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Exact controllability of complex networks
Zhengzhong Yuan1, Chen Zhao1, Zengru Di1, Wen-Xu Wang1,2 & Ying-Cheng Lai2,3

Controlling complex networks is of paramount importance in science and engineering.

Despite the recent development of structural controllability theory, we continue to lack a

framework to control undirected complex networks, especially given link weights. Here we

introduce an exact controllability paradigm based on the maximum multiplicity to identify

the minimum set of driver nodes required to achieve full control of networks with

arbitrary structures and link-weight distributions. The framework reproduces the structural

controllability of directed networks characterized by structural matrices. We explore the

controllability of a large number of real and model networks, finding that dense networks with

identical weights are difficult to be controlled. An efficient and accurate tool is offered to

assess the controllability of large sparse and dense networks. The exact controllability

framework enables a comprehensive understanding of the impact of network properties on

controllability, a fundamental problem towards our ultimate control of complex systems.
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Illustration of Exact Controllability Theory

networks are constructed from a ring-like network for which
ND¼ 2 holds. Figure 2d shows, for Barabási–Albert scale-free
networks7 of different values of the average degree /kS, the
behaviour of nD. We observe that, for small values of /kS, nD
displays the same decreasing trend as for random networks.

Figure 3 shows the controllability nD of directed networks with
identical and random weights, where the latter in the absence of
bidirectional links can be exactly addressed by the structural
controllability framework. In Fig. 3a, the behaviors of nD of
directed ER random networks with identical weights and possible
bidirectional links are somewhat similar to those of their
undirected counterparts. Thus, high demand of drivers and
controllers in dense networks holds for any network structures
with identical link weights. In Fig. 3b, a random weight is
assigned to each directed link, resulting in a structural matrix,
allowing the comparison between the exact and the structural
controllability. The assumption of structural matrix is ensured by
the random weights together with the directed structure. We find
the behaviors of nD resulting from both methods are in complete
agreement with each other, indicating the reduction of the exact
controllability theory to the structural controllability for struc-
tural matrix. We have also tested the difference between the two
theories if the assumption of structural matrix is weakly violated
by setting identical weights, as shown in the inset of Fig. 3b. We
observe consistent results with negligible difference from each
other, suggesting the applicability of the structural controllability
in directed sparse networks with given link weights and the
insensitivity of controllability to the link weights in sparse
networks.

We have also found that the exact controllability of undirected
and directed networks with identical weights can be estimated by
the cavity method36,37 developed for studying structural con-
trollability, offering a good analytical prediction and revealing the

underlying relationship between the structural controllability and
the exact controllability (Supplementary Fig. S2 and Supplementary
Note 4).

Tables 2 and 3 display, respectively, the exact controllability
measure of a number of real-directed and -weighted networks. In
both Tables, nMMT

D and nS
D stand for the result from our exact

controllability and simplified theory (equation (5)), respectively.
From Table 2, we see that the values of nMMT

D agree with those of
nS

D for all real networks, owing to the fact that these real-world
networks are sparse. For Table 2, as the networks are directed, the
structural controllability measure, denoted by nLSB

D , can also be
calculated. For all cases except the food webs, the values of nMMT

D
and nLSB

D are quite close. In general, we observe the inequality
nMMT

D " nLSB
D . The consistency between the results from our exact

controllability theory and from the structural controllability
theory confirms the similarity between them for directed and
unweighted networks. Further validation of our theory is obtained
by assigning random weights to all the networks in Table 2. In this
case, the coupling matrices of all networks become structural
matrix, and the new values of nMMT

D are exactly the same as the
values of nLSB

D for the networks associated with structural matrices.
For the originally weighted real-world networks, only the values of
nMMT

D and nS
D are given, as shown in Table 3.

Discussion
We have developed a maximum multiplicity theory to character-
ize, exactly, the network controllability in terms of the minimum
number of required controllers and independent driver nodes.
Our approach by transforming the network controllability
problem into an eigenvalue problem greatly facilitates analysis
and offers a more complete understanding of the network
controllability in terms of extensive existing knowledge of
network spectral properties. Our theory is applicable to any
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Figure 2 | Exact controllability of undirected networks. Exact controllability measure nD as a function of the connecting probability p for (a) unweighted
ER random networks and (b) ER random networks with random weights assigned to links (WER). (c) nD versus the probability p of randomly adding links
for Newman–Watts small-world networks. (d) nD versus half of the average degree /kS/2 for Barabási–Albert scale-free networks. All the networks are
undirected and their coupling matrices are symmetric. The data points are obtained from the MMT equation (4) and the error bars denote the s.d., each
from 20 independent realizations. The curves (SoD) are the theoretical predictions of equations (5) and (6) for sparse and dense networks, respectively.
The representative network sizes used are N¼ 1,000, 2,000 and 5,000.
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Neuronal Network of C-Elegans
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Discovery of a New Neuron Class
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Difficulty with Linear Network Control
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A dynamical system is controllable if it 
can be driven from any initial state to any
desired final state in finite time by 
suitable choice of input control signals.

Focus of existing works: minimal number of signals required to control the network

Issue: controllability is mathematically well defined but physically,
control may be difficult 
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General Mathematical framework: Kalman’s
Controllability Rank Condition


