
Linear Network Control 
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A dynamical system is controllable if it 
can be driven from any initial state to any
desired final state in finite time by 
suitable choice of input control signals.

Focus of existing works: minimal number of signals required to control the network

Issue: controllability is mathematically well defined but physically,
control may be difficult 

Structural controllability: Y.-Y. Liu, J.-J. Slotine, and A.-L. Barabasi, “Controllability of complex networks,” 
Nature 473, 167 (2011)
Exact controllability: Z.-Z. Yuan, C. Zhao, Z.-R. Di, W.-X. Wang, and Y.-C. Lai, “Exact controllability of 
complex networks,” Nat. Commun. 4, 2447 (2013)

e.g.,

In terms of ENERGY

Energy bounds: G. Yan, J. Ren, Y.-C. Lai, C. H. Lai, B. Li, “Controlling complex 
networks: how much energy is needed?” Phys. Rev. Lett. 108, 218703 (2012).
Energy scaling: Y.-Z. Chen, L.-Z. Wang, W.-X. Wang,  and Y.-C. Lai, “Energy 
scaling and reduction in controlling complex networks,” Roy. Soc. Open Sci. 3, 
160064 (2016).
Physical controllability: L.-Z. Wang, Y.-Z. Chen, W.-X. Wang, and Y.-C. Lai, 
“Physical controllability of complex networks,” Sci. Rep. 7, 40198 (2017). High probability of 

energy divergence

General Mathematical framework: Kalman’s
Controllability Rank Condition



Optimal Control Input and Energy

ut =  BT ⋅ exp[AT (Tf − t)] ⋅W
Tf

-1 ⋅ vTf
, where

WTf
 ≡  exp(At) ⋅B ⋅BT

0

Tf

∫ ⋅ exp(AT t) dt   and

vTf
 ≡ xTf

- exp(ATf ) ⋅ x0

Energy  ε(Tf ) ≡  || ut
0

Tf

∫ ||2dt = vTf

T ⋅W
Tf

-1 ⋅ vTf

W - Symmetric Gramian matrix (positive definite if system is controllable)

H(Tf ) ≡ exp(−ATf ) ⋅W
Tf
⋅ exp(−ATTf )

Normalized energy cost

E(Tf ) ≡ ε(Tf )/||x0 ||
2= x0

T ⋅H-1 ⋅ x0
x0
T ⋅ x0

W. J. Rugh, Linear 
System Theory (2nd ed.)
(Prentice-Hall, NJ, 1996)



Is Control Physically Achievable?
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Our finding: High probability of divergence in 
required energy to achieve control



Physical Controllability
ε −  measurement error or computer roundoff
Consider linear equation:  W ⋅X = Y
CW  - condition number of W
Say eX =10−k  - accuracy of solution of X
Then  ex ≥  CW ⋅ε   (Strang, Linear Algebra and Its Applications, AP, 1976)
    ⇒ CW ≤ ex /ε ≡CW

⇒  A linear system can be physically controlled with accuracy eX  only for 
          CW ≤CW

Physical controllability can be characterized by 
P(CW ) - probability that a network with its conditional number less than CW

P(CW ) < ≈  1 - network is physically controllable
P(CW ) ≅  0 - network is physically uncontrollable

L.-Z. Wang, Y.-Z. Chen, W.-X. Wang, and Y.-C. Lai, “Physical controllability 
of complex networks,” SREP 7, 40198 (2017).



Structural versus Physical 
Controllability
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Energy Scaling for Physically 
Controllable Networks
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There are networks that require an enormous 
amount of energy to be controlled!



