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REPORTS
Explosive Percolation in
Random Networks
Dimitris Achlioptas,1 Raissa M. D’Souza,2,3* Joel Spencer4

Networks in which the formation of connections is governed by a random process often undergo a
percolation transition, wherein around a critical point, the addition of a small number of
connections causes a sizable fraction of the network to suddenly become linked together. Typically
such transitions are continuous, so that the percentage of the network linked together tends to zero
right above the transition point. Whether percolation transitions could be discontinuous has been
an open question. Here, we show that incorporating a limited amount of choice in the classic
Erdös-Rényi network formation model causes its percolation transition to become discontinuous.

Alarge system is said to undergo a phase
transition when one or more of its prop-
erties change abruptly after a slight change

in a controlling variable. Besides water turning into
ice or steam, other prototypical phase transitions
are the spontaneous emergence of magnetization
and superconductivity in metals, the epidemic spread
of disease, and the dramatic change in connectivity
of networks and lattices known as percolation. Per-
haps the most fundamental characteristic of a phase
transition is its order, i.e., whether the macroscopic
quantity it affects changes continuously or dis-

continuously at the transition. Continuous (smooth)
transitions are called second-order and include many
magnetization phenomena, whereas discontinuous
(abrupt) transitions are called first-order, a familiar
example being the discontinuous drop in entropy
when liquid water turns into solid ice at 0°C.

We consider percolation phase transitions in
models of random network formation. In the classic
Erdös-Rényi (ER) model (1), we start with n iso-
lated vertices (points) and add edges (connections)
one by one, each edge formed by picking two ver-
tices uniformly at random and connecting them
(Fig. 1A). At any given moment, the (connected)
component of a vertex v is the set of vertices that
can be reached from v by traversing edges. Com-
ponents merge under ER as if attracted by gravita-
tion. This is because every time an edge is added, the
probability two given components will be merged is
proportional to the number of possible edges be-
tween themwhich, in turn, is equal to the product
of their respective sizes (number of vertices).

One of the most studied phenomena in prob-
ability theory is the percolation transition of ER
random networks, also known as the emergence of
a giant component. When rn edges have been
added, if r < ½, the largest component remains
miniscule, its number of verticesC scaling as log n;
in contrast, if r > ½, there is a component of size
linear in n. Specifically, C ≈ (4r − 2)n for r slightly
greater than ½ and, thus, the fraction of vertices
in the largest component undergoes a continuous
phase transition at r =½ (Fig. 1C). Such continuity
has been considered a basic characteristic of per-
colation transitions, occurring in models ranging
from classic percolation in the two-dimensional
grid to randomgraphmodels of social networks (2).

Here, we show that percolation transitions in
random networks can be discontinuous. We dem-
onstrate this result for models similar to ER,
thus also establishing that altering a network-
formation process slightly can affect it dra-
matically, changing the order of its percolation
transition. Concretely, we consider models that,
like ER, start with n isolated vertices and add
edges one by one. The difference, as illustrated
in Fig. 1B, is that to add a single edge we now
first pick two random edges {e1,e2}, rather than
one, each edge picked exactly as in ER and inde-
pendently of the other. Of these, with no knowl-
edge of future edge-pairs, we are to select one and
insert it in the graph and discard the other. Clearly,
if we always resort to randomness for selecting
among the two edges, we recover the ER model.
Whether nonrandom selection rules can delay (or
accelerate) percolation in such models, which have
become known as Achlioptas processes, has re-
ceived much attention in recent years (3–6).
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Fig. 1. Network evolu-
tion. (A) Under the Erdös-
Rényi (ER) model, in each
step two vertices are cho-
sen at random and con-
nected by an edge (shown
as the dashed line). In
this example, two com-
ponents of size 7 and 2
get merged. (B) In mod-
els with choice, two ran-
dom edges {e1,e2} are
picked in each step yet
only one is added to the
network based on some selection rule, whereas the other is discarded.
Under the product rule (PR), the edge selected is the one minimizing the
product of the sizes of the components it merges. In this example, e1 (with
product 2 × 7 = 14) would be chosen and e2 discarded (because 4 × 4 =

16). In contrast, the rule selecting the edge minimizing the sum of the com-
ponent sizes instead of the product would select e2 rather than e1. (C) Typical
evolution of C/n for ER, BF (a bounded size rule with K = 1), and PR, shown for
n = 512,000.

www.sciencemag.org SCIENCE VOL 323 13 MARCH 2009 1453

on M
arch 13, 2018

 
http://science.sciencem

ag.org/
D

ow
nloaded from

 

38. S. Choi, J. Klingauf, R. W. Tsien, Philos. Trans. R. Soc.
London Ser. B 358, 695 (2003).

39. Q. Zhou, C. C. Petersen, R. A.Nicoll, J. Physiol.525, 195 (2000).
40. K. M. Franks, C. F. Stevens, T. J. Sejnowski, J. Neurosci.

