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Scaling of Betweenness Centrality in

Weighted Complex Networks

PHYSICAL REVIEW E 70, 026109 (2004)

Characterization of weighted complex networks

Kwangho Park,’ Ying-Cheng Lai,'? and Nong Ye®
lDepartment of Mathematics and Statistics, Arizona State University, Tempe, Arizona 85287, USA
2Departmenls of Electrical Engineering and Physics, Arizona State University, Tempe, Arizona 85287, USA
3Departmem of Industrial Engineering, Department of Computer Science and Engineering, Arizona State University,
Tempe, Arizona 85287, USA
(Received 14 January 2004; revised manuscript received 3 May 2004; published 23 August 2004)

To account for possible distinct functional roles played by different nodes and links in complex networks, we
introduce and analyze a class of weighted scale-free networks. The weight of a node is assigned as a random
number, based on which the weights of links are defined. We utilize the concept of betweenness to characterize
the weighted networks and obtain the scaling laws governing the betweenness as functions both of the weight
and of the degree. The scaling results may be useful for identifying influential nodes in terms of physical
functions in complex networks.
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FIG. 4. Algebraic scaling between Bg(k) and k for a weighted
scale-free network with m=2 and N=10 000. The value of the scal-
ing exponent is = 1.5. A similar scaling relation is obtained for the
corresponding nonweighted network, where a= 1.6, as shown in
the inset.



Synchronization in Complex Networks
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VOLUME 91, NUMBER 1 PHYSICAL REVIEW LETTERS 4 JULY 2003

Heterogeneity in Oscillator Networks: Are Smaller Worlds Easier to Synchronize?

Takashi Nishikawa,"* Adilson E. Motter,"" Ying-Cheng Lai,"* and Frank C. Hoppensteadt'*

'Department of Mathematics, Arizona State University, Tempe, Arizona 85287, USA

’Department of Electrical Engineering, Arizona State University, Tempe, Arizona 85287, USA
(Received 16 August 2002; published 3 July 2003)

Small-world and scale-free networks are known to be more easily synchronized than regular lattices,
which is usually attributed to the smaller network distance between oscillators. Surprisingly, we find
that networks with a homogeneous distribution of connectivity are more synchronizable than hetero-
geneous ones, even though the average network distance is larger. We present numerical computations
and analytical estimates on synchronizability of the network in terms of its heterogeneity parameters.
Our results suggest that some degree of homogeneity is expected in naturally evolved structures, such
as neural networks, where synchronizability is desirable.

Semi-random scale-free network model Growing scale-free network model
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Load

Load on node 7 (or link) 1s defined as the number of
shortest paths between two nodes which pass through
1, and 1S a measure of congestion of communication

traffic between oscillators.
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% Role of Betweenness Centrality (Load) in
Network Synchronization

Semi-random scale-free network model

Smaller v «<—— More heterogeneous degree distribution

Growing scale-free network model

Smaller oo «+—— More heterogeneous degree distribution
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