Control Energy: One-Dimensional 
Chain versus Random Networks
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One-dimensional chain of length l : E ≅ λH
−1

(can be derived analytically)



Maximum Matching – An Example
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Green edges – maximum matching
Green nodes – matched nodes
Gray nodes – unmatched nodes – control nodes
Red edges – added edges to realize perfect matching

W.-X. Wang, X. Ni, Y.-C. Lai, and C. Grebogi, Phys. Rev. E 85, 025115 (2012)



Elements for Power-Law Energy 
Scaling – Longest Control Chains (LCCs)

EL  - Energy required to control an LCC
m - # of LCCs of identical length (degeneracy)E ≈  m ⋅EL



Power-Law Energy Scaling - Theory

Control diameter DC  = length of LCC
Distribution of DC :  P(DC ) ∝  e−b⋅DC

Exponential dependence of EL  on DC

               EL ∝  eβ⋅DC

⇒  P(EL ) ∝  EL
−(1 + b/β )

E ≈  m ⋅EL ⇒  Cumulative distribution of E
F(E) = P(m ⋅EL <  E) = 

[ P(EL
0

E/EL

∫
0

∞

∫ , m) ⋅dm]dEL

≈  P(EL
0

∞

∫ ) [ P(m)dm]
0

E/EL

∫  dEL

P(m) ∝  e−gm

Finally   P(E) =  dF(E)
dE

 ∝  E-(1+b/β )
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Energy Reduction in a Linear 
Circuit Network 
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Y.-Z. Chen, L.-Z. Wang, W.-X. Wang,  
and Y.-C. Lai, “Energy scaling and 
reduction in controlling complex 
networks,” Royal Society Open Science 
3, 160064 (2016).



Nonlinear Dynamical Systems 101 

Nonlinear dynamical system:
dx

dt

= f(x),

where f(x) is a nonlinear vector function of x which cannot be written in the form A · x.
Example from mechanics: particle motion in a 1D potential field with the potential function

V (x) =
x

2

2
� x

4

4

Local minima or maxima:
dV

dx

= x� x

3 = 0 ! x = 0,±1

Newton’s equation of motion (assuming unit mass)

dv

dt

= �↵v � dV

dx

= �↵v � x+ x

3

where ↵ > 0 is the friction coefficient.
Letting x1(t) ⌘ x(t) and x2(t) ⌘ v(t), one has

dx1

dt

= x2

dx2

dt

= �↵x2 � x1 + x
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Nonlinear Dynamical Systems 101 – Phase Space Behaviors 
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• Synthetic Biology applies 
engineering principles to build 
controllable and predictable 
cellular networks and behaviors

• Biotech applications: bio-energy, 
vaccines, petrochemical 
substitutes, etc.

Synthetic Biology



Elowitz et al, 2002 Wu et al, 2013

Cell-cell variability studied using synthetic gene networks

Cell Fates



Gardner et al., Nature, 2000

Ellis & Wang et al, 
Nature Biotech, 2009

2 libraries = 441 networks

Yeast Toggle Switch



Glu. Gal.

Experimental Result: Multistability

• M. Wu, R.-Q. Su, X.-H. Li, T. Ellis, Y.-C. Lai, and X. Wang, “Engineering of regulated stochastic cell 
fate determination,” PNAS 110, 10610-10615 (2013).

• F.-Q Wu, R.-Q. Su, Y.-C. Lai, and X. Wang, “Engineering of a synthetic quadrastable gene network to 
approach Waddington landscape and cell fate determination,” eLIFE 6, e23701 (2017).



Gene Regulatory Networks

• Directed connections between nodes:
– Inhibition or excitation

• Coupling strengths can be adjusted by, e.g., application of drugs
• Only stable steady states can be observed.

How to drive the system from an  initial 
attractor to a desirable attractor by
changing some experimentally accessible 
parameters ?

Applying temporal perturbations to parameters 
a1, a2, b1 or b2



How Control is Done

a2=1;  b1 , b2=0.2,  k=1.1,  s=0.5, n=4

4 attractors

Basin of original attractor
A is absorbed into that of 
attractor B

a1 =1.0 a1 =1.4

When system is in basin of 
attractor B, remove perturbation 
to a1

a1 =1.0



Control Strength and Duration 

Parameter a1 has to pass a
critical point, say, a1 >1.36 Perturbation has to stay “on” until 

xt crosses basin boundary

How large is the required
parameter perturbation?

How long should the perturbation
be maintained?



