (\lambda_s - \lambda_0)/2.$$

L. Zhao, K. Park, Y.-C. Lai, and N. Ye, Phys. Rev. E
 (Rapid Communications) 72, 025104 (2005).

Numerical Verification



• Scale-free network of N=3000 nodes.

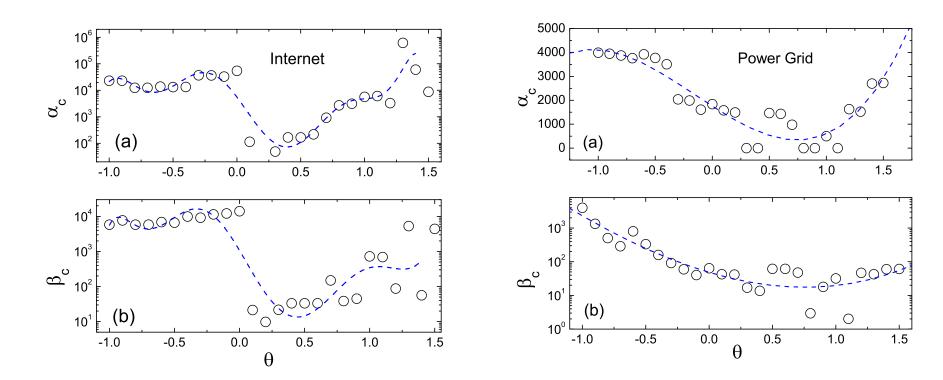
Soft Control Strategy

- Control strategy without having to remove any nodes.
- Weighted networks: $W_{ij} = A_{ij}(k_i k_j)^{\theta}$.
- \bullet θ Control parameter
- More realistic capacity-load relation:

$$C_i = \alpha + \beta L_i$$

[Kim and Motter, J. Phys. A: Math. Theor. 41, 224019 (2008)]

Soft Control Strategy - Examples



R. Yang, W.-X. Wang, Y.-C. Lai, G.-R. Chen, "Optimal weighting scheme for suppressing cascades and traffic congestion in complex networks," Physical Review E 79, 026112 (2009).

Complex Clustered Networks

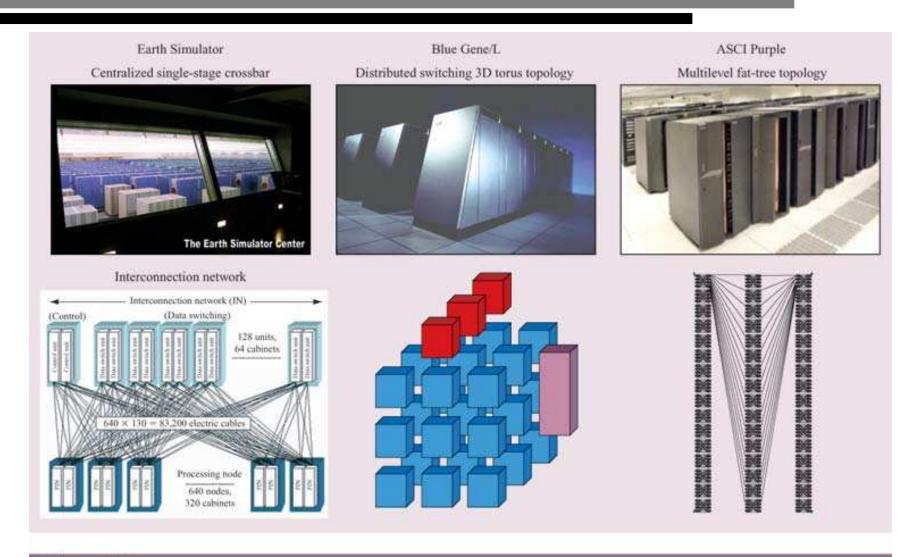
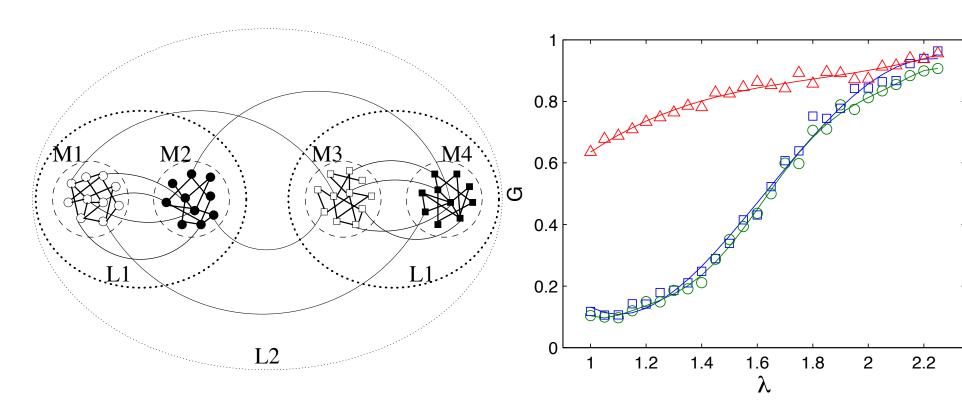


Figure 10

Clusters and massively parallel machines: Earth Simulator, Blue Gene/L, and ASCI Purple.

Cacades and Control



■ L. Huang, Y.-C. Lai, and G.-R. Chen, "Understanding and preventing cascading breakdown in complex clustered networks," Physical Review E 78, 036116(1-5) (2008).

Conclusions

- Cascading failures caused by intentional attack can be catastrophic for complex networks. Intentional removal of a small fraction of "unimportant" (low-degree) nodes can protect the network to some extent.
- Physical theory for cascading failures.
- Soft control strategy for preventing cascades and traffic congestions.
- Cascading dynamics associated with evolutionary games on complex networks.
- Work supported by AFOSR and NSF.