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Explosive Percolation in
Random Networks Science 323, 1454 (2009)

23* J0el Spencer?

Dimitris Achlioptas,® Raissa M. D'Souza,
Networks in which the formation of connections is governed by a random process often undergo a
percolation transition, wherein around a critical point, the addition of a small number of
connections causes a sizable fraction of the network to suddenly become linked together. Typically
such transitions are continuous, so that the percentage of the network linked together tends to zero
right above the transition point. Whether percolation transitions could be discontinuous has been
an open question. Here, we show that incorporating a limited amount of choice in the classic
Erd6s-Rényi network formation model causes its percolation transition to become discontinuous.

A selection rule is classified as “bounded-size”
if its decision depends only on the sizes of the com-
ponents containing the four end points of {ej,e,}
and, moreover, it treats all sizes greater than some
(rule-specific) constant K identically. For example, a
bounded-size rule with K = 1 due to Bohman and
Frieze (BF) (3), the first selection rule to be analyzed,
proceeds as follows: If e; connects two components
of size 1, it is selected; otherwise, e, is selected. So, in
Fig. 1B, e, would be selected. Bounded-size rules, in
general, are amenable to rigorous mathematical anal-
ysis, and in (3, 4) it was proven that such rules are
capable both of delaying and of accelerating perco-
lation. In contrast, unbounded-size rules seem beyond
the reach of current mathematical techniques. A cru-
cial point is that the percolation transition is strongly
conjectured to be continuous for all bounded-size rules
(4). This conjecture is supported both by numerical
evidence and mathematical considerations, though
a fully rigorous argument has remained elusive.

Fig. 1. Network evolu-
tion. (A) Under the Erdos-
Rényi (ER) model, in each
step two vertices are cho-
sen at random and con-
nected by an edge (shown
as the dashed line). In
this example, two com-
ponents of size 7 and 2
get merged. (B) In mod-
els with choice, two ran-
dom edges {e,e,} are
picked in each step yet
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only one is added to the
network based on some selection rule, whereas the other is discarded.
Under the product rule (PR), the edge selected is the one minimizing the
product of the sizes of the components it merges. In this example, e, (with

product 2 x 7 = 14) would be chosen and e, discarded (because 4 x 4 = n = 512,000.

16). In contrast, the rule selecting the edge minimizing the sum of the com-
ponent sizes instead of the product would select e, rather than e;. (C) Typical
evolution of C/n for ER, BF (a bounded size rule with K = 1), and PR, shown for
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- The “weak” interdependence of

infrastructure systems produces
mixed percolation transitions in
multilayer networks

Run-Ran Liu*?, Daniel A. Eisenberg?, Thomas P. Seager® & Ying-Cheng Lai**

Previous studies of multilayer network robustness model cascading failures via a node-to-node
percolation process that assumes “strong” interdependence across layers—once a node in any layer fails,
its neighbors in other layers fail immediately and completely with all links removed. This assumption

is not true of real interdependent infrastructures that have emergency procedures to buffer against

. cascades. In this work, we consider a node-to-link failure propagation mechanism and establish “weak”

interdependence across layers via a tolerance parameter a which quantifies the likelihood that a
node survives when one of its interdependent neighbors fails. Analytical and numerical results show

. that weak interdependence produces a striking phenomenon: layers at different positions within the

multilayer system experience distinct percolation transitions. Especially, layers with high super degree

. values percolate in an abrupt manner, while those with low super degree values exhibit both continuous
. and discontinuous transitions. This novel phenomenon we call mixed percolation transitions has

. significant implications for network robustness. Previous results that do not consider cascade tolerance
. and layer super degree may be under- or over-estimating the vulnerability of real systems. Moreover,

: our model reveals how nodal protection activities influence failure dynamics in interdependent,

multilayer systems.
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