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To account for possible distinct functional roles played by different nodes and links in complex networks, we
introduce and analyze a class of weighted scale-free networks. The weight of a node is assigned as a random
number, based on which the weights of links are defined. We utilize the concept of betweenness to characterize
the weighted networks and obtain the scaling laws governing the betweenness as functions both of the weight
and of the degree. The scaling results may be useful for identifying influential nodes in terms of physical
functions in complex networks.
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Complex networks arise in many natural systems of fun-
damental importance and they are also an essential part of
modern society [1–6]: examples of the former are many bio-
logical networks while the latter include the Internet, electri-
cal power grids, transportation networks, etc. Studies of
complex networks have become a recent field of tremendous
interest since the discoveries of the small-world [7] and the
scale-free properties [8].
A basic assumption in most existing works on complex

networks is that all links and nodes are identical in terms of
their functional roles in the network [9]. This assumption
may not be valid for a realistic network because different
links and nodes can contribute differently to the overall per-
formance of the network [10–16]. For instance, in a neural
network, links, which are dendritic connections, can have
very different capabilities in terms of transmitting electrical
signals. Nodes, which are neurons, can also have different
electrical and chemical properties and thus be very distinct in
terms of their abilities to process information. In the Internet,
the capabilities to process and transmit information of com-
puters (nodes) can have a wide distribution. It is thus impor-
tant to study weighted complex networks in which nodes and
links are not treated on equal footing. Although the need to
study these more realistic networks has been pointed out
recently [4,13,14], so far there has not been much work in
this direction.
In this paper, we introduce a class of weighted scale-free

networks. In such a network, each node is assigned a random
weight, which is the realization of random variable W in
[0,1]. Given a pair of nodes with different weights, the
weight of the link connecting them can be defined accord-
ingly. Our interest is to develop proper characterizations of
such weighted networks. For this purpose we use the concept
of betweenness of a node, first proposed by Newman [13],
which is the total number of optimal paths (to be defined
below) between any pairs of nodes passing through this
node. Given a random distribution of weights in the network,
our question is how the betweenness scales with the weight
w. A related issue concerns the scaling relation between the
betweenness and k, where k is the realization of the degree
variable K that measures the number of links of node in the

network. In general, we write the betweenness as B!w ,k",
with the corresponding marginal betweennesses: BW!w"
=#1

kmaxB!w ,k"dk and BK!k"=#0
1B!w ,k"dw, where kmax!" is

the maximum number of links of node in a finite but large
network. Our main results are the following. (1) The weight-
based betweenness obeys the following exponential scaling
relation:

BW!w" $ Ne−#w for large w , !1"

where the exponential rate # scales with m, the average num-
ber of new links acquired by the network, as #$m$ ($ is a
constant). (2) The link-based betweenness obeys the follow-
ing algebraic scaling law:

BK!k" $ k%, !2"

where 1!%!2. Since W and K are independent random
variables, we have B!w ,k"$Ne−#wk% for large w and k. Sup-
pose nodes with large values of betweenness are more influ-
ential, result (1) implies that, due to the natural process of
evolution of the network, nodes with large values of weights
may be less influential. On the other hand, nodes with large
values of k are generally more influential, as can be expected
intuitively.
Scale-free networks are characterized by algebraic behav-

ior in the degree distribution P!k". This property is dynamic
because it is the consequence of the natural evolution of the
network. The ground-breaking work by Barabási and Albert
[8] demonstrates that the algebraic behavior is due to two
basic mechanisms: growth and preferential attachment,
where the latter means that the probability for a new node to
be connected to an existing node is proportional to the num-
ber of links that this node already has.
Our weighted scale-free network is constructed as fol-

