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Exact controllability of complex networks

Zhengzhong Yuan'!, Chen Zhao', Zengru Di'!, Wen-Xu Wang'? & Ying-Cheng Lai%?>

Controlling complex networks is of paramount importance in science and engineering.
Despite the recent development of structural controllability theory, we continue to lack a
framework to control undirected complex networks, especially given link weights. Here we
introduce an exact controllability paradigm based on the maximum multiplicity to identify
the minimum set of driver nodes required to achieve full control of networks with
arbitrary structures and link-weight distributions. The framework reproduces the structural
controllability of directed networks characterized by structural matrices. We explore the
controllability of a large number of real and model networks, finding that dense networks with
identical weights are difficult to be controlled. An efficient and accurate tool is offered to
assess the controllability of large sparse and dense networks. The exact controllability
framework enables a comprehensive understanding of the impact of network properties on
controllability, a fundamental problem towards our ultimate control of complex systems.



Illustration of Exact Controllability Theory
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Figure 2 | Exact controllability of undirected networks. Exact controllability measure np as a function of the connecting probability p for (@) unweighted
ER random networks and (b) ER random networks with random weights assigned to links (WER). (¢) np versus the probability p of randomly adding links
for Newman-Watts small-world networks. (d) np versus half of the average degree (k> /2 for Barabasi-Albert scale-free networks. All the networks are
undirected and their coupling matrices are symmetric. The data points are obtained from the MMT equation (4) and the error bars denote the s.d., each
from 20 independent realizations. The curves (SoD) are the theoretical predictions of equations (5) and (6) for sparse and dense networks, respectively.
The representative network sizes used are N=1,000, 2,000 and 5,000.
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Control system Sensory input
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Discovery of a New Neuron Class
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Experimental Facts

loss of backward/forward locomotion
uncoordinated motion
uncoordinated motion
likely loss of locomotion
verified by new experiments
uncoordinated motion
loss of reversal response

loss of reversal response

Yan, Vértes, Towlson, Chew, Walker, Schafer, Barabasi, Nature (2017)



% Difficulty with Linear Network Control

A dynamical system is controllable if it
can be driven from any initial state to any
desired final state in finite time by
suitable choice of input control signals.

Final state

X
OJ General Mathematical framework: Kalman’s

Initial state

X3 Controllability Rank Condition

Focus of existing works: minimal number of signals required to control the network
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