23, 3186 (2003).
41. We thank N. C. Harata for help with high-frequency

imaging and data analysis, R. J. Reimer and members of the
Tsien lab for comments, J. W. Mulholland and J. J. Perrino

for help with imaging, and X. Gao and M. Bruchez for
consultation on quantum dots. Supported by grants from
the Grass Foundation (Q.Z.), the National Institute of Mental
Health, and the Burnett Family Fund (R.W.T.).

Supporting Online Material
www.sciencemag.org/cgi/content/full/1167373/DC1
Materials and Methods

Figs. S1 to S9
Movie S1
References

20 October 2008; accepted 27 January 2009
Published online 12 February 2009;
10.1126/science.1167373
Include this information when citing this paper.

REPORTS
Explosive Percolation in
Random Networks
Dimitris Achlioptas,1 Raissa M. D’Souza,2,3* Joel Spencer4

Networks in which the formation of connections is governed by a random process often undergo a
percolation transition, wherein around a critical point, the addition of a small number of
connections causes a sizable fraction of the network to suddenly become linked together. Typically
such transitions are continuous, so that the percentage of the network linked together tends to zero
right above the transition point. Whether percolation transitions could be discontinuous has been
an open question. Here, we show that incorporating a limited amount of choice in the classic
Erdös-Rényi network formation model causes its percolation transition to become discontinuous.

Alarge system is said to undergo a phase
transition when one or more of its prop-
erties change abruptly after a slight change

in a controlling variable. Besides water turning into
ice or steam, other prototypical phase transitions
are the spontaneous emergence of magnetization
and superconductivity in metals, the epidemic spread
of disease, and the dramatic change in connectivity
of networks and lattices known as percolation. Per-
haps the most fundamental characteristic of a phase
transition is its order, i.e., whether the macroscopic
quantity it affects changes continuously or dis-

continuously at the transition. Continuous (smooth)
transitions are called second-order and include many
magnetization phenomena, whereas discontinuous
(abrupt) transitions are called first-order, a familiar
example being the discontinuous drop in entropy
when liquid water turns into solid ice at 0°C.

We consider percolation phase transitions in
models of random network formation. In the classic
Erdös-Rényi (ER) model (1), we start with n iso-
lated vertices (points) and add edges (connections)
one by one, each edge formed by picking two ver-
tices uniformly at random and connecting them
(Fig. 1A). At any given moment, the (connected)
component of a vertex v is the set of vertices that
can be reached from v by traversing edges. Com-
ponents merge under ER as if attracted by gravita-
tion. This is because every time an edge is added, the
probability two given components will be merged is
proportional to the number of possible edges be-
tween themwhich, in turn, is equal to the product
of their respective sizes (number of vertices).

One of the most studied phenomena in prob-
ability theory is the percolation transition of ER
random networks, also known as the emergence of
a giant component. When rn edges have been
added, if r < ½, the largest component remains
miniscule, its number of verticesC scaling as log n;
in contrast, if r > ½, there is a component of size
linear in n. Specifically, C ≈ (4r − 2)n for r slightly
greater than ½ and, thus, the fraction of vertices
in the largest component undergoes a continuous
phase transition at r =½ (Fig. 1C). Such continuity
has been considered a basic characteristic of per-
colation transitions, occurring in models ranging
from classic percolation in the two-dimensional
grid to randomgraphmodels of social networks (2).