lows. We first generate a regular (nonweighted) scale-free
network based on the Barabási-Albert (BA) model [8,17]. In
particular, we start with a small number m of nodes and add
a new node with m links at each time step following the
preferential attachment rule, while allowing only one link
between any pair of nodes. After t (large) time steps, we
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the value of its weight. The betweenness of a node X is thus
B!k"=k!k−1" /2 !k=N". We therefore obtain B!k"#k2 for k
!1. On the other hand, Fig. 3(b) represents a scale-free tree
with the smallest possible value of ". The betweenness of a
node X is B!k"= !k−1"!k−2" /2+ !k−1"$N− !k−1"%. For N
!k!1 we have B!k"#k. We thus see for the scale-free trees
the scaling of BK!k" with k is algebraic and the value of the
scaling exponent falls between 1 and 2.
The above argument can be extended to a general scale-

free network with m#2, where all nodes are connected to X
as in Fig. 3(a). Many pairs of nodes excluding X may be
connected as well. The largest possible value of the between-
ness in this network can be obtained when all optimal paths
between pairs of nodes pass through X, as in Fig. 3(a). We
obtain B!k"#k2 for X.
Figure 4 shows BK!k" versus k on a logarithmic scale for

a weighted scale-free network with m=2 and N=10 000. The
values of the betweenness were averaged over 100 random
realizations of the network. We observe a robust algebraic
scaling with the exponent "&1.5 (indicated by the straight
line). The inset shows a similar plot for the corresponding
nonweighted network, the algebraic scaling exponent of
which is "&1.6. In this case, for a given pair of nodes, if
there are several optimal paths, we choose one at random.

Intuitively, for two scale-free networks with identical pa-
rameters, one nonweighted and another weighted, we expect
the value of " for the weighted network to be smaller than
that for the nonweighted one. This can be seen as follows. In
a nonweighted scale-free network, the optimal paths between
pairs of nodes are exactly the same as the shortest paths
between them. Shortest paths tend to pass through nodes
having a relatively large number k of links, so we expect
BK!k" to increase with k. For a weighted scale-free network,
we expect the same to hold except with one complication:
optimal paths tend to pass through nodes having small
weight as well as nodes having a large number of links. That
is, for nodes having a small number of links, some optimal
paths tend to pass through them if they have small weight.

FIG. 5. Algebraic scaling exponent " vs m for a nonweighted
scale-free network (upper trace) and the corresponding weighted
one (lower trace). The data were obtained using 100 realizations of
the network.

FIG. 2. (a) Scaling of the betweenness BW!w" with w for m=2,
7, and 12 for a weighted scale-free network of N=4000 nodes,
where the distribution of weights in the network is Gaussian. For
each value of m, the data were averaged over 5000 runs. The slopes
of three lines are approximately −3.1, −9.6, and −12.5, for m=2, 7,
and 12, respectively. (b) Dependence of $ on m.

FIG. 3. Two treelike, scale-free networks with m=1, which can
be used to derive the algebraic scaling law (2).

FIG. 4. Algebraic scaling between BK!k" and k for a weighted
scale-free network with m=2 and N=10 000. The value of the scal-
ing exponent is "&1.5. A similar scaling relation is obtained for the
corresponding nonweighted network, where "&1.6, as shown in
the inset.
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Complex networks arise in many natural systems of fun-
damental importance and they are also an essential part of
modern society [1–6]: examples of the former are many bio-
logical networks while the latter include the Internet, electri-
cal power grids, transportation networks, etc. Studies of
complex networks have become a recent field of tremendous
interest since the discoveries of the small-world [7] and the
scale-free properties [8].
A basic assumption in most existing works on complex

networks is that all links and nodes are identical in terms of
their functional roles in the network [9]. This assumption
may not be valid for a realistic network because different
links and nodes can contribute differently to the overall per-
formance of the network [10–16]. For instance, in a neural
network, links, which are dendritic connections, can have
very different capabilities in terms of transmitting electrical
signals. Nodes, which are neurons, can also have different
electrical and chemical properties and thus be very distinct in
terms of their abilities to process information. In the Internet,
the capabilities to process and transmit information of com-
puters (nodes) can have a wide distribution. It is thus impor-
tant to study weighted complex networks in which nodes and
links are not treated on equal footing. Although the need to
study these more realistic networks has been pointed out
recently [4,13,14], so far there has not been much work in
this direction.
In this paper, we introduce a class of weighted scale-free

