EEE 352A, Properties of Electronic Materials, Spring 2007 <u>Homework 4</u> Due: Wednesday, February 14, in class

- 1. Problem 3.12 in Kasap (15 points).
- 2. Problem 3.13 in Kasap (10 points)
- 3. (25 points) A quantum-mechanical particle is represented by a one-dimensional wave packet that contains approximately 100 wavelengths in space.
 - What is Δx ?
 - Say one wishes to measure the wavelength λ . What is $\Delta\lambda$, the accuracy of the measurement?
 - What is the product $\Delta x \cdot \Delta \lambda$?
 - Now use the de Broglie relation to show that the Heisenbert's uncertainty principle $\Delta x \cdot \Delta p \sim \hbar$ can be obtained from the product obtained above.
- 4. (25 points) The uncertainty principle can be used to *estimate* the size of an atom. Take, for example, the hydrogen atom. Let a be the size of the atom. This means that $\Delta x \approx a$ and $\Delta p \approx h/a$, where h is the Planck constant.
 - Since Δp specifies the range of momentum fluctuation, for a rough estimate we can write $p \approx \Delta p$. What is the kinetic energy of the electron?
 - Now write down the total energy E(a) of the electron as a function of a, which is the sum of the kinetic and the Coulomn potential energy.
 - Find a_0 where $dE/da|_{a=a_0} = 0$.
 - Find $E(a_0)$ and compare it with the value -13.6 eV.
- 5. (25 points) The wave function in the one-dimensional infinite potential well system that we discussed in class can be written as

$$\psi(x) = \sqrt{\frac{2}{L}} \sin \frac{n\pi x}{L}, \quad n = 1, 2, \dots,$$

where L is the width of the potential well.

- What is the expected (or the average) value of x?
- What is the probability P(L/4) of finding the particle in the small interval $[L/4 \delta/2, L/4 + \delta/2]$ about L/4, where δ is much much smaller than L?
- What values of n maximize P(L/4)?