Here, we show that percolation transitions in
random networks can be discontinuous. We dem-
onstrate this result for models similar to ER,
thus also establishing that altering a network-
formation process slightly can affect it dra-
matically, changing the order of its percolation
transition. Concretely, we consider models that,
like ER, start with n isolated vertices and add
edges one by one. The difference, as illustrated
in Fig. 1B, is that to add a single edge we now
first pick two random edges {e1,e2}, rather than
one, each edge picked exactly as in ER and inde-
pendently of the other. Of these, with no knowl-
edge of future edge-pairs, we are to select one and
insert it in the graph and discard the other. Clearly,
if we always resort to randomness for selecting
among the two edges, we recover the ER model.
Whether nonrandom selection rules can delay (or
accelerate) percolation in such models, which have
become known as Achlioptas processes, has re-
ceived much attention in recent years (3–6).

1Department of Computer Science, University of California at
Santa Cruz, Santa Cruz, CA 95064, USA. 2Department of Me-
chanical and Aeronautical Engineering, University of California
at Davis, Davis, CA 95616, USA. 3Santa Fe Institute, 1399 Hyde
Park Road, Santa Fe, NM 87501, USA. 4Courant Institute of
Mathematical Sciences, New York University, New York, NY
10012, USA.

*To whom correspondence should be addressed. E-mail:
raissa@cse.ucdavis.edu

Fig. 1. Network evolu-
tion. (A) Under the Erdös-
Rényi (ER) model, in each
step two vertices are cho-
sen at random and con-
nected by an edge (shown
as the dashed line). In
this example, two com-
ponents of size 7 and 2
get merged. (B) In mod-
els with choice, two ran-
dom edges {e1,e2} are
picked in each step yet
only one is added to the
network based on some selection rule, whereas the other is discarded.
Under the product rule (PR), the edge selected is the one minimizing the
product of the sizes of the components it merges. In this example, e1 (with
product 2 × 7 = 14) would be chosen and e2 discarded (because 4 × 4 =

16). In contrast, the rule selecting the edge minimizing the sum of the com-
ponent sizes instead of the product would select e2 rather than e1. (C) Typical
evolution of C/n for ER, BF (a bounded size rule with K = 1), and PR, shown for
n = 512,000.

www.sciencemag.org SCIENCE VOL 323 13 MARCH 2009 1453

on M
arch 13, 2018

 
http://science.sciencem

ag.org/
D

ow
nloaded from

 

A selection rule is classified as “bounded-size”
if its decision depends only on the sizes of the com-
ponents containing the four end points of {e1,e2}
and, moreover, it treats all sizes greater than some
(rule-specific) constantK identically. For example, a
bounded-size rule with K = 1 due to Bohman and
Frieze (BF) (3), the first selection rule to be analyzed,
proceeds as follows: If e1 connects two components
of size 1, it is selected; otherwise, e2 is selected. So, in
Fig. 1B, e2would be selected. Bounded-size rules, in
general, are amenable to rigorousmathematical anal-
ysis, and in (3, 4) it was proven that such rules are
capable both of delaying and of accelerating perco-
lation. In contrast, unbounded-size rules seembeyond
the reach of current mathematical techniques. A cru-
cial point is that the percolation transition is strongly
conjectured to be continuous for all bounded-size rules
(4). This conjecture is supported both by numerical
evidence and mathematical considerations, though
a fully rigorous argument has remained elusive.

Here, we provide conclusive numerical evidence
that, in contrast, unbounded-size rules cangive rise to
discontinuous percolation transitions. For concrete-
ness, we present evidence for the so-called product-
rule (PR): Always retain the edge that minimizes
the product of the sizes of the components it joins,
breaking ties arbitrarily (Fig. 1B). Thus, the PR se-
lection criterion attempts to reduce the aforemen-
tioned gravitational attraction between components.
We note that other unbounded-size rules also yield
first-order transitions. For example, results similar to
those for PR hold when “product” is replaced by

“sum.” It is also worth noting that the criterion em-
ployed by PR can also be used to accelerate perco-
lation by always selecting the edge that maximizes
rather than minimizes the product of the size of the
components it merges (and similarly for sum). Nev-
ertheless, in that case, the percolation transition
remains continuous, reflecting the completely dif-
ferent evolution of the component-size distribution
in the maximizing versus the minimizing case.