networks. In such a network, each node is assigned a random
weight, which is the realization of random variable W in
[0,1]. Given a pair of nodes with different weights, the
weight of the link connecting them can be defined accord-
ingly. Our interest is to develop proper characterizations of
such weighted networks. For this purpose we use the concept
of betweenness of a node, first proposed by Newman [13],
which is the total number of optimal paths (to be defined
below) between any pairs of nodes passing through this
node. Given a random distribution of weights in the network,
our question is how the betweenness scales with the weight
w. A related issue concerns the scaling relation between the
betweenness and k, where k is the realization of the degree
variable K that measures the number of links of node in the

network. In general, we write the betweenness as B!w ,k",
with the corresponding marginal betweennesses: BW!w"
=#1

kmaxB!w ,k"dk and BK!k"=#0
1B!w ,k"dw, where kmax!" is

the maximum number of links of node in a finite but large
network. Our main results are the following. (1) The weight-
based betweenness obeys the following exponential scaling
relation:

BW!w" $ Ne−#w for large w , !1"

where the exponential rate # scales with m, the average num-
ber of new links acquired by the network, as #$m$ ($ is a
constant). (2) The link-based betweenness obeys the follow-
ing algebraic scaling law:

BK!k" $ k%, !2"

where 1!%!2. Since W and K are independent random
variables, we have B!w ,k"$Ne−#wk% for large w and k. Sup-
pose nodes with large values of betweenness are more influ-
ential, result (1) implies that, due to the natural process of
evolution of the network, nodes with large values of weights
may be less influential. On the other hand, nodes with large
values of k are generally more influential, as can be expected
intuitively.
Scale-free networks are characterized by algebraic behav-

ior in the degree distribution P!k". This property is dynamic
because it is the consequence of the natural evolution of the
network. The ground-breaking work by Barabási and Albert
[8] demonstrates that the algebraic behavior is due to two
basic mechanisms: growth and preferential attachment,
where the latter means that the probability for a new node to
be connected to an existing node is proportional to the num-
ber of links that this node already has.
Our weighted scale-free network is constructed as fol-

lows. We first generate a regular (nonweighted) scale-free
network based on the Barabási-Albert (BA) model [8,17]. In
particular, we start with a small number m of nodes and add
a new node with m links at each time step following the
preferential attachment rule, while allowing only one link
between any pair of nodes. After t (large) time steps, we
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Small-world and scale-free networks are known to be more easily synchronized than regular lattices,
which is usually attributed to the smaller network distance between oscillators. Surprisingly, we find
that networks with a homogeneous distribution of connectivity are more synchronizable than hetero-
geneous ones, even though the average network distance is larger. We present numerical computations
and analytical estimates on synchronizability of the network in terms of its heterogeneity parameters.
Our results suggest that some degree of homogeneity is expected in naturally evolved structures, such
as neural networks, where synchronizability is desirable.
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In their seminal work, Watts and Strogatz [1,2] have
shown that real networks of different nature have the
small-world (SW) property, characterized by high clus-
tering and the average network distance between two
nodes that is as small as pure random networks. Since
then, many more examples of real-world networks [3–8],
including both artificial and natural systems, have been
identified to have the SW property. It turns out, however,
that there is another seemingly generic feature of net-
works in the real world. It is called the scale-free (SF)
property, which is signified by the power-law connectiv-
ity distribution of the network [3,4,8–14]. Barabási and
Albert [9] suggested a model of growing networks, in
which preferential attachment of new links to nodes with
higher connectivity results in the SF property. There has
also been some efforts to incorporate both SF and SW
properties in a single model [4,15,16].