Scaling between Control 
Strength and Duration

Minimal control duration tm versus perturbation to a1

controllable region

uncontrollable region

Insofar as the combination of [a1, tm] is in the controllable region,
the system can be driven to the desirable attractor



Attractor Network

Each node in the attractor network represents
one attractor. If perturbation of any accessible 
parameter can drive the system from attractor
A to attractor B, we say there is a directed link 
from A to B.

If the attractor network is strongly connected, we can drive the system
from any undesirable attractor to a desirable one, e.g., from A to C:

Y.-C. Lai, “Controlling complex, nonlinear
dynamical networks,” Nat. Sci. Rev. 1, 339-341 (2014).



A Three-Gene Network 

Eight attractors

Attractor network



Application: T-LGL Survival Network

• R. Zhang, M. V. Shah, J. Yang, S. B. Nyland, X. Liu, J. K. Yun, and T. P. Loughran. Network model of survival 
signaling in large granular lymphocyte leukemia. PNAS, 105:16308–16313, 2008.

• A. Saadatpour, R.-S. Wang, A. Liao, X. Liu, T. P. Loughran, I. Albert, and R. Albert. Dynamical and structural 
analysis of a t cell survival network identifies novel candidate therapeutic targets for large granular 
lymphocyte leukemia. PloS Comp. Biol., 7:e1002267, 2011.



Controllability of Nonlinear Networks

L.-Z. Wang, R.-Q. Su, Z.-G. Huang, X. Wang, W.-X. Wang, C. Grebogi, and Y.-C. Lai,
“A geometrical approach to control and controllability of complex nonlinear dynamical 
networks,” Nat. Commun. 7, 11323 (2016).

• Noise-enhanced controllability• Controllability of a 
nonlinear networks can 
be determined by the 
properties of its attractor 
network: The stronger 
the attractor network is 
connected, the more 
controllable the original 
network



FVS Based Control (Ongoing)

Joint work with Beijing Normal 
colleagues:
Z.-S. Shen, W.-X. Wang, H.-J. Zhou, 
Z.-Y. Gao, A. Mochizuki, and Y.-C. Lai, 
“Control paradigm for nonlinear 
dynamical networks,” preprint (2017). 
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FVS (Feedback Vertex Set):
• A. Mochizuki et al., 2013
• H.-J. Zhou, 2013



Closed-Loop Control of Complex Nonlinear 
Dynamical Networks

-1 10

uiF(t)

uiL(t) Control
Switching

||x|| = 1

uiL(t)

Ep

(a) (b)

uiF(t)
uiF(t)|⍺ =0

x
xi

U

Joint work with Fudan colleagues: 
Y.-Z. Sun, S.-Y. Leng, Y.-C. Lai, C. Grebogi, and W. Lin, Phys. Rev. Lett. 119, 198301 (2017)



• Controlling collective dynamics, e.g., Y.-Z. Chen, Z.-G. 
Huang, and Y.-C. Lai, “Controlling extreme events on complex 
networks,” SREP 4, 6121 (2014)

• Controlling destinations (attractors), e.g., L.-Z. Wang, 
R.-Q. Su, Z.-G. Huang, X. Wang, W.-X. Wang, C. Grebogi, and Y.-C. 
Lai, “A geometrical approach to control and controllability of 
complex nonlinear dynamical networks,” Nat. Commun. 7, 11323 
(2016).

• Control principle based on feedback vertex set –
ongoing work

• Closed-loop control,  Y.-Z. Sun, S.-Y. Leng, Y.-C. Lai, C. 
Grebogi, and W. Lin, Phys. Reve. Lett. 119, 198301 (2017) 

• Predicting and controlling tipping point in complex 
mutualistic networks

1. J.-J. Jiang, Z.-G. Huang, T. P. Seager, W. Lin, C. Grebogi, A. Hastings, 
and Y.-C. Lai, PNAS (Plus), published online on 1/8/2018.

2. J.-J. Jiang, A. Hastings, and Y.-C. Lai, ”Controlling tipping point in 
complex systems,” preprint (2017)

1. Lack of a general mathematical control/controllability framework
2. Extremely diverse nonlinear dynamical behaviors require a diverse array 

of control methodologies:
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Take Home Message: Controlling 
Nonlinear Networks - DIVERSITY