Let C denote the size of the largest component,
t0 denote the last step for which C < n1/2, and t1 the
first step for which C > 0.5n. In continuous tran-
sitions, the interval D = t1 − t0 is always extensive,
i.e., linear in n. For example, D > 0.193n in ER. In
contrast, as we show in Fig. 2B, D is not extensive
for the product rule; indeed,D <2n2/3 and it appears
that D/n2/3→ 1. As a result, the fraction of vertices
in the largest component jumps from being a van-
ishing fraction of all vertices to a majority of them
“instantaneously.” Although t0/n and t1/n converge
to rc = 0.888… (Fig. 2C), the variance in the value
of t0 and t1 is enough to prevent the direct obser-
vation of a first-order transition. That is, measur-
ing the size of the largest component as a function
of the number of steps and averaging it over dif-
ferent realizations smears out the transition point,
motivating our introduction of D and its measure-
ment along different realizations. Specifically, each
data point in Fig. 2, A to C, represents an average
over an ensemble of 50 independent identically dis-
tributed realizations, and the dashed lines are the sta-
tistical best fits to the data (for details, see the

supportingonlinematerial).Our computer implemen-
tationmakes use of efficient procedures (7) for track-
ing how components merge as edges are added.

Our choice of n1/2 and 0.5n above for defining
D was simply illustrative. To demonstrate the dis-
continuity of PR’s percolation transition, it suffices
to find constants A > 0 and b,g < 1 such that the
number of steps between C < ng and C > An is
smaller than nb. Indeed, we have discovered a gen-
eral scaling law associated with PR’s percolation.
For a range of values for A, we find that the same
simple linear scaling relation governs the bound-
ary of valid parameter choices, namely g + lb = m,
where to the best of our numerical estimates, l ≈
1.2 and m ≈ 1.3. Convergence to this behavior for
A= 0.5 is shown in Fig. 2D. Here, each data point
depicts an individual realization, and color is used
to show the relative error between the empirical
value and that predicted by the scaling relation
(see supporting online material for details).

We have demonstrated that small changes in
edge formation have the ability to fundamental-
ly alter the nature of percolation transitions. Our
findings call for the comprehensive study of this
phenomenon, and of its potential use in bringing
phase transitions under control.
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Fig. 2. (A) The ratio D/n for ER
and BF for increasing system
sizes. (B) The ratio D/n2/3 for PR
for increasing system sizes. (C)
Convergence to rc = 0.888…
from above and below (the two
curves fitted independently).
(D) A linear scaling relation is
obeyed in the range g ∈ [0.2,0.6],
shown here for A = 0.5. Color
shows convergence with increas-
ing system size n to the relation
g + 1.2b = 1.3. Our numerical
experiments establish this scal-
ing relation for A ∈ [0.1,0.6]
and we expect that in larger sys-
tem sizes this range of A would
broaden, particularly the lower
end.
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The “weak” interdependence of 
infrastructure systems produces 
mixed percolation transitions in 
multilayer networks
Run-Ran Liu1,2, Daniel A. Eisenberg3, Thomas P. Seager3 & Ying-Cheng Lai2,4

Previous studies of multilayer network robustness model cascading failures via a node-to-node 
percolation process that assumes “strong” interdependence across layers–once a node in any layer fails, 
its neighbors in other layers fail immediately and completely with all links removed. This assumption 
is not true of real interdependent infrastructures that have emergency procedures to buffer against 
cascades. In this work, we consider a node-to-link failure propagation mechanism and establish “weak” 
interdependence across layers via a tolerance parameter α which quantifies the likelihood that a 
node survives when one of its interdependent neighbors fails. Analytical and numerical results show 
that weak interdependence produces a striking phenomenon: layers at different positions within the 
multilayer system experience distinct percolation transitions. Especially, layers with high super degree 
values percolate in an abrupt manner, while those with low super degree values exhibit both continuous 
and discontinuous transitions. This novel phenomenon we call mixed percolation transitions has 
significant implications for network robustness. Previous results that do not consider cascade tolerance 
and layer super degree may be under- or over-estimating the vulnerability of real systems. Moreover, 
our model reveals how nodal protection activities influence failure dynamics in interdependent, 
multilayer systems.