So far, much research has been focused on the struc-
tural properties of SF and SW network models. Despite
the widespread belief that these structural properties must
have significant impact on dynamical processes taking
place on such networks [5], there has been little work
directly addressing this issue. Most work has dealt with
synchronization of oscillators whose topology of interac-
tion has either the SF or SW [2,17–23] property, showing
that it leads to improved synchronizability when com-
pared to local lattice topology. A general argument under-
lying this phenomenon is that communication between
oscillators is more efficient because of the smaller average
network distance. But, does smaller average network dis-
tance improve synchronizability?

For many real networks, heterogeneity is a common
trait which frequently manifests itself in the form of an
SF distribution of connectivities. It is known that such
heterogeneity tends to reduce the average network dis-
tance [24], and this leads naturally to the question of
whether heterogeneity improves synchronizability.

The aim of this paper is to demonstrate, by using
important classes of SF and SW network models, that

heterogeneity of the connectivity distribution causes the
opposite to hold; namely, as heterogeneity increases, the
average network distance is reduced but synchronization
becomes more difficult to achieve. We show that this
intriguing behavior can be explained by examining the
load distribution on nodes or links, where the load of a
node (or a link) quantifies the traffic of communication
passing through it. The analytical results we derive sug-
gest that our observations are quite general and are ex-
pected to hold for a wide class of complex networks.

Synchronizability of a network of oscillators can be
quantified through the eigenvalue spectrum of the
Laplacian matrix representing the connection topology
of the network. Here we follow the general framework
established in [22,25]. Consider a network of N identical
dynamical systems with symmetric coupling between
oscillators. The equations of motion for the system are

_xxi ! F"xi# $ !
XN
j!1

LijH"xj#; i ! 1; . . . ; N; (1)

where _xx ! F"x# governs the dynamics of each individual
node, H"x# is the output function, ! is the overall strength
of coupling, and L is the Laplacian matrix, defined to be
Lij ! %1 if nodes i and j are connected, Lii ! ki if node
i is connected to ki other nodes, and Lij ! 0 otherwise.
The linear stability of the synchronized state fxi"t# !
x&"t#;8ig is determined by the corresponding variational
equations, which can be diagonalized into N blocks of the
form _yy ! 'DF"s# $ "DH"s#(y, where y represents differ-
ent modes of perturbation from the synchronized state.
We have " ! !"i for the ith block, i ! 1; 2; . . . ; N, and
"1 ! 0 ) "2 ) * * * ) "N are the eigenvalues of L [26].
The largest Lyapunov exponent !""# for this equation,
also called the master stability function [25], determines
the linear stability of the synchronized state for any
linear coupling scheme. In particular, the synchronized
state is stable if !"!"i#< 0, for each i ! 2; . . . ; N [27]. It
was found [25] that for a large class of chaotic oscillatory
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Semirandom scale-free model
N = 1024, kmin = 5

Smaller γ ←→More heterogeneous degree distribution
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Growing scale-free network model
Growing scale-free model

N = 1024, n0 = 5,ma = 5

Smaller α←→More heterogeneous degree distribution
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Semi-random scale-free network model



Load
Load on node i (or link) is defined as the number of
shortest paths between two nodes which pass through
i, and is a measure of congestion of communication
traffic between oscillators.
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Role of Betweenness Centrality (Load) in 
Network SynchronizationSemirandom scale-free model

N = 1024, kmin = 5

Smaller γ ←→More heterogeneous degree distribution
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Growing scale-free network model
Growing scale-free model
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Smaller α←→More heterogeneous degree distribution
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Semi-random scale-free network model
Load distribution

• We use ℓmax, the maximum of the normalized
load on nodes, as a measure of heterogeneity of
load distribution.

• Cancellation of communication signals on
heavily loaded nodes (or links).
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Heuristic explanation:
• The maximum load on 

nodes  is a measure of 
the heterogeneity of 
load distribution

• Cancellation of 
“communication 
signals” on heavily 
loaded nodes (links)