The robustness of a complex networked system to survive random component failures and/or intentional attacks 
is a significant problem with broad implications. Robustness, i.e., the likelihood that a network remains func-
tional after losing nodes or links, has been a topic of interest since the beginning of modern network science1–19. 
In recent years, the robustness of interdependent, multilayered networked systems (sometimes referred to as 
networks-of-networks) has become a subject of focused study20–24. Examples of real-world interdependent, mul-
tilayer networks are ample, with a common and important case being urban infrastructure systems25 such as 
transportation, communication, electric power, and water supply networks. The sharing of services within and 
between these infrastructure systems suggests that the loss of a single service like mobility can impact the pro-
vision of others like electric power and clean water–when a node or link in one infrastructure network fails, 
because of dependencies across infrastructures, its neighbors in other networks can also fail26. Since failures can 
propagate from one network to others, understanding the ways in which dependencies within and across these 
multilayer networks influences systemic robustness is a crucial first step to develop broadly influential resilience 
recommendations. The goal of this paper is to develop a model for the failure dynamics which is more realistic to 
interdependent infrastructure contexts than those in previous studies. To make the terminologies unambiguous, 
we use the multilayer network lexicon developed by Kivelä et al.23 to describe our approach.

The phenomenon of failure propagation or spreading in a multilayer network depends on the dynamical or 
physical processes specific to the type of node or link failures. It is difficult to develop a general, dynamics based 
framework to address the robustness and resilience of systems like urban infrastructure where nodes, links, and 
layers may represent characteristically different objects and relationships. A viable approach is then to focus on 
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Tree-like multilayer networks. We consider a tree-like interdependent system of five random network 
layers, labeled as A, B, C, D and E respectively, as shown in Fig. 2(b), and obtain theoretical solutions for the sizes 
of the giant components and for the nodal viable probabilities for all the layers. Figure 5 shows the theoretical 
and numerical solutions of the sizes of giant components SA, SB, SC, SD and SE versus the average degree z (see Sec. 
4 for an explanation of the numerical methods). For α = 0.9, we find that the peripheral layers A, C, E percolate 
first, followed by the sub-center layer D. The size of the giant component of D’s nearest neighboring layer E is 
then increased, leading to a continuous phase transition for SE. The central network layer B percolates last, giving 
rise to a distinct continuous transition for its nearest neighboring networks A, C, D. As α is decreased, the hub 
network percolates discontinuously, at which the giant components of layers A, C, E and D increase abruptly in 
size, giving rise to the phenomenon of mixed percolation transitions, as can be seen from the curves for α = 0.8. 
For α = 0.7, the percolation transition points for some network layers with large super degrees begin to merge but 
the phenomenon of mixed percolation transitions persists. As α is decreased further, a first-order phase transition 
occurs at which all layers percolate at the same point in a discontinuous manner, as indicated by the curves for 
α = 0.6.

These transition phenomena suggest that the super degree of a layer in the multilayer system plays a critical 
role in its percolation transition. In particular, the peripheral network layers with the lowest super degree per-
colate first, followed by the layers with a moderate value of the super degree, and finally by the layers with the 
highest super degree. When a layer with a larger super degree percolates continuously, it will increase the giant 
component sizes of its neighboring network layers that have already percolated, leading to multiple percolation 
transitions. In contrast, if a layer with a larger super degree percolates discontinuously, it will lead to a sudden 
and discontinuous increase in the sizes of the giant components of all network layers that have already perco-
lated, leading to mixed percolation transitions. These results indicates that the percolation type of the hub layers 
plays a critical role in the robustness of the whole system. In particular, if the hub layer percolates continuously, 
at the transition point the sizes of the giant components of the nearest network layers are continuous but their 
derivatives are discontinuous. However, if the hub layer percolates discontinuously, an abrupt and discontinuous 
increase in the giant component sizes of the neighboring network layers can occur.

Numerical verification and effects of interdependence heterogeneity on percolation 
transition
Mixed and multiple percolation transitions. To verify the phenomena of mixed and multiple percola-
tion transitions directly, we perform bond percolation 20 times using the Newman-Ziff algorithm66 and measure 
the average relative size of the viable component of each network layer. As shown in Figs 4 and 5, the percolation 
transitions and the behaviors of the giant components as predicted theoretically agree well with the numerical 
results.

Figure 6(a) and (b) show, for the star-like and tree-like interdependent systems, respectively, the percolation 
transition points zc versus α for each layer in the multilayer system, which are obtained by the graphical solution 
as illustrated in Fig. 3. An alternative way to identify the transition points is to examine the fluctuations in the size 
of the giant component which, for a finite system, tend to be relatively large at the transition42. From Fig. 6(a), we 

Figure 4. Rich percolation transition behaviors in the star-like interdependent system of four random network 
layers with an identical degree distribution. For different values of the tolerance parameter α, (a) the sizes of 
the giant components, SA, SC, SD versus the Poisson degree distribution parameter z, and (b) the size of the giant 
component SB versus z, where the dotted vertical lines mark the percolation threshold for B. The solid curves 
are theoretical predictions while the symbols are direct simulation results. The network size is N = 105. Each 
data point is the result of averaging over 20 independent statistical realizations. The remarkable phenomenon 
of mixed percolation transitions occurs for intermediate α values (e.g., α = 0.8 and α = 0.7), where the hub 
network layer exhibits a discontinuous transition but each peripheral network layer exhibits double transitions: 
one continuous and another discontinuous.
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A randomly connected network layer X with degree distribution pk
X is essentially a set of connected compo-

nents58, where the nodes in the giant component are regarded as functional or viable and the remaining nodes are 
treated as failed or inviable. Our node-to-link failure propagation process can be described, as follows. Consider 
a pair of interdependent networks: A and B. If a node (x, A) in A fails, each link of its replica (x, B) in network B 
will be disabled with probability 1 − α. Similarly, if a node (y, B) in network B fails, the links of its replica (y, A) in 
network A will be cut off with the same probability. A initial failure due to isolation from the giant component in 
a certain network can then spread across the whole system through an iterative process. In each iteration, discon-
necting certain nodes from the giant component of network A will cause some nodes to be isolated from the giant 
component of network B, which in turn will induce more nodal failures in A. This recursive or cascading process 
occurs in all pairs of interdependent networks synchronously at each iteration. When no failures are possible, the 
whole system reaches a stable steady state.

From the perspective of a single node, the parameter α quantifies the tolerance to its failed interdependent 
replicas, which controls the impacts that a node will endure if one of its replicas fails and represents the probabil-
ity that interdependent systems will be unsuccessful at preventing inter-layer cascades. From the standpoint of 
the whole networked system, α determines effectively the strength of interdependence among the networks. For 
α → 1, the interdependence between nodes is the weakest so that, practically, failures cannot spread from one net-
work to another. The opposite limit α → 0 signifies the case where interdependence is the strongest. In this case, 
our model reduces to previous percolation models with the node-to-node failure propagation mechanisms35. In 
our study, we use the size of the giant components SX for the final network layers X (X = A, B, …) to measure the 
robustness of the system, as in previous works21.

We consider our percolation model to be a simplified representation of urban infrastructure systems with 
buffers against interdependent infrastructure failures. A representative system following the general form of 
our model is multi-modal transportation linking multiple cities. To convert Fig. 1 into a transportation model, 
we would represent each colored node as a separate city and each layer as a different mode of transportation. 
Within cities, people travel via urban transportation (e.g., cars and buses) to different kinds of hub locations 
(e.g., coach stations, airports, and railway stations) to facilitate mode switching and interactions. One trans-
portation layer is then linked via one kind of hubs in cities, as connecting highways, planes or railways link 
urban regions separated by large geographic distances. Although the current model is insufficient to consider 
specific travel dynamics within each city, our model provides a general form to approach the question of how 
dynamic buffers may lead to cascades within and across modes of transportation. In particular, the tuning of 
α from weak to strong interdependence captures situations where the hubs in different modes of travel have 
either an excess or a lack of capacity to handle the congestion caused by additional passengers, respectively. 
This model is general, such that cascade tolerance can be due to physical constraints (e.g., number of high-
way lanes), temporal constraints (e.g., early morning vs. rush hour traffic), and/or dynamic actions (e.g., lane 
shifting and emergency procedures). Thus, although simplified, robustness analysis of the multilayer system 
is informative to the ways in which transportation across urban regions may cascade and disconnect inter-
dependent traffics. Moreover, the general form of our model can also capture buffers across other systems by 
treating layers as different infrastructures that link to transportation hubs within and across cities (e.g., electric 
power transmission substations).

Theory
General formalism. We solve our model analytically in terms of the final state after a cascading process using the 
standard method of generating functions59–61. Let RX be the probability that a randomly chosen link in network layer 
X belongs to the giant component, for X∈{A, B, C, …}. The function G x p x( )X

k k
X k

0 = ∑  is the generating function 

Figure 1. Schematic illustration of the structure of an interdependent multilayer system, or a network of 
networks. The whole system comprises four layers of networks, where the color dotted lines denote the 
interdependent links among different networks and the black solid lines denote the connections inside a 
